
iAccess for Maconomy

INSTALL GUIDE

2019

EDITED BY

ANDERS HESSELLUND

PETER ENEVOLDSEN

While Deltek has attempted to verify that the information in this document is accurate and

complete, some typographical or technical errors may exist. The recipient of this document is

solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is

subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are

reserved. No part of this document may be reproduced or transmitted in any form or by any

means, electronic or mechanical, or translated into another language, without the prior written

consent of Deltek, Inc.

This edition published September 2019.

© 2019 Deltek Inc.

Deltek's software is also protected by copyright law and constitutes valuable confidential and

proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related

documentation, is provided for use only in accordance with the terms of the license agreement.

Unauthorized reproduction or distribution of the program or any portion thereof could result

in severe civil or criminal penalties. All trademarks are the property of their respective owners.

ii ©Deltek Inc., All Rights Reserved

iAccess for Maconomy

Installation Guide

Online Help This document is also available in an online edition that is easier

to navigate and copy-paste from. You can find it here:

https://help.deltek.com/Product/MaconomyiAccess/2.4.5/Documentation/Ins

tallationGuide/#/

https://help.deltek.com/Product/MaconomyiAccess/2.4.5/Documentation/InstallationGuide/#/

Introduction
The following document serves as an introduction to the iAccess for Maconomy

product. The target audience is technical consultants and partners that need to install,

extend, and maintain iAccess. The content is structured in the following parts:

In the first part, we will describe core concepts of the iAccess architecture.

The second part describes how it can be installed using MConfig.

The third part describes how it can be extended using the Maconomy Extender.

In the fourth part, we will provide an overview of the current extension toolkit.

The fifth part contains an API reference describing the facilities available in the

extension toolkit.

Finally, the fifth part contains a migration guide, and a troubleshooting guide. Both

of these guides should be particularly useful when upgrading an existing iAccess

installation.

Contact & Support

Visit our Deltek Collaboration space for bug reports, feature requests, or questions.

Disclaimer

While Deltek has attempted to verify that the information in this document is accurate

and complete, some typographical or technical errors may exist. The recipient of this

document is solely responsible for all decisions relating to or use of the information

provided herein. The information contained in this publication is effective as of the

publication date below and is subject to change without notice. This publication

contains proprietary information that is protected by copyright. All rights are reserved.

No part of this document may be reproduced or transmitted in any form or by any

means, electronic or mechanical, or translated into another language, without the prior

written consent of Deltek, Inc.

This edition published February 2019.

https://collaborate.deltekfirst.com/#!/projects/129727

® 2019 Deltek Inc.

Deltek s̓ software is also protected by copyright law and constitutes valuable

confidential and proprietary information of Deltek, Inc. and its licensors. The Deltek

software, and all related documentation, is provided for use only in accordance with

the terms of the license agreement. Unauthorized reproduction or distribution of the

program or any portion thereof could result in severe civil or criminal penalties. All

trademarks are the property of their respective owners.

Architecture
Briefly described, iAccess for Maconomy is an HTML5 web client. It is a lightweight

user interface supplement to the existing Workspace Client. The backend is

Maconomy, specifically the new RESTful web services exposed from Maconomy since

version 2.2. In this section, we will give a cursory overview of the technical

architecture.

Technical Architecture

Figure @architecture shows the high-level architecture of a Maconomy system with

iAccess. This setup resembles the traditional Maconomy architecture with a few

exceptions. In the following section, we will describe the core components involved

and the purpose of each of those.

Maconomy 2.x server and database : iAccess for Maconomy is available from

Maconomy 2.2. It does not impose any specific requirements on the database, but it

does require a Maconomy 2.2 server and corresponding RESTful API [@RestAPI]. See

the following section for more details on the required web services.

Web server (IIS/Apache) : One or more web servers are required to serve both the

static and dynamic content of iAccess. Static content such as HTML, JavaScript, CSS

files, and so on are placed directly on the web server. Dynamic content such as

specifications, files, and data are retrieved from the Maconomy server, but the web

server in this case acts as proxy. Using the web server as proxy prevents cross-origin

(CORS) issues on the client side. The web server is also required for encryption and

compression of client-web server communication.

iAccess Clients : The iAccess clients can be located both on the internal network or on

the open Internet depending on the web server configuration and exposure.

Furthermore, clients can run iAccess on different devices such as laptops with the

main browsers (IE, Chrome, and Safari), as well as on iOS and Android tablets.

