

Deltek Costpoint® 7.1.1
Integration Overview

August 5, 2020

Integration Overview ii

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published August 2020.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result in
severe civil or criminal penalties.

All trademarks are the property of their respective owners.

Integration Overview iii

Contents
Overview .. 1

Process and Report Integration ... 2

Regular, Saved, and Archived Parameters ... 2

Synchronous vs. Asynchronous Invocations .. 3

Data Integration ... 4

Support for Extensibility .. 4

Exporting/Importing as a String or Complex Data Object ... 5

Costpoint Integration Workflow .. 6

Data Integration Export Services .. 7

Filter Conditions .. 7

Data Integration Import Services ... 10

Structure of Exported and Imported Data .. 11

Rules for Specifying Data .. 12

Data Export Methods ... 12

Data Import Methods ... 12

Data Compression for String Services .. 14

Return Messages... 15

Report Services Return Messages ... 16

Integration-Specific Error Messages ... 16

Example of MessageResponse Object ... 19

Example of MessageResponse Object Generated as an Exception String When an Error
Occurs in Data Export Services .. 19

Integration Security .. 21

Web Services .. 21

Use Default System ... 22

Integration Console Specific Parameters in the WebLogic Server Startup Script 23

What’s New in Costpoint 7 .. 24

What’s New in Costpoint 7.0.1 .. 25

Appendix A: Sample Functions to Archive Data with Java and C# Client Programs 26

Java Functions .. 26

.NET Functions .. 27

Appendix B: Accessing Integration Services from Costpoint Servers ... 29

Access from WebLogic Server .. 29

SSL Communication .. 33

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code 34

Integration Overview iv

Example of Java Code to Invoke Regular (Legacy) Web Service .. 34

Example of Java Code to Invoke Generic Web Service ... 40

Appendix D: Troubleshooting Web Services ... 44

Overview

Integration Overview 1

Overview
Deltek Costpoint offers sophisticated integration capabilities, giving you the ability to:

 Invoke Costpoint reports and processes (long running actions) from third party
applications.

 Import and export Costpoint data to and from third party applications.

This functionality allows you to integrate Costpoint with other applications used in your
environment. For example, if you enter contracts into a contracts system, you can invoke the
Project User Flow integration component from your contracts product to insert projects into the
Costpoint system. Furthermore, if Costpoint is your system of record for specific data entities,
such as employees, projects, or vendors, you can invoke Costpoint integration functions from
other applications, to retrieve records from Costpoint and enter them into your other products.
Integration saves you the labor of entering the same data in multiple systems, and the possibility
of introducing inconsistencies between these systems.

Using the Costpoint Integration Console, you can specify exactly which Costpoint data integration
functions, reports, or processes you want to expose as Web services. You can group Costpoint
functions into logical modules (for example, a module that uploads and posts journal entries) to
make the administration and deployment of related functions more manageable in large
installations. You can choose to make your integration interfaces secure by default, requiring all
access to be done through SSL. Furthermore, the Costpoint Integration Console allows you to
test your integration components.

A Costpoint application that you choose to expose as a Web service effectively becomes a
Costpoint API (Application Programming Interface), which can be used by other products in your
organization or, if you choose to expose Costpoint Web services outside of your company
network, can be used to integrate with your partners, contractors, or clients.

An extensibility framework (which is a separate feature available with Costpoint 7) allows you to
customize Costpoint applications and, as part of the customization, make calls from Costpoint
applications to third party applications.

Combined together, the integration and extensibility frameworks allow you to create two-way
integrations with third party products—invoking Costpoint applications through Costpoint Web
services and having Costpoint applications invoke third party products through the extensibility
framework.

Process and Report Integration

Integration Overview 2

Process and Report Integration
Costpoint Process/Report Integration allows you to invoke processes (actions) or reports in
Costpoint using a Web service API.

Regular, Saved, and Archived Parameters
You can choose several ways to pass parameters to Costpoint via Web services:

 Using regular parameters — This allows you to invoke a process or report by supplying
all parameters at runtime.

 Using saved parameters — This allows you to invoke a process or report using a
previously saved process or report configuration.

 Archived Reports Parameters — This allows you to retrieve previously generated and
archived reports.

Regular Parameters
If you decide to use regular parameters, you need to specify which process or report-related
parameters you will be passing at runtime. You can choose either of the following:

 All parameters that you can enter in the corresponding Process/Report Costpoint
application

 A subset of that list

If you use a subset of that list, it makes sense to add all required parameters first and then add
optional parameters. The same defaults are used for the parameters that you do not specify as
would be used if you left the parameters empty when running the process or report using the
browser client.

When you invoke a process or report using regular parameters, the integration routine performs
steps equivalent to:

1. Logging into Costpoint using the supplied user name and password.

2. Opening the processing or reporting application.

3. Creating a new record.

4. Updating the record using supplied service parameters.

5. Invoking the process or report.

Saved Parameters
If you use saved parameters, you will have to pass only one process or report-related parameter
at runtime: the Saved Parameter ID.

When you invoke a process or report using saved parameters, the integration routine performs
steps equivalent to:

1. Logging into Costpoint using the supplied user name and password.

2. Opening the processing or reporting application.

3. Populating the application screen by executing a query using a Saved Parameter ID that
you pass to Costpoint as a supplied-by-service parameter.

4. Invoking the process or report.

Process and Report Integration

Integration Overview 3

Archived Report Parameters
If you use archived report parameters, you will have to pass only one report-related parameter at
runtime: the Archived Report ID.

When you invoke a process or report using archived report parameters, the integration routine
performs steps equivalent to:

1. Logging into Costpoint using the supplied user name and password.

2. Opening the Archived Reports (SYMRPTAR) application.

3. Populating the application screen by executing a query using an Archived Report ID that
you pass to Costpoint as a supplied-by-service parameter.

4. Returning the selected archived report as part of an integration method return.

Using the saved parameters method may be preferable to using regular parameters in report
methods because the saved parameters method allows you to specify custom Print Options,
whereas the regular parameters method uses the default Print Options for the username
specified.

Synchronous vs. Asynchronous Invocations
You can choose between two modes for invoking processes and reports:

 Synchronous — Equivalent to invoking processes and reports in real-time, using the
Costpoint browser client

 Asynchronous — Equivalent to invoking processes in batch mode, using the Costpoint
browser client

Synchronous Invocation
When you use synchronous mode, you must wait for the process or report to be completed to see
results and continue with other work. This approach works well when you invoke a simple
process or report that executes quickly, or when you need to know immediately if your process or
report ran successfully.

Asynchronous Invocation
When you use asynchronous mode, you can continue with other work as soon as Costpoint
submits your request to execute a process or report; you don’t have to wait for the process or
report to run. This approach works well when you invoke a long-running process or report and
don’t need to analyze results immediately or know exactly when the process or report ran. (For
reports, you can configure Print Options to send you an email when a report finishes running.)

Data Integration

Integration Overview 4

Data Integration
Costpoint Data Integration does more than just expose an underlying database using Web
services. It allows you to export/import data directly from/to our applications. It performs the same
data validation steps that occur when you enter data using the Costpoint browser client.

In fact, you can use Data Integration to effectively replace the Costpoint browser client with a
Web services API.

When you export data from Costpoint using Data Integration, the integration engine performs
steps equivalent to the following:

1. Logging into Costpoint using the supplied user name and password.

2. Opening the application.

3. Executing a query by filtering data using conditions on some result set columns.

When you import data into Costpoint using Data Integration, the integration engine performs
steps equivalent to the following:

1. Logging into Costpoint using the supplied user name and password.

2. Opening the application.

3. Creating a new document or executing a query to modify an existing document.

4. Saving the data.

Costpoint Data Integration relies on established standards for importing and exporting data:

 Data is exported in XML format.

 All Web services are generated using the same algorithm, making it easy to create client
programs that invoke Costpoint services.

 Client programs that invoke Costpoint services are automatically generated in Java
language.

 To generate client programs for other languages (such as .NET), you can take a Web
service WSDL file that we expose and generate a client program from it.

Support for Extensibility
Costpoint Data Integration allows you to add columns from extensibility units and use them as
regular columns in export and import Web services.

Data Integration

Integration Overview 5

Exporting/Importing as a String or Complex Data Object
Depending on your needs, you can export/import data in either of two ways: as a String or as a
Complex Data Object.

String
Exposing data as a string lets you generate very simple Web services that:

 Treat data as a string

 Assume that both the client and server programs recognize that the string represents an
XML document and know the rules needed to parse the document

This approach is convenient if you deal with XML documents on a regular basis (especially if you
store your data internally as XML). It also lets you take advantage of a data archiving algorithm,
which sends data in archived (zipped) format, shrinking documents 5 to 10 times on average.

Complex Data Object
Exposing data as a Complex Data Object lets you generate Web services that declare the exact
structure of the documents. This approach is convenient if you don’t use XML documents on a
regular basis or don’t want to create programs to parse XML documents manually. This is also
the preferred approach to exposing Web services if you are planning to register Web services in
an Enterprise Service Bus.

By declaring the document’s structure in the service definition, you make it possible for a third
party tool (for example, .NET and SOA products) to automatically generate a client program for
the Web service that represents an XML document as a collection of classes in the language that
particular tool supports (for example, Visual Basic or Java). You can use Web services without
being familiar with XML documents or knowing how to parse them; the Web services will appear
as programs written in their native languages that accept/return objects.

Costpoint Integration Workflow

Integration Overview 6

Costpoint Integration Workflow
The diagram below shows you the steps you must follow to create and deploy any type of
integration method.

Data Integration Export Services

Integration Overview 7

Data Integration Export Services
Because Costpoint Data Integration exposes our applications (not just the underlying database),
Deltek has provided an easy way for you to emulate the steps of opening an application and
executing a query on the main screen or on a subtask to get the data you need. You can also
choose which result sets (and columns in those result sets) you want to export. You perform
these steps through the Integration Console user interface, with no coding needed.

To declare a Data Integration Export Service, complete the following steps:
1. Create an Integration Method by selecting the Costpoint application with which you plan

to work.

2. Specify the result sets that you want to export.

3. (Optional) Specify the columns in those result sets that you want to export. Group one or
many Integration Methods into an Integration Module and generate a Web service from it.

Regardless of the way in which parameters are passed to a Web service (String or Complex Data
Object), the structure of the filter condition and the data accepted or returned remains the same.
In other words, whenever you pass the same filter condition, you will get the same data back,
regardless of how you generated the service.

Filter Conditions
You can specify filter conditions on one or multiple result sets within the application you select.
You can think of a filter condition as a command to go to the application and automatically
execute several queries on the application result set.

The diagram below shows how a filter condition works:

 If you pass data as a String (XML document), the classes in this diagram represent XML
tags in your document.

 If you pass data as a Complex Data Object and use Java as the language for your client
application, the classes are regular Java classes.

 If you pass data as a Complex Data Object and use some other language for your client
application, your client generation tool will create similar classes in your native language.

Data Integration Export Services

Integration Overview 8

To get a better idea of how to create a filter condition, use the Test Integration Module screen in
the Data Integration application to generate a sample filter condition. Use the Query Wizard
screen to create a custom filter condition and see how it is translated into an XML document.

This is how the condition appears in the Query Wizard.

Data Integration Export Services

Integration Overview 9

This is the resulting XML code:

Data Integration Import Services

Integration Overview 10

Data Integration Import Services
Because Costpoint Data Integration exposes our applications, Deltek has provided an easy way
for you to emulate the steps of opening an application, entering new records or executing a query
on the main screen or on a subtask, and then modifying existing records. You can also choose
which result sets (and columns in those result sets) you want to import. You perform these steps
through the Integration Console user interface, with no coding needed.

To declare a Data Integration Import Service, complete the following steps:
1. Create an Integration Method by selecting the Costpoint application with which you plan

to work.

2. Specify the result sets that you want to import.

3. Specify the columns in those result sets that you want to declare as primary keys. (This
step is optional if you intend to use this method only to insert data, and not to perform
updates or deletions.)

4. (Optional) Specify the columns in those result sets that you want to import.

5. Group one or many Integration Methods into an Integration Module and generate a Web
service from it.

Structure of Exported and Imported Data

Integration Overview 11

Structure of Exported and Imported Data
The diagram below represents the data exported and imported via the Data Integration
application. The data is in the same format whether you are exporting or importing, which makes
it easy to export data, make necessary changes to it, and then import it back into Costpoint.

Because the Data Integration application supports result set trees that can contain many levels,
data is arranged in the “Russian Doll” format, in which child rows belong to their parent row. The
opposite would be the “Flat” format, in which all result set rows are on the same level.

Rules for Specifying Data

Integration Overview 12

Rules for Specifying Data
XML language is sensitive to the order of the elements in the document. This means that you
have to pass result set columns ordered in the same way as they appear in the XML schema that
defines the method. The same rule applies to the result sets if you have multiple subtasks at the
same level in the result sets tree.

When you pass data as a String vs. a Complex Object, this data is defined in the Web service
WSDL as a string, not XML. This means that it has to be encoded if you are invoking Web
services using a low-level programming model by manually generating SOAP envelopes.

For your convenience, you can use the Generate Sample Document or Generate Sample
Query button in the Test Integration Module to generate a sample document or query. When you
click this button, the application automatically generates a sample document or query that
conforms to the document structure you specified when you created the method, but is populated
with random data.

Data Export Methods
 When you generate a service to export data, you can expose as few columns as you

want, meaning that you select only the data that you need.

 Whenever possible, a special LAST_MODIFIED pseudo-date/time column is exposed
that allows you to select only recently modified data. Whenever a user updates
documents in Costpoint, the application automatically updates certain system columns to
keep track of who modified the data and when. While exposing such columns directly to
the users is not usually done, it was decided to provide Integration Console users with
functionality built on top of such system columns.

The way this works is that the application tries to determine if data can be filtered in a
particular result set using system hidden columns. If so, an extra column named
RESULT_SET_ID + ‘_LAST_MODIFIED’ is created in the data export method Query
schema. This column is only available in query conditions; you cannot export this column
as part of the result set data. This column has a date/time data type, and you can use it in
the same way as any other date/time column from a query standpoint. You can build a
filtering query that uses this column and includes any operators (=,>,<, between, etc.)
that are supported for a date/time field. You can set multiple conditions on this column to
support date ranges and other uses.

Data Import Methods
 When you generate a service to import data, you can also choose the columns that you

want to import, but some rules govern whether or not you have to include the column in
the service definition. The general rule is that you must pass as much data to Costpoint
as you do when you use the Costpoint browser client. In other words, when you INSERT
new data into Costpoint, you must pass at least all required columns (marked with an * in
the Data Integration application).

 When you want to UPDATE, DELETE, or SELECT data in Costpoint, you must provide
enough information so that the Data Integration application can uniquely identify the rows
that you want to modify. When you define a service, you must specify a list of method
primary key columns that will be used to identify a row in the result set. (Columns that are
typically used as primary keys are marked PK in the Data Integration application, but, in
some cases, you will have to specify additional/different columns as method primary

Rules for Specifying Data

Integration Overview 13

keys.) When you invoke a service, you must specify values for these columns to identify
the rows that will be modified.

 When you UPDATE data in Costpoint, you use method primary key columns to identify
the rows that you want to change and use the rest of the columns to update data. (You
cannot change primary key columns). The Data Integration application assumes that you
don’t want to update the values of the columns that you don’t pass to Costpoint, meaning
that the application will not change the value of any column that is not identified in the
document that you pass.

 When you DELETE data in Costpoint, you use method primary key columns to identify
the row that you want to delete. The Data Integration application ignores any other
columns that you pass into Costpoint for that row.

 When you SELECT data in Costpoint, you need to use method primary key columns to
identify the row that you want to select. The Data Integration application ignores any
other columns that you pass into Costpoint for that row.

 In data import methods, some operations are not allowed on particular result sets
because they don’t make sense from a business logic standpoint. You can also further
limit the number of operations that the result set supports. For example, if you know that
you will be using a Web service only to INSERT data, you can tell the tool that you only
need to support INSERT. In this case, you will not have to specify method primary keys
for method result sets.

 There are two special types of result sets that can only have one row: Filter and Single
Row result sets. For such result sets, you don’t need to specify method primary keys
because Costpoint knows that these result sets have a single row.

 Some result set columns have runtime defaulting logic when you INSERT data. If you
don’t include a column in an input document, Costpoint will assume that you want to use
the default value for this column (if it has any) or the null value if no default value exists.

 For performance reasons, Costpoint imposes certain restrictions on which columns in the
top level result set can be treated as Method PK columns. To support UPDATE,
DELETE, and SELECT operations, the system will have to identify a unique row at
runtime with which you want to work.