RESTful Web Service API

As mentioned previously, iAccess for Maconomy uses the RESTful Web Service API

which was introduced in Maconomy 2.2. This is not the same thing as the existing

MScript web services. Please see the RESTful Web Services documentation for more

information [@RestAPI]. For now, we will just briefly list the web service endpoints that

iAccess uses and what they are used for:

/containers : The containers endpoint delivers both metadata and data for the

containers exposed by the Maconomy 2x server. Metadata include specifications of

the names, actions, fields, and foreign keys exposed by different containers. Data

include the actual filter-, card-, and table-data stored in the underlying database as

well as information on which actions are enabled.

/filedrop : The filedrop endpoint is used to upload files such as receipt attachments on

expense sheets.

/configurations : The configurations endpoint was introduced in Maconomy 2.2.2 and is

used by iAccess 1.2 and onwards. This endpoint is used to retrieve JSON specifications

from the Maconomy server, specifically the application specification

(application.json) which configures iAccess. These specifications are the

foundation of the iAccess extensibility model.

/auth : The auth endpoint was introduced in Maconomy 2.2.4 and 2.3GA, and is used

by iAccess 2 and onwards. This endpoint is used to obtain login tokens for 3rd party

integrations such as Business Objects.

/environment : The environment endpoint was introduced in Maconomy 2.2.5 and

2.3GA and is used by iAccess 2 and onwards. This endpoint is used to retrieve the

end-user s̓ environment variable, e.g., employee name and number, company info etc.

Installation
This section describes the installation process for iAccess. Keep in mind that parts of

the installation process (in particular, web server configuration) are specific to the

individual installation. As such, this section can only offer general guidelines. In case of

doubt, we recommend posting a question on our iAccess Deltek Collaboration Space.

The iAccess Manifest

To install iAccess, you need an installation of Maconomy and a suitable version of

MConfig. The iAccess product is packaged in an archive file format called an FPU

(Flexible Packaging Unit). An FPU contains the following components:

1. The Tools part which is a set of JavaScript, HTML and CSS files responsible for

executing the iAccess Applications in the browser.

2. The embedded iAccess Applications each consisting of a set of JSON files

describing workspaces, layouts, and other settings for iAccess against a particular

range of Maconomy backends

3. The FPU manifest (manifest.json) which specifies various metadata about the

FPU such as version info and compatibility constraints.

The required backend Maconomy version for a given iAccess is documented in the

release notes for each iAccess release. You can also inspect the manifest.json file

mentioned above. In the following manifest.json sample, we can see that this

iAccess FPU is of version 2.0.5. The applications section lists the core Maconomy

versions that this version of iAccess is compatible with. In this case, it is compatible

with specifics service packs on 2.2 (internally called 17), 2.3 (internally called 19),

and 20 (internally called 20). Below, the metadata for the 2.2/17 application is

expanded and it can be seen that iAccess 2.0.5 is specifically only compatible with

service pack 5 of Maconomy 2.2 (internally called 17.0.105).

{
 "manifest-version": 3,
 "marketingVersion": "iAccess for Maconomy 2.0",
 "fpuVersion": "2.0.5",

Once the Maconomy system is installed and configured, MConfig can install the

iAccess FPU on a web server of choice. MConfig will also install an iAccess Application

matching the Maconomy backend on the Maconomy server, specifically in the Web

folder in MaconomyDir . We currently support IIS and Apache (see release notes for

the specific version requirements for these web server products). On the web server,

you should also set up a web site with the installed iAccess index.html in the root.

Once the MConfig installation has taken place, and the web site and proxy settings

have been completed, iAccess is ready. Please observe that certain manual steps may

be required for specific installations.

Security Considerations

While Deltek recommends the following procedures, ultimately each company is liable

for its own security. The landscape evolves quickly, and each customer should

continuously take internal measures to ensure its own security.

Regarding the use of HTTPS/TLS

Deltek best practice recommends that you configure web servers to use HTTPS

(instead of HTTP). Using HTTPS/TLS encrypts your network traffic, making it difficult

 "apiVersion": "8.0.0",
 "applications": {
 "17": {
 "requires": "^1.0.0",
 "src": "...",
 "backends": [
 {
 "tpu": { "versionRange": "17.0.105" },
 "apu": { "versionRange": "17.0.105" }
 }
]
 },
 "19": { ... },
 "20": { ... }
 }
}

for anyone to access the credentials as they are passed to the web server. Using

simple HTTP is tantamount to sending confidential information over the wire in clear

text. The iAccess login page will display a warning message in case HTTP is used

instead of HTTPS.