Since many top level result sets can be very large, Costpoint uses method primary key
columns to modify the original SQL statement that populates data for the result set. By
doing this, the application only needs to fetch one row from the database instead of
fetching perhaps millions of rows and then filtering them. In most cases, you will not
notice this restriction because columns you generally want to treat as method primary
keys will be available to you.

Lower level result sets do not have such restrictions because Costpoint assumes that
such result sets generally do not have as much data. Data is already filtered on lower
levels because the application only selects rows that belong to a particular top level result
set row. Therefore, it is acceptable to filter data in the memory.

Data Compression for String Services

Integration Overview 14

Data Compression for String Services
To minimize the amount of data transferred during Web service execution, the Data Integration
application allows you pass and get data in compressed (zip) format.

The compression algorithm, described below, is available only for String-based services. You
must complete an extra step to pass/retrieve data in Archived format.

 When you invoke a service to export data, data comes back as a byte array in the form
of a zipped data string (using the standard java java.util.zip.Deflater class). Web services
pass this data as a standard XML base64Binary data type. To convert data that you
receive as a result of service invocation, you must unzip it. (For Java clients, you can use
the java.util.zip.Inflater class; for .NET C# clients you can use the
System.IO.Compression.DeflateStream class).

 When you invoke a service to import data, you must perform the opposite step to pass
data to Costpoint services. You need to compress data into a byte array. (For Java
clients, you can use the java.util.zip.Inflater class; for .NET C# clients you can use the
System.IO.Compression.DeflateStream class.)

To implement archiving with Java clients, you can use a sample Java client for Web services that
is generated by the Integration Console. Review the sample to see how the steps are done in
Java and either use them as is, or recreate the same steps using another language, such as
.NET.

Return Messages

Integration Overview 15

Return Messages
You may receive error messages when you invoke a service. These messages depend on the
type of service you generate and whether or not error conditions occur during invocation.

Data Export Services return data as a result of service invocation, but other services return a
MessageResponse object. If a problem occurred, this object describes the severity of the problem
and may contain one or more message objects that describe the problem.

Whenever possible, you will receive a message describing the particular problem that occurred.
When you invoke a Web service, control goes to the WebLogic security provider first. WebLogic
tries to authenticate you to the system you are logged into, using your user name (concatenated
with the system name) and password.

If authentication fails, WebLogic generates an exception. Since control never gets to the Web
service runtime classes, the application cannot convert this exception into a MessageResponse
object. These errors appear as exceptions in XML SOAP fault messages in the Web service.

If authentication completes successfully, control goes to the Web service runtime. From this point,
runtime classes can catch all exceptions and convert them into MessageResponse objects. Since
data export services do not return a MessageResponse object, the application will still have to
generate an exception. Then the application will convert the MessageResponse object into an
XML string and return it as an exception message. This way, you can get an exception message
string, parse this xml string, and get a MessageResponse object that you can analyze.

See http://www.w3.org/TR/soap12-part1/#soapfault for more details about fault messages.

The diagram below shows you the structure of the service response message.

The structure of the MessageResponse object is very simple, but some attributes in the message
object apply only to particular situations. Some attributes (such as MsgId or ContextLine)

http://www.w3.org/TR/soap12-part1/#soapfault

Return Messages

Integration Overview 16

describe internal system entities that may be difficult for third party systems to interpret. For the
internal ContextLine attribute, Deltek decided to create a corresponding ContextXPath attribute
that can be used to map a particular message with a row in the document that you are trying to
import into the system.

Report Services Return Messages
Special types of response objects are used for Web services that invoke reporting applications
and return report output. For each type of report output, the Web service creates a new response
object: HTMLReportResponse, PDFReportResponse, ExcelReportResponse,
XMLReportResponse, or RTFReportResponse. These objects contain all the properties of the
original MessageResponse object plus extra properties to return report data.

HTMLReportResponse has two extra properties :

 HtmlReportData of type string

 Array of bytes that represent used by report images

All other report return types have one extra parameter: byte array.

Integration-Specific Error Messages
If an error occurs during the service authentication process, an exception will be generated by
WebLogic.

After successful authentication, control goes to the service runtime that analyzes service
parameters and returns errors if the parameters are invalid.

If the parameters are correct, the service runtime sends these parameters to the regular
Costpoint runtime classes. Costpoint runtime classes perform the same steps that would occur if
a user performed the same activity using the regular Costpoint user interface. If an error occurs at
this point, the Costpoint runtime classes return the same error messages that the user would see
in the browser UI . The service runtime converts these errors into a MessageResponse object
and returns to the client program.

Below are the integration-specific error messages that can occur at runtime:

Message ID Message Text Cause

CP_SYSSEC_WS_GNRL_FAILURE Invalid login
information
provided. Web
Services
authentication failed.

This error can occur
when the Integration
runtime cannot read
the user rights info
from the system
tables.

CP_SYSSEC_WS_GNRL_FAILURE_PARMS Invalid login
information
provided. Web
Services
authentication failed.
System: %1, User
ID: %2, Timestamp:
%3, Reason: %4.

This error occurs
when the user does
not have rights to
access the system via
Integration Services.
By default, Costpoint
users do not have
rights to access
integration. You have
to grant the rights in

Return Messages

Integration Overview 17

Message ID Message Text Cause

the Manage Users
application.

CP_SYS_NO_CHANGE_RIGHTS_PK An attempt to persist
a new value for the
following Primary
Key field was
denied. Field: %1
Value: %2

This warning states
that the runtime
ignored the new value
for the Primary Key.

CP_SYS_NO_CHANGE_RIGHTS_NOEDIT An attempt to persist
a new value for the
following non-
editable field was
denied. Field: %1
Value: %2

This warning states
that the runtime
ignored the new value
for the non-editable
field.

CP_SYS_NO_CHANGE_RIGHTS_LS An attempt to persist
a new value for the
following field was
denied based on
labor suppression
rules. Field: %1
Value: %2

This is a warning
saying that runtime
ignored a new value
for a column that the
user doesn’t have
rights to modify
because of labor
suppression rules.

CP_SYSSEC_WS_INVALID_SYSTEM Provided to the
integration method
system %1 is invalid
or different from the
system %2 used to
authenticate user.

This error is returned
by the integration
runtime when you
pass an incorrect
system name as a
parameter to the
service.

CP_SYS_WS_NO_OPERATION_RIGHTS An attempt to %2 for
the result set %1 in
the integration
method %3 was
denied because the
method doesn't
support such an
operation.

This error is returned
by the integration
runtime when you try
to submit a result set
row with an
unsupported
operation (for
example,
tranType=”DELETE”,
but a particular result
set only supports
INSERT in the data
method definition).

CP_SYS_NO_SAVE_RIGHTS An attempt to %2 for
the result set %1
was denied due to
insufficient rights.

This error is returned
by Costpoint runtime
when it determines
that you do not have

Return Messages

Integration Overview 18

Message ID Message Text Cause

rights to modify a
particular row. This
can happen when
result set rights have
been changed since
you designed and/or
deployed your
service.

CP_SYS_WS_GNRL_INT_FAILURE General Integration
Framework Failure
during integration
method %1
invocation. Details:
%2.

This error is returned
by the integration
runtime when an
unexpected error
occurs during method
invocation. Refer to
the details returned
by the error message
for more specific
information.

CP_SYS_WS_GNRL_FRAMEWORK_FAILURE General Framework
Failure during
integration method
%1 invocation.
Details: %2.

This error is returned
by the Costpoint
runtime when an
unexpected error
occurs during method
invocation. Refer to
the details returned
by the error message
for more specific
information.

CP_SYS_WS_INVALID_DOC Integration
Framework failed to
parse input
document during
integration method
%1 execution.
Please make sure
document is
formatted correctly.
Details: %2.

This error is returned
when the integration
runtime cannot parse
the input document or
query condition in
data services. Refer
to the details returned
by the error message
for more specific
information.

Return Messages

Integration Overview 19

Example of MessageResponse Object
The Context Path below points to the second child of the first parent record in the document
submitted to the service.

MethodResponse:

 Severity: 3

 Messages array:

 Message:

 AppId: BLMMNBIL

 MsgId: CP_OBJ_INVALID_COMP

 RsId: BLMMNBIL_MANUALBILLEDIT_CHLD

 ObjectId: ADDR_DC

 MsgType: 3

 MsgText: This |ADDR_DC| does not exist for this Company.

 ContextLine: -59999

 ContextXPath:
/BLMMNBIL_MANUALBILLEDIT_HDR[position()=1]/BLMMNBIL_MANUALBILLEDIT_CHLD[posit
ion()=2]

 Message:

 AppId: BLMMNBIL

Example of MessageResponse Object Generated as an
Exception String When an Error Occurs in Data Export Services
<?xml version='1.0'?>

<MethodResponse>

<Severity>4</Severity>

<Message>

<AppId>null</AppId>

<MsgId>CP_SYSSEC_WS_INVALID_SYSTEM</MsgId>

<RsId>null</RsId>

<ObjectId>null</ObjectId>

<MsgType>0</MsgType>

<MsgSeverity>0</MsgSeverity>

<MsgText><![CDATA[

Provided to the integration method system C62RQM is invalid or different from the system
C62RADO used to authenticate user.

]]></MsgText>

Return Messages

Integration Overview 20

<ContextLine>-60000</ContextLine>

<ContextXPath></ContextXPath>

</Message>

</MethodResponse>

Integration Security

Integration Overview 21

Integration Security
This section provides a brief overview of the security associated with Costpoint Integration
services.

For more information about Costpoint security, see the Deltek Costpoint 7.0 Security guide.

Web Services
To secure a Web service, you can specify at design time if you want to use the UsernameToken
Profile or SAML Token Profile.

For more information, see the following WebLogic documentation:

http://docs.oracle.com/cd/E24329_01/web.1211/e24488/overview.htm

To invoke a Web Service that is using the UsernameToken Profile, the client program must
provide security credentials (a username and password) for authentication and authorization
purposes.

 Username: This is the regular Costpoint username, concatenated with the system name
the user wants to connect to. The format is:

CostpointUserName __ Costpoint

Where:

 CostpointWebUserName is the Costpoint user name used on the login screen to log
into Costpoint.

 CostpointWeb is the system name used on the login screen to log into Costpoint.

 Password: This is the regular Costpoint password that the user uses to log into
Costpoint.

The user must be a valid Costpoint user who:

 Has all rights to the underlying applications and result sets to select/update data via the
regular Costpoint UI

 Has the Allow Application Access via Integration Services check box selected on the
Authentication tab in the Manage Users application

UsernameToken Profile is a standard that is defined in the OASIS WS-Security UsernameToken
Profile specification.

For more information, see:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

The UsernameToken Profile expects passwords to be passed as PasswordText, meaning that
they are passed in clear text over the wire. Therefore, Deltek recommends that you use SSL to
protect sensitive information if you invoke Web services in an unsecured environment. In the
future, based on user feedback, the Integration application may include additional standard
ways of passing security credentials, such as X.509.

http://docs.oracle.com/cd/E24329_01/web.1211/e24488/overview.htm
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

Integration Security

Integration Overview 22

To invoke a Web Service that is using SAMLToken Profile, the client program must obtain a valid
SAML token and build a properly formatted Web services SOAP/XML request with SAML token
included as defined in the OASIS WS-Security SAMLToken Profile specification.

For more information, see:

https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf

Use Default System
Deltek has found out that in some situations, it is technically difficult or impossible to concatenate
the system name to the user name when you invoke a service from a third party tool or use SAML
to authenticate the user. To deal with such situations, Deltek introduced a Use Default System
option to invoke a service.

If you choose this option, you pass a username without the system name to the Web Service.
The WebLogic authentication provider in such situations authenticates the user against the first
system in the list of systems defined by the sysNames parameter in the enterprise.properties file.
You still have to pass the system name as a parameter to the Web service, and the integration
runtime checks to make sure that this system name is equal to the system that was used to
authenticate the user.

This effectively means that you can use this mechanism only when you have one system. If you
have a requirement to support many systems and cannot attach the system name to the user
name, contact the Deltek Customer Care team for help.

Currently, the Data Integration application does not support any kind of message security
(Digital Signatures and Encryption) under the assumption that users will use SSL to secure
messages. However, based on user feedback, support for message security may be added in
the future.

https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf

Integration Console Specific Parameters in the WebLogic Server Startup Script

Integration Overview 23

Integration Console Specific Parameters in the
WebLogic Server Startup Script
By default, WebLogic does not validate incoming Web service requests against the Web service
WDSL. WebLogic tries to map parts of an incoming request with the Web service WSDL and
silently discards all parts that are not formatted according to WSDL. This is done because
validation adds some processing overhead.

While this behavior is acceptable in a production environment, where it is assumed that the client
knows how to generate a correct request, it is very important to have validation in the test
environment. This is especially true for object-based Web services, where submitted documents
can have a very complex structure. In a test environment, it is very common that incoming
requests have incorrect namespace declarations or misspelled result set columns. Without
schema validation, WebLogic silently ignores result set columns or rows, creating problems that
are very hard to troubleshoot.

For these reasons, you should modify the script that starts the WebLogic server in a test
environment by adding an extra BEA parameter:
-DWebLogic.wsee.validate_request=true

What’s New in Costpoint 7

Integration Overview 24

What’s New in Costpoint 7

To support changes introduced in Costpoint 7, all previously built integration modules need to be
rebuilt and redeployed to work with Costpoint 7. Use the Build and deploy option in the
Integration Console. This is a onetime process. Be sure to test the integration modules with
Costpoint 7 after you rebuild and redeploy them.

You do not need to change the definitions of integration methods, nor should you need to make
changes to the client applications that invoke Costpoint Web services.

Here are the improvements made to the Integration Console as part of the Costpoint 7 release:

 Redesigned many Integration Console screens to improve look and usability

 Added support for testing integration modules in a cluster configuration

 Added several new query relations that can be used in export data integration methods

 Added support for columns coming from extensibility units in data integration methods.
Costpoint Data Integration now allows you to add columns from extensibility units and
use them as regular columns in export and import Web services.

 Replaced the Set Columns/Set PK Columns buttons with the Customize Result Set
button on the Data Export/Import method screens. This new button provides additional
information and features that simplify the process of selecting columns.

 Added an Import module feature that was previously only available via the DBWizard tool

 Added support for returning Archived reports

 Added support for returning generated reports as a return value in report integration
methods

 Redesigned the Archive String option for the integration module to use a standard byte
array as a parameter. Now the client program does not have to use a proprietary
HEX/UNHEX data algorithm.

 Redesigned the integration modules to generate fewer exceptions at runtime. In most
cases, errors are now returned as messages in the MessageResponse object.

 Added a special LAST_MODIFIED pseudo column for data export methods that allows
you to select only recently modified data.

 Added a Preview button to the Test screen to preview the complete SOAP packet that
will be submitted to the server. The View/Edit screen only shows a data portion of the
message that client needs to submit to Costpoint. In the Preview screen, the complete
message, including security parameters, authentication parameters (such as user id,
company, and system), and the data parameters, are displayed.

What’s New in Costpoint 7.0.1

Integration Overview 25

What’s New in Costpoint 7.0.1

To support changes introduced in Costpoint 7.0.1, all previously built integration modules need
to be rebuilt and redeployed to work with Costpoint 7.0.1. Use the Build and deploy option in
the Integration Console. This is a onetime process. Be sure to test the integration modules with
Costpoint 7.0.1 after you rebuild and redeploy them.

You do not need to change the definitions of integration methods, nor do you need to make
changes to the client applications that invoke Costpoint Web services.

Here are the improvements made to the Integration Console as part of the Costpoint 7.0.1
release:

 Added the ability to modify Primary key columns. The ability to modify primary key
columns in the Data Import web services does not exist. Their values are used to find out
which row the web service needs to modify.

To get around this restriction, a separate optional portion was added to the import
document where you can set new values to the primary key columns. The application will
continue to use primary key values listed in main portion of the import document to select
which row web service needs to modify. If the optional RS_NAME'+'_MODIFIED_KEYS
portion is present, the application will assume that it contains new values for all primary
key columns, meaning that in case you have a compound primary key and you want to
change value of one primary key column, you will have to provide values for all other
primary key columns even if you intend not to change them,

 Added two new modes of importing data: MERGE and INSERT_OR_SELECT. The
application still supports the existing data synchronization modes (INSERT, UPDATE,
DELETE, and SELECT).

 MERGE mode first checks whether or not a row with given primary key values exists.
If so, it tries to update it by switching to the UPDATE mode. Otherwise, the system
switches to the INSERT mode and tries to insert new row.

 INSERT_OR_SELECT first tries to use SELECT mode to find a row based on
primary key values. If such row does not exist, system switches to the INSERT mode
and tries to insert new row.