Address Risk of Clickjacking

To reduce the likelihood of clickjacking, Deltek suggests you follow the OWASP

guidelines to defend against clickjacking attacks. Based on the OWASP guideline, you

can perform additional steps when configuring your webserver. See Additional Related

Procedures for more details.

Prerequisites

The following are prerequisites to installing iAccess:

Maconomy 2.4.5

Latest MConfig version

Latest Extender version

RESTful Web Services is enabled in the Coupling Service

iAccess downloaded from DSM, and iAccess FPU placed in the PUs folder (with the

APU and TPU)

If you are using Apache as the webserver, download the Apache binary package

including OpenSSL, and install it from the following link: http://httpd.apache.org/

Standard extensions are already installed

Additionally, this document assumes that you have already set up an application. For

detailed instructions on setting up applications, see the Deltek Maconomy Installation

Guide for your specific Maconomy version.

MConfig Installation

To begin installation with MConfig, complete the following steps:

Step 1 : In the MConfig Main Window, double-click the application to open. The

Application Instance window displays as shown in Figure @mconfig1.

http://httpd.apache.org/

Step 2 : Click OSGi products. The OSGi Server Selection screen appears as shown in

Figure @mconfig2.

Step 3 : Select the Coupling Service to update as shown in Figure @mconfig3.

Step 4 : Select the Enable RESTful Web Services check box as shown in Figure

@mconfig4.

Step 5 : Click OK to save, and click OK at the SSL warning to return to the Application

Instance window. In the Application Instance window, click Web products as shown in

Figure @mconfig5.

Note: While you can click OK at the SSL warning, Deltek recommends you follow the

steps listed in the warning to ensure the security of your system.

Step 6 : On the Web server selection screen, select the application to update. Select

the iAccess check box as shown Figure @mconfig6. In the iAccess FPU field, select the

relevant FPU from the drop-down list.

Step 7 : Click Ok a couple of times to return to the main window, and click Next a

couple of times, and then click Yes to complete the MConfig installation.

Create a Website Using IIS

To create a website using IIS, you can enable IIS support automatically using MConfig,

or perform the steps manually using IIS Manager.

Enabling IIS support with MConfig automatically completes the steps described under

the manual installation. Use MConfig for the initial setup of an iAccess website using

IIS. However, modifying the setup later should be done manually using IIS Manager.

Enable IIS Support Automatically Using MConfig

Automatic IIS configuration requires MConfig 8.12.4. Previous version will not perform a

correct configuration of IIS due to a shortcoming in MConfig. To enable IIS support

using MConfig, follow these steps (See Figure @iis-mconfig):

1. In MConfig, go to the Web Products window.

2. Select the Enable IIS support for iAccess check box and click OK.

Note: After you complete the initial installation with MConfig, you should check the

setup in IIS Manager and possibly modify parameters, such as Web Server Port

Number.

Note: If you enable IIS support automatically, MConfig also updates the IIS web.xml file

with a routing rule that ensures login pages and other non-root URLs load properly.

Enable IIS Support Manually Using IIS Manager

After iAccess has been installed on your IIS web server, you can configure it using IIS

Manager.

Add the Site

: Connect to your server in the Internet Information Services (IIS) Manager application

and setup the iAccess site. The site should have the files shown in Figure @iis1 as root

files.

Add MIME Types

: Click the “MIME Types” and ensure that the MIME Types below are defined

.json application/json

.woff application/font-woff

In IIS 8.0 and up, the .woff extension exists by default but with a different type. Change

it to application/font-woff.

Proxy Setup

1. Install Microsoft Application Request Routing for IIS ARR.

2. Restart IIS Manager.

3. In the Application Request Routing configuration, click server proxy settings.

4. Check Enable proxy as shown in Figure @iis2.

5. Open URL Rewrite to add proxy rules for the container, configurations and filedrop

APIs. Note: This must be done on the local site, not globally as shown in Figure

@iis3.

In IIS 8.0 and up, you will need to install the Web Platform Installer in order to install the

ARR plugin.

Edit Routing Rules

.woff2 application/font-woff

http://www.microsoft.com/en-us/download/details.aspx?id=39715
https://www.microsoft.com/web/downloads/platform.aspx

To ensure that login pages (and other non-root URLs) load properly, open the IIS

web.xml file and add the following rule before the other routing rules:

Note: If you want to install iAccess in an IIS Application folder, you should update the

rewrite action accordingly.