Appendix A: Sample Functions to Archive Data with Java and C# Client Programs

Integration Overview 26

Appendix A: Sample Functions to Archive Data
with Java and C# Client Programs
These functions are copied from a generated test client application. You can use them to
compress/decompress data when you are in the module definition screen and you choose to use
the Pass Data as String and use Achieved Text String Data Format.

Java Functions

 private static final int BUFFER_LENGTH=65536;

 /**

 * Converts zipped data into clear text

 */

 public static String extractData(byte[] zippedBytes) throws

 Exception {

 // unzip data using standard java Inflater class

 java.util.zip.Inflater decompresser = new java.util.zip.Inflater(true);

 decompresser.setInput(zippedBytes, 0, zippedBytes.length);

 byte[] result = new byte[BUFFER_LENGTH];

 StringBuilder out=new StringBuilder();

 int resultLength = -1;

 while ((resultLength=decompresser.inflate(result))>0){

 out.append(new String(result, 0, resultLength, "UTF-8"));

 }

 decompresser.end();

 return out.toString();

 }

 /**

 * Converts clear text into hexed zipped data

 */

 public static byte[] archiveData(String sourceText) throws

 Exception {

 // Encode a String into bytes

 byte[] input = sourceText.getBytes("UTF-8");

 // Compress bytes

Appendix A: Sample Functions to Archive Data with Java and C# Client Programs

Integration Overview 27

 java.io.ByteArrayOutputStream binaryData=new java.io.ByteArrayOutputStream();

 java.util.zip.Deflater compresser = new
java.util.zip.Deflater(java.util.zip.Deflater.DEFAULT_COMPRESSION,true);

 compresser.setInput(input);

 compresser.finish();

 int compressedDataLength = -1;

 byte[] output = new byte[BUFFER_LENGTH];

 while ((compressedDataLength = compresser.deflate(output)) > 0) {

 binaryData.write(output,0,compressedDataLength);

 }

 return binaryData.toByteArray();

 }

.NET Functions

/*

*.Net code

*/

/*

 public byte[] archiveData(String sourceText){

 byte[] srcBytes = System.Text.ASCIIEncoding.UTF8.GetBytes(textBox1.Text);

 System.IO.MemoryStream srcStream = new System.IO.MemoryStream(srcBytes);

 System.IO.MemoryStream zippedStream = new System.IO.MemoryStream();

 using (System.IO.Compression.DeflateStream zipper = new
System.IO.Compression.DeflateStream(zippedStream,
System.IO.Compression.CompressionMode.Compress))

 {

 byte[] bytes = new byte[4096];

 int n;

 while ((n = srcStream.Read(bytes, 0, bytes.Length)) !=
0)

 {

 zipper.Write(bytes, 0, n);

 }

 }

 return zippedStream.ToArray();

 }

Appendix A: Sample Functions to Archive Data with Java and C# Client Programs

Integration Overview 28

 public String extractData(byte[] zippedBytes){

 System.IO.MemoryStream ms = new System.IO.MemoryStream(zippedBytes);

 using (System.IO.Compression.DeflateStream zip = new
System.IO.Compression.DeflateStream(ms,
System.IO.Compression.CompressionMode.Decompress)){

 byte[] bytes = new byte[4096];

 StringBuilder output = new StringBuilder();

 int n;

 while ((n = zip.Read(bytes, 0, bytes.Length)) != 0){

 output.Append(ASCIIEncoding.UTF8.GetString(bytes, 0, n));

 }

 return output.ToString();

 }

 }

Appendix B: Accessing Integration Services from Costpoint Servers

Integration Overview 29

Appendix B: Accessing Integration Services from
Costpoint Servers

This section only applies if you need to access CP Web Services through IIS server using SOAP
protocol.

If web services are accessed ONLY through REST protocol, then the configuration discussed in
this section can be skipped as REST access to Costpoint Web Services works with default
Costpoint IIS configuration (that is, no additional setup is needed).

If Costpoint is deployed on premise but you intend to access some areas of Costpoint from
public internet and want to restrict Web service access using Black/White list capability, then:

 Do NOT perform the configuration below on an externally facing IIS server. That is, do
not enable SOAP access for public internet since Web services invoked using SOAP
protocol will not honor the black/white list policy.

 You can invoke Costpoint Web services from a public internet using REST protocol
with black/white lists being applied/honored.

All integration modules are deployed under the /webservices virtual folder.

The typical URI to access an integration module using SOAP protocol is
http://<servername>:<port>/webservices/<servicename>.

To determine the correct URI to access an integration module, use the Test Integration Module
screen in the Integration utility, as shown below.

Access from WebLogic Server
All integration modules are deployed homogenously on all WebLogic servers including dedicated
servers. In case of cluster, the admin server does not host any Web services. Web services can
be accessed based on the URI of a specific server as discussed above or through some form of
load balancing (for example, virtual IP or IIS).

When you need to expose integration modules to external users who do not have direct access to
WebLogic servers, IIS can be used to proxy the requests to WebLogic. Based on the servers you
decide to expose, you can either use the existing Costpoint Web Server (IIS) or create a new
virtual Application. The standard installation of Costpoint Web server is configured to proxy UI
requests to a single Weblogic server or all nodes of a cluster. It does not proxy to dedicated
servers. By creating a new virtual Application in IIS, you can control and direct Web service calls
to a single Weblogic server (which can be a node or a dedicated server) or a group of Dedicated
Weblogic servers by providing a comma-separated list or by means of a virtual IP.

Appendix B: Accessing Integration Services from Costpoint Servers

Integration Overview 30

To configure IIS to proxy all Integration Modules, complete the following steps:
1. Perform the following sub-steps if you want to expose Integration services on the entire

Weblogic cluster (that is, you do not want to restrict the processing of Web services to
specific WL nodes in your deployment).

a. On the IIS server, locate the root folder of the DEWebApp application. By default, it is
C:\deltek\costpoint\71\applications\DEWebApp.

b. Create a new folder called webservices under
C:\deltek\costpoint\71\applications\DEWebApp.

2. Perform the following sub-steps if you want to expose Integration services running on a
specific Weblogic server or a group of nodes (for example, two dedicated servers). You
can specify the list of nodes or use a virtual IP for this group.

a. Create a new Application Pool with settings similar to that of DefaultAppPool.

b. Create a new virtual Application in IIS mapping to an empty folder on the local drive
(for example, C:\services\). Assign it to the application pool created in previous step.

c. Create a subfolder called webservices under the local C:\services folder.

d. Copy DEProxy folder from Costpoint Web Server (by default located under
C:\deltek\costpoint\71\applications\) to the local C:\services\webservices folder.

e. Using Notepad, create a file named iisproxy.ini under
C:\services\webservices\DEProxy with following content.
WLIOTimeoutSecs=3600

Idempotent=OFF

Debug=ALL

DebugConfigInfo=ON

WLLogFile=c:\temp\webservices_proxy.log

WLSocketTimeoutSecs=20

ConnectTimeoutSecs=80

ConnectRetrySecs=8

KeepAliveSecs=120

FileCaching=OFF

DynamicServerList=OFF

PathTrim=/CPWeb (Replace CPWeb with the name of the new Virtual Directory in IIS.)
WebLogicCluster=<Dedicated-HostName1>:<Port1>,<Dedicated-
HostName2>:<port2> (Use a comma-separated list to include more than one dedicated
server.)

3. Click Control Panel » Administrative Tools » Internet Service Manager to open the
Internet Information Services (IIS) Console.

4. Drill down to access the newly created webservices folder.

5. Double-click the Handler Mappings icon.

Appendix B: Accessing Integration Services from Costpoint Servers

Integration Overview 31

6. Right-click the WLProxy mapping that was created by the Web tier installer, and click

Edit on the shortcut menu. It should be mapping to *.cps.

7. Change the mapping to * and click OK. Do not modify any other fields on the dialog box.

8. Click Yes when prompted about allowing ISAPI extensions.

9. Restart IIS service for the changes to take effect. Verify that you can access webservices
by querying the WSDL. A typical URI to access an integration module on IIS server is
http://<servername>/CPWeb/webservices/<servicename>.

10. Test to ensure that you can access webservices through IIS. For example, if the module
name is ldmtimews.jar, http://IISServer/CPWeb/webservices/LdmtimeWS?WSDL should
display the WSDL of the Web service.

http://iisserver/CPWeb/webservices/LdmtimeWS?WSDL

Appendix B: Accessing Integration Services from Costpoint Servers

Integration Overview 32

This procedure will expose all integration modules via the IIS server. Alternatively, you can
expose specific modules by creating subfolders under webservices mentioned in steps 1 and 2.
The subfolder name should match the name of the Web service as per the URI to access it (for
example, webservice/<moduleName>).

To configure IIS to proxy only selective Integration Modules
The above procedure will expose all integration modules through IIS server. Alternatively, you
can choose to expose only a select set of integration services. For example, you may want to
expose only the Timesheet Module (ldmtimews.jar) and restrict access to all others. To do so,
you first need to identify the URL of the module that needs to be exposed through IIS. You can
use the Test Integration Module screen in the Integration utility to identify the URL of any module.
For example, if an integration module ID is LDMTIME, its application server URL would be
http://AppServer:7009/webservices/LdmtimeWS?WSDL and its IIS URL would be
http://IISServer/CPWeb/webservices/LdmtimeWS?WSDL. On the IIS server, you need to create
subfolders that match the module URL and change the handler mappings of only those modules
that need to be exposed through IIS. For ldmtimews.jar, the subfolder should be named
ldmtimews.

Procedure continued…
11. Open the webservices folder created in step 1 or 2 above and create a new subfolder

under it. The name of the new folder should match the module name. For example if the
module is ldmtimews.jar, the folder should be named LdmtimeWS.

12. Click Control Panel » Administrative Tools » Internet Service Manager to open the
Internet Information Services (IIS) Console.

13. Navigate to previously created webservices folder and change the handler mapping
WLProxy to proxy only the *.cps requests. Refer to Steps 3 through 8 above. This will
stop proxying requests to all Integration modules.

14. Navigate to the newly created subfolder (LdmtimeWS) and change the handler mapping

WLProxy to proxy * (all) requests. Refer to Steps 3 through 8 above. This will allow
requests related to the module to be proxied.

15. Repeat Steps 11-14 for all other integration modules to be exposed to IIS.

If you have a hardware or software load balancer in front of your IIS server(s) and you want to
expose the integration modules through this load balancer, you will need to set up the Front End
Host and Port(s) in Configuration Utility.

http://appserver:7009/webservices/LdmtimeWS?WSDL
http://iisserver/CPWeb/webservices/LdmtimeWS?WSDL

Appendix B: Accessing Integration Services from Costpoint Servers

Integration Overview 33

For more on this, please refer to the Deltek Costpoint Configuration Utility guide.

SSL Communication
Costpoint integration modules support both one- and two-way SSL communication, but the
servers they are deployed on must be SSL enabled. By default, the Costpoint application server
is SSL-enabled with demo certificates. You need to replace the demo certificate with a valid
verified certificate on the WebLogic server.

When the integration modules are exposed through IIS and you require SSL communication, you
should configure the IIS server with its own SSL certificates and have the SSL port enabled on it.

Some companies require that SSL communication from the end user to IIS is proxied all the way
to the WebLogic server.

The IIS to WebLogic server proxy does not support two-way SSL communication. The WebLogic
server should be accessed directly to participate in two-way SSL communication.

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 34

Appendix C: Invoking Generated Web Service
from within Costpoint Extensibility Code
The following is an example of how you can invoke Web Services from within Costpoint itself. In
this example, the WebService being built is for the report application. Because of this, the Java
code receives a Costpoint-generated report in HTML format.

To invoke a generated Web Service from within Costpoint, complete the following steps:
1. Build a Web Service that returns a report in the Integration Console. In this example, it is

called blrmbil.
2. Copy the generated client jar (in this example, blrmbilws_client.jar) from

C:\deltek\costpoint\71\tmp\output\clientjar\blrmbilws\, where it was created by the
Integration Console, to C:\deltek\costpoint\71\applications\enterprise\APP-INF\lib, so
it will be loaded by WebLogic as part of Costpoint application classpath.

3. Write your Java class.

See the Java code sample below. It uses InvokeWSFromExt class and registered as
After Save Java plugin. .

4. Compile it referencing the same client jar from step 2.

5. Assign this class as the Extensibility Java Plug-in event (in this example, it is After Save
class) to the appropriate Costpoint Object in the Extensibility Console.

6. Deploy the Extensibility unit and assign it to the appropriate User.

Example of Java Code to Invoke Regular (Legacy) Web Service
package com.deltek.enterprise.extensions.xt_222;

import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;
//security stuff
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import java.util.*;
import java.security.*;
import java.sql.SQLException;

//client jar
import com.deltek.enterprise.integration.ws.blrmbil.client.*;
import com.deltek.enterprise.system.applicationinterface.DEException;
import com.deltek.enterprise.system.applicationinterface.ResultSetInterface;
import com.deltek.enterprise.system.applicationinterface.RowSetInterface;
import com.deltek.enterprise.system.applicationinterface.AfterRSSave;
import com.deltek.enterprise.system.applicationinterface.RSIterator;
import com.deltek.enterprise.system.applicationinterface.SqlManager;

public class InvokeWSFromExt {

 public short afterRSSave(ResultSetInterface rsI) throws
DEException,SQLException {

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 35

 try {

com.deltek.enterprise.system.serverapi.remoteapi.integration.HTMLReportResponse
result =

(com.deltek.enterprise.system.serverapi.remoteapi.integration.HTMLReportRespons
e) new InvokeWSFromExt().invoke();
 printResult(result);
 System.out.println("Ok ");
 }
 catch (Exception e) {
 e.printStackTrace();
 return 2;
 }
 return 0;
 }

 public Object invoke() throws Exception {
 try {
 //connection information to WL server and system
 String ip = "http://server1:7001";
 String methodName = "blrmbil";
 String systemName = "C701RADM";
 String userName = "CPSUPERUSER";
 String userPassword = "CPSUPERUSER";
 String companyId = "1";
 String useDefaultSystem = "N";
 BlrmbilService service = new BlrmbilService_Impl(ip +
"/webservices/BlrmbilWS?WSDL");
 Blrmbilws port = service.getBlrmbilwsSoapPort();

 // create credential provider and set it to the Stub
 List credProviders = new ArrayList();
 // client side UsernameToken credential provider
 String systemUsername = userName + "__" + systemName;
 if (useDefaultSystem.equals("Y")) {
 systemUsername = userName;
 }
 CredentialProvider cp = new ClientUNTCredentialProvider(systemUsername,
userPassword);
 credProviders.add(cp);
 Stub stub = (Stub) port;
 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders);
 String cdata="";
 //in my saved parameter id is EDS
 cdata = "<blrmbil
xmlns='http://www.deltek.com/enterprise/integration/blrmbil'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'> " +
 "<BLRMBIL_WFUNCPARMCATLG_HDR > " +
 "<SAVED_PARM_ID>EDS</SAVED_PARM_ID> " +
 "</BLRMBIL_WFUNCPARMCATLG_HDR> " +
 "</blrmbil>";

 if (methodName.equals("blrmbil")) {
 return port.blrmbil(systemName, companyId, cdata);
 }
 System.err.println("Method not found: " + methodName);
 return null;
 }
 catch (Exception ex) {

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 36

 ex.printStackTrace();
 if (ex.getCause() != null
 && ex.getCause().getClass().getName().equals(
"javax.xml.rpc.soap.SOAPFaultException")) {
 throw (Exception) ex.getCause();
 }
 throw ex;
 }

 }

 private static void printResult(Object result) {
 if (result instanceof String) {
 String strResult = (String) result;
 System.out.println("Data: " + strResult);
 }
 else if (result.getClass().isArray()) {
 byte[] binaryResult = (byte[]) result;
 String strResult = null;
 if (false) {
 try {
 // System.out.println("Archived data: " + strResult);
 strResult = extractData(binaryResult);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 System.out.println("Data: " + strResult);
 }
 else if (result == null) {
 System.out.println("Data: " + result);
 }
 else {
 try {
 System.out.println("Data: ");
 System.out.println("<!--object represented as XML string-->");
 print(result);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private static final int BUFFER_LENGTH = 65536;

 /**
 * Converts zipped data into clear text
 */
 public static String extractData(byte[] zippedBytes) throws Exception {
 // unzip data using standard java Inflater class
 java.util.zip.Inflater decompresser = new java.util.zip.Inflater(true);
 decompresser.setInput(zippedBytes, 0, zippedBytes.length);
 byte[] result = new byte[BUFFER_LENGTH];
 StringBuilder out = new StringBuilder();
 int resultLength = -1;
 while ((resultLength = decompresser.inflate(result)) > 0) {
 out.append(new String(result, 0, resultLength, "UTF-8"));
 }
 decompresser.end();
 return out.toString();