For example, if the IIS Application folder is called **iAccess”, then the rewrite action

should be:

Add the server variable for Maconomy API

1. Click View Server Variables

2. Click Add…

3. Set the name: HTTP_Maconomy-Forwarded-Base-Path

Set up proxy for Maconomy API

<rule name="DeepLinkingSupport" stopProcessing="false">
 <match url=".*" />
 <conditions logicalGrouping="MatchAll" trackAllCaptures="false"
 <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="tr
 <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negat
 <add input="{REQUEST_FILENAME}" pattern="maconomy-api*" negat
 </conditions>
 <action type="Rewrite" url="/" />
</rule>

<action type="Rewrite" url="/iAccess/" />

1. Click Add Rule…

2. Select Blank rule.

3. Fill out the rule as shown in the section on setting up proxy for Maconomy API,

specifically with the following parameters:

Match URL

Server Variables

Action

Requested URL: Matches the Pattern
Using: Wildcards
Pattern: maconomy-api*
Ignore case: checked

Click Add...
Server variable name: HTTP_Maconomy-Forwarded-Base-Path
Value: maconomy-api

Action type: Rewrite
Rewrite URL: http://<coupling-service-host>:<coupling-service-port>
Append query string: checked

Preserve the Host Header

Open a console with Administrative privileges, and navigate to

C:\Windows\System32\inetsrv

Enable preserveHostHeader by running the following command:

Note: To preserve the spacing, copy the command and paste it in the command

prompt.

Restart the web server.

See AppCmd reference for more details.

Set Up HTTPS

Open the Server Variables screen by clicking View Server Variables… in the URL

Rewrite screen.

In the Server Variables screen, click Add… and add the variable

HTTP_X_FORWARDED_PROTO as shown in Figure @iis6.

In the URL rewrite rules (both containers, configurations, filedrop, auth, and

environment) that proxies the web service, set the server variable

HTTP_X_FORWARDED_PROTO to https as shown in Figure @iis7.

cd C:\Windows\System32\inetsrv
appcmd.exe set config -section:system.webServer/proxy /preserveHost

http://www.iis.net/learn/get-started/getting-started-with-iis/getting-started-with-appcmdexe

Restart the webserver.

Note: It is not possible to run both HTTP and HTTPS on the same IIS site.

Create a Website Using Apache

Here is a short guide to setting up iAccess on Apache (2.2 and 2.4)

Download Apache

Download the Apache 2.2 binary package including OpenSSL. Install it.

In httpd.conf , comment in the following modules:

Comment in the inclusion: Include conf/extra/httpd-vhosts.conf

LoadModule headers_module modules/mod_headers.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule ssl_module modules/mod_ssl.so
LoadModule rewrite_module modules/mod_rewrite.so

Comment out #Listen 80 (we will use the httpd-vhosts.conf file instead)

Enable compression

If using Apache 2.2, comment in the following module:

LoadModule deflate_module modules/mod_deflate.so

If using Apache 2.4, use this module:

LoadModule filter_module modules/mod_filter.so

Configure the compression:

See Apache Deflation Module for more information.

Setup with SSL

Here is a template for setting up a virtual host that serves iAccess with SSL. Copy

contents into the httpd-vhosts.conf file, and replace the variables with the

desired values. Please observe that the line Require all granted below is only

required for Apache 2.4.

<IfModule deflate_module>
 AddOutputFilterByType DEFLATE text/html text/plain text/xml text/
 SetOutputFilter DEFLATE
 DeflateCompressionLevel 5
</IfModule>

Listen <port>
<VirtualHost <port>>
 ServerName <server-name>

 # Server iAccess files from installation directory
 DocumentRoot "<iAccess-installation-directory>"

 <Directory <iAccess-installation-directory>>
 Order deny,allow
 Allow from all
 AllowOverride All

*:

https://httpd.apache.org/docs/2.2/mod/mod_deflate.html

Edit Routing Rules

For more information, refer to Edit Routing Rules under the Enable IIS Support Manually

Using IIS Manager section.