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 37

 }

 /**
 * Converts clear text into hexed zipped data
 */
 public static byte[] archiveData(String sourceText) throws Exception {
 // Encode a String into bytes
 byte[] input = sourceText.getBytes("UTF-8");
 // Compress bytes
 java.io.ByteArrayOutputStream binaryData = new
java.io.ByteArrayOutputStream();
 java.util.zip.Deflater compresser =
 new java.util.zip.Deflater(
 java.util.zip.Deflater.DEFAULT_COMPRESSION, true);
 compresser.setInput(input);
 compresser.finish();
 int compressedDataLength = -1;
 byte[] output = new byte[BUFFER_LENGTH];
 while ((compressedDataLength = compresser.deflate(output)) > 0) {
 binaryData.write(output, 0, compressedDataLength);
 }
 return binaryData.toByteArray();
 }

 /**
 * Converts date in the jdbc string format into the instance of Calendar
class
 */
 public static java.util.Calendar getDate(String strDate) throws Exception {
 Calendar cal = null;
 if (strDate == null) {
 return null;
 }
 cal = java.util.Calendar.getInstance();
 cal.setLenient(false);
 try {
 cal.setTime(java.sql.Timestamp.valueOf(strDate));
 }
 catch (Exception e) {
 System.err.println("Invalid date :" + strDate);
 throw e;
 }
 return cal;
 }

 // prints data into console in stream
 public static void print(Object obj) throws Exception {
 // printField(obj,classToFieldName(obj.getClass().getName()));
 String name = classToFieldName(obj.getClass().getName());
 l("<" + name + ">");
 if (obj == null) {
 return;
 }
 java.lang.reflect.Method[] methods = obj.getClass().getMethods();
 // print fields
 for (java.lang.reflect.Method m : methods) {
 if (m.getName().startsWith("get") && !m.getName().equals("getClass"))
{

 if (!m.getReturnType().isArray()) {
 printField(m.invoke(obj), getFieldName(m.getName()));
 }

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 38

 }
 }
 // print arrays
 for (java.lang.reflect.Method m : methods) {
 if (m.getName().startsWith("get") && !m.getName().equals("getClass"))
{

 if (m.getReturnType().isArray()) {
 printChildren(m.invoke(obj), getFieldName(m.getName()));
 }
 }
 }
 l("</" + name + ">");
 }

 private static String classToFieldName(String className) {
 int i = className.lastIndexOf('.');
 className = className.substring(i + 1);
 i = className.lastIndexOf('@');
 if (i != -1) {
 return className.substring(0, i);
 }
 else {
 return className;
 }
 }

 private static void printField(Object field, String fieldName) throws
Exception {
 if (field != null) {
 p("<" + fieldName + ">");
 if (field instanceof java.lang.String) {
 p(field + "");
 }
 else if (field instanceof java.math.BigDecimal) {
 p(javaValueToString(field));
 }
 else if (field instanceof java.util.Calendar) {
 p(javaValueToString(field));
 }
 else {
 p(field + "");
 }
 l("</" + fieldName + ">");
 }
 }

 private static String getFieldName(String getMethod) {
 return getMethod.substring(3);
 }

 private static void printChildren(Object array, String fieldName) throws
Exception {
 if (array == null) {
 return;
 }
 // l("<"+fieldName+">");

 int length = java.lang.reflect.Array.getLength(array);
 for (int i = 0; i < length; i++) {
 Object obj = java.lang.reflect.Array.get(array, i);
 if (obj.getClass().isArray()) {

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 39

 printChildren(obj, classToFieldName(obj.getClass().getName()));
 }
 else {
 print(obj);
 }
 }
 // l("</"+fieldName+">");

 }

 private static void l(String text) {
 p(text + "\r\n");
 }

 private static void p(String text) {
 System.out.print(text);
 }

 private static String javaValueToString(Object value) throws Exception {
 if (value instanceof String) {
 return (String) value;
 }
 else if (value instanceof java.math.BigDecimal) {
 return zeroKiller(((java.math.BigDecimal) value).toString());
 }
 else if (value instanceof java.util.Calendar) {
 return (new java.sql.Timestamp(((java.util.Calendar)
value).getTime().getTime())).toString().replace(
 " ", "T");
 }
 // some kind of combobox probably ...
 else {
 java.lang.reflect.Method m = value.getClass().getMethod("getValue");
 if (m != null) {
 Object strValue = m.invoke(value);
 return (String) strValue;
 }
 // out of guesses :(
 else {
 return value + "";
 }
 }

 }

 private static java.text.NumberFormat numFormatter =
java.text.NumberFormat.getInstance();

 private static String zeroKiller(String s) {
 if (s == null) {
 return s;
 }
 int k = 0;
 int m = 0;
 k = s.indexOf('.');
 if (k != -1) {
 m = s.length();
 StringBuffer convert = new StringBuffer(s);
 while (s.charAt(--m) == '0') {
 convert.deleteCharAt(m);
 }
 if (m == k) {

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 40

 convert.deleteCharAt(m);
 }
 return convert.toString();
 }
 else {
 if (s.indexOf('E') != -1) {
 try {
 return numFormatter.parse(s).toString();
 }
 catch (java.text.ParseException e) {

 return s;
 }
 }
 else {
 return s;
 }
 }
 }

 public static String readFile(String filename) {
 // for backward compatibility in case user passes real data
 if (!filename.endsWith(".xml"))
 return filename;
 StringBuffer Str = new StringBuffer();
 String s = null;
 java.io.BufferedReader file;
 try {
 file = new java.io.BufferedReader(new java.io.FileReader(filename));
 s = file.readLine();
 while (s != null) {
 Str.append(s + "\r\n");
 s = file.readLine();
 }
 file.close();
 }
 catch (Exception e) {
 System.out.print(e);
 }
 return Str.toString();
 }
}

Example of Java Code to Invoke Generic Web Service
Here is another example of how to invoke Generic Web Service from the Extensibility code
package com.deltek.enterprise.extensions.xt_222;

import java.io.StringReader;
import java.io.UnsupportedEncodingException;

import javax.xml.namespace.QName;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;

import com.deltek.enterprise.system.utils.IntegrationUtils;
import com.deltek.enterprise.system.utils.IntegrationWSHandlerResolver;

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 41

import com.deltek.enterprise.system.utils.IntegrationWSProps;

public class GenericModuleTester {

 public GenericModuleTester() {
 }

 public static void main(String[] args) throws Exception {
 new GenericModuleTester().invoke(args);
 }

 public void invoke(String[] args) throws Exception {
 try {
 String ip = args[0];
 String methodName = args[1];
 String systemName = args[2];
 String userName = args[3];
 String userPassword = args[4];
 String companyId = args[5];
 String useDefaultSystem = args[6];
 String systemUsername = userName + "__" + systemName;
 if (useDefaultSystem.equals("Y")) {
 systemUsername = userName;
 }
 String serviceName = (ip.startsWith("https") ? "cpwwsgenericmodulesec"
: "cpwwsgenericmodule");
 Dispatch<Source> dispatcher = getWSDispatcher(ip + "/webservices/" +
serviceName + "WS?WSDL",
 serviceName, systemUsername, userPassword);

 StringBuilder b = new StringBuilder();
 b.append("<cps:" + methodName + "
xmlns:cps='http://www.deltek.com/enterprise/integration/ws/"
 + serviceName.toLowerCase() + "'><cps:systemName>" + systemName
 + "</cps:systemName><cps:companyId>" + companyId +
"</cps:companyId><cps:"
 + (IntegrationUtils.GENERIC_WS_METHOD_EXPORT.equals(methodName)
? "queryCondition"
 : "document")
 + ">");

 b.append(IntegrationUtils.toXMLString(readFile(args[7])) + "</cps:"
 + (IntegrationUtils.GENERIC_WS_METHOD_EXPORT.equals(methodName)
? "queryCondition"
 : "document")
 + "></cps:" + methodName + ">");

 Source request = new StreamSource(new StringReader(b.toString()));
 Source response = dispatcher.invoke(request);
 String result = IntegrationUtils.sourceToXMLString(response);

 printResult(result);
 }
 catch (Exception ex) {
 if (ex.getCause() != null
 && ex.getCause().getClass().getName().equals(
"javax.xml.rpc.soap.SOAPFaultException")) {
 throw (Exception) ex.getCause();
 }
 throw ex;
 }

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 42

 }

 private Dispatch<Source> getWSDispatcher(String url, String serviceName,
String user, String password) {
 QName portQName = null;
 Service service = null;

 portQName = new QName("http://www.deltek.com/enterprise/integration/ws/" +
serviceName.toLowerCase(),
 serviceName + "ServiceSoapBinding");
 service = Service.create(
 new QName("http://www.deltek.com/enterprise/integration/ws/" +
serviceName.toLowerCase(),
 serviceName + "Service"));
 service.addPort(portQName,
javax.xml.ws.soap.SOAPBinding.SOAP11HTTP_BINDING, url);
 IntegrationWSHandlerResolver handlerResolver = null;
 try {
 IntegrationWSProps props = new IntegrationWSProps();
 props.setPass(password == null ? new byte[0] : password.getBytes("UTF-
8"));
 props.setUser(user);
 props.setExpireMinutes(60 * 24 * 7);// one week
 props.setServiceName(serviceName + "Service");
 props.setClearText(true);
 handlerResolver = new IntegrationWSHandlerResolver(props);
 }
 catch (UnsupportedEncodingException e) {
 }
 service.setHandlerResolver(handlerResolver);
 return service.createDispatch(portQName, Source.class,
Service.Mode.PAYLOAD);
 }

 private static void printResult(Object result) {
 if (result instanceof String) {
 String strResult = (String) result;
 System.out.println("Data: " + IntegrationUtils.toJavaString(strResult
).replace("><", ">\n<"));
 }
 else if (result == null) {
 System.out.println("Data: " + result);
 }
 }

 public static String readFile(String filename) {
 // for backward compatibility in case user passes real data
 if (!filename.endsWith(".xml"))
 return filename;
 StringBuffer Str = new StringBuffer();
 String s = null;
 java.io.BufferedReader file;
 try {
 file = new java.io.BufferedReader(new java.io.FileReader(filename));
 s = file.readLine();
 while (s != null) {
 Str.append(s);
 s = file.readLine();
 }
 file.close();
 }
 catch (Exception e) {

Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code

Integration Overview 43

 System.out.print(e);
 }
 return Str.toString();
 }

}

Appendix D: Troubleshooting Web Services

Integration Overview 44

Appendix D: Troubleshooting Web Services
This appendix discusses common types of issues you may encounter while testing Integration
Web services.

Problem: “I can successfully do what I need through browser end-user UI,
but the same operation with same data returns a validation error through
Web service.”
This is usually caused by one of two reasons:

 There is an oversight in the data provided to Web service (that is, the data provided
between browser UI and web-service are not the same).

 There is a defect in the application related to the timing and order of when different
validations are performed. When you provide data through the browser UI, the order of
the provided fields and performed validations may differ from the order used in Web-
service mode when the XML file with all the data is provided at once. There could be
defects which manifest themselves only with the order is used by Web service

Regardless of the reason, you should use following process to narrow down the issue and
expedite processing the case through Deltek Customer Care if you ultimately decide to open a
case.

1. Log into Costpoint using the Application Frequency mode.

2. Open the application used in Web service.

3. Copy/paste the data from the XML file into the corresponding fields in the Costpoint
application.

 Make sure that you do not enter or change any other fields which are not listed in the
XML file.

Appendix D: Troubleshooting Web Services

Integration Overview 45

 Make sure that you do not click any action buttons within an application, such as
Load, Autopopulate, Default, Recompute, Allocate, and so on. The only buttons
you can use are from the standard screen menu:

 Query — Click this button if you are updating/deleting existing an record in the
XML file.

 New — Click this button if you are passing new rows in the XML file.

 Delete — Click this button if you are deleting rows in the XML file.

4. Click the Save button to save your changes

In the majority of cases, you will be able to replicate the same validation error that you received
through Web service. At this point, you can further analyze if the error message is correct based
on your setup and data provided, or you believe it’s a defect. In case of a defect, you can submit
a case based on using the browser UI instead of Web Service, which will greatly simplify and
accelerate the replication process for the Deltek Customer Care and Engineering teams.

To further troubleshoot issues with Web Services that import data, you should turn on Log
Debug Information for WS Calls in the Configuration Utility. Be sure to restart Weblogic when
done. When submitting a case to Deltek Customer Care, include:

 This log (described above) if it is importing WS

 Exported Web service definition (jar)

 The exact XML file you are submitting to Web Service

 The user name (that is invoking Web Service)

 The system name

 The exact date/time when WS was invoked

 The exact XML file that was received in response to the WS invocation

 The newly generated diagnostic image (please generate it after WS invocation was
finished)

Problem: “I can’t find a way to do through Web services what I can do
through the browser UI.”
The most likely scenario in this case is that you are using an application-specific “convenience”
action—such as Load, Autopopulate, Default, Recompute, Allocate, and so on. In the browser
UI, you can click New and manually enter all the values in the fields, or you can use a
combination of manually entered data and data entered via a convenience button such as Load.

Such user-convenience functions as Load cannot be used in Web services. The Web services
XML file should contain the data of all the fields as if you manually clicked New and then entered
all the appropriate values without ever clicking Load.
If an application allows you to insert all rows manually, then you should follow the same
instructions as provided in the previous section for testing the use-case in Application
Frequency mode. If it works, then the same data and operations need to be passed through the
XML file as well.

There could be cases when applications do not provide you the ability to perform a necessary
operation without the use of the user-convenience buttons. This is an oversight in application
design. Such cases should be considered defects and need to be submitted to the Deltek
Customer Care team.

Appendix D: Troubleshooting Web Services

Integration Overview 46

Problem: “My Web service worked well in the past, but after I upgraded to
711 and/or deployed new fixes it no longer works.”
The first thing to do is to go to the Integration Console, open your Web service, and check if there
are any new columns in the screens (result sets) involved in the failing Web service. The most
likely explanation is that new fields were added as part of an enhancement or fix to the
application in question, and some of the fields are either required or critical to the business logic
of the application. When using the application through the browser UI, the fields are likely
properly defaulted, but Web service is missing to pass the proper values, which could be causing
the error.
Again, if ever in doubt why Web service does work, use the same troubleshooting technique as
previously discussed by using Application Frequency mode.

Deltek is the leading global provider of enterprise software and information solutions for government
contractors, professional services firms and other project- and people-based businesses. For decades, we
have delivered actionable insight that empowers our customers to unlock their business potential. 20,000
organizations and millions of users in over 80 countries around the world rely on Deltek to research and
identify opportunities, win new business, recruit and develop talent, optimize resources, streamline
operations and deliver more profitable projects. Deltek – Know more. Do more.®

deltek.com

http://www.deltek.com/

	Overview
	Process and Report Integration
	Regular, Saved, and Archived Parameters
	Regular Parameters
	Saved Parameters
	Archived Report Parameters

	Synchronous vs. Asynchronous Invocations
	Synchronous Invocation
	Asynchronous Invocation

	Data Integration
	Support for Extensibility
	Exporting/Importing as a String or Complex Data Object
	String
	Complex Data Object

	Costpoint Integration Workflow
	Data Integration Export Services
	Filter Conditions

	Data Integration Import Services
	Structure of Exported and Imported Data
	Rules for Specifying Data
	Data Export Methods
	Data Import Methods

	Data Compression for String Services
	Return Messages
	Report Services Return Messages
	Integration-Specific Error Messages
	Example of MessageResponse Object
	Example of MessageResponse Object Generated as an Exception String When an Error Occurs in Data Export Services

	Integration Security
	Web Services
	Use Default System

	Integration Console Specific Parameters in the WebLogic Server Startup Script
	What’s New in Costpoint 7
	What’s New in Costpoint 7.0.1
	Appendix A: Sample Functions to Archive Data with Java and C# Client Programs
	Java Functions
	.NET Functions

	Appendix B: Accessing Integration Services from Costpoint Servers
	Access from WebLogic Server
	SSL Communication

	Appendix C: Invoking Generated Web Service from within Costpoint Extensibility Code
	Example of Java Code to Invoke Regular (Legacy) Web Service
	Example of Java Code to Invoke Generic Web Service

	Appendix D: Troubleshooting Web Services
	Problem: “I can successfully do what I need through browser end-user UI, but the same operation with same data returns a validation error through Web service.”
	Problem: “I can’t find a way to do through Web services what I can do through the browser UI.”
	Problem: “My Web service worked well in the past, but after I upgraded to 711 and/or deployed new fixes it no longer works.”