Verifying the setup

To quickly verify the setup, open a browser (such as Chrome) and navigate to the

following URL:

 Require all granted
 </Directory>

 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>

 ProxyRequests Off
 ProxyPreserveHost On

 RequestHeader set Maconomy-Forwarded-Base-Path maconomy-api
 # Signal to the coupling service that the originating protocol
 RequestHeader set X-Forwarded-Proto "https"

 # Proxy the web services from the coupling service
 ProxyPass /maconomy-api http://<coupling-service-host>:<coupl

 # Set up this virtual host to use SSL
 SSLEngine On
 SSLProxyEngine On
 SSLCertificateFile <crt-file-location>
 SSLCertificateKeyFile <key-file-location>
</VirtualHost>

https://<external-url-and-port>/containers/v1/<shortname>

For example:

If the proxy configuration is correct, the browser should either download, or show an

XML or JSON document that looks like the following:

Domain Login and Single Sign On

The domain login functionality in iAccess is based on Kerberos service tickets obtained

through the SPNEGO authentication protocol. This protocol allows direct Single Sign

On (SSO) when the user is running iAccess while already authenticated against the

domain (that is, logged in to their computer via a domain account).

If the user is not authenticated against the domain, the browser typically prompts for

domain credentials. Click Cancel in the browser login window and use the iAccess

domain login page.

Browser Setup for Single Sign On

Refer to the instructions in this section to set up Single Sign On (SSO) for various

browsers.

https://acme.com/containers/v1/w20sp100

<Endpoint xmlns="http://www.deltek.com/ns/webservices" shortname="m
 <Versions>
 <TPU major="20" minor="0" sp="100" fix="0" beta=""/>
 <APU major="20" minor="0" patch="100" hotfix=""/>
 </Versions>
 <Languages> ... </Languages>
 ...
 <Links>
 <Link href="https://acme.com/containers/v1/w20sp100" rel="self"
 </Links>
</Endpoint>

SSO Setup for Internet Explorer

For Internet Explorer (IE), you may need to add the iAccess server address to the Local

intranet zone if it is not already in this zone, as IE does not permit Kerberos-based SSO

for websites in the Internet zone.

More details are available in the “Client Side-Internet Explorer” section of the following

Microsoft article about security zones in Internet Explorer:

SSO Setup for Chrome

You can choose one of two options:

If using Windows, you can perform the setup required for Internet Explorer. Chrome

can replicate the setup for IE.

To configure Chrome to work with SSO using Kerberos authentication, follow the

steps in the “Set Chrome policies for devices” guide

(https://support.google.com/chrome/a/answer/187202?hl=en).

The configurations should be done by IT administrators who want to set Chrome

policies on their corporate-managed devices. The templates contain hundreds of

available policies that can be set, but you should only focus on two of these, namely:

AuthNegotiateDelegateWhitelist (http://www.chromium.org/administrators/policy-

list- 3#AuthNegotiateDelegateWhitelist)

and

AuthServerWhitelist (http://www.chromium.org/administrators/policy-list-

3#AuthServerWhitelist).

The properties should be set to the domain you want to authenticate against, such as:

SSO Setup for Chrome on Windows

https://msdn.microsoft.com/en-us/library/ms995329.aspx

"*. example.com ".

https://support.google.com/chrome/a/answer/187202?hl=en
http://www.chromium.org/administrators/policy-list-
http://www.chromium.org/administrators/policy-list-3#AuthServerWhitelist

After following the preceding guide from Google, you can set

AuthNegotiateDelegateWhitelist and AuthServerWhitelist as follows:

1. Navigate to Administrative Templates >> Classic Administration Templates (ADM)

>> Google >> Google Chrome >> Policies for HTTP Authentication.

2. Click “Kerberos delegation server whitelist”.

3. Click Enabled.

4. In the Input field, enter the domain you want to authenticate against, such as “*.

example.com “.

5. Click Apply.

6. Click on “Authentication server whitelist”.

7. Click Enabled.

8. In the input field, enter the domain you want to authenticate against, such as “*.

example.com “.

9. Click Apply.

10. Open Chrome.

11. Check the values by navigating to the URL:

SSO Setup for Chrome on Mac

After following the preceding guide from Google, you should also read the Mac Quick

Start guide from Google at:

If the “Workgroup Manager from Apple” is not available for your version of OS X, then

you can set AuthNegotiateDelegateWhitelist and AuthServerWhitelist using one of

two recipes.

chrome://policy

http://www.chromium.org/administrators/mac-quick-start

By creating a com.google.Chrome.plist file:

1. Create com.google.Chrome.plist file with the following content:

2. Set the two string attributes to the domain you want to authenticate against.

3. Convert the com.google.Chrome.plist to the binary format by running the following

command from the Terminal:

4. Copy the file to “/Library/Managed Preferences/“ by running the following command

from the Terminal:

5. Open Chrome.

6. Check the values by navigating to the following URL:

By using the “defaults” command:

1. Run the following commands:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http:
 <plist version="1.0">
 <dict>
 <key>AuthNegotiateDelegateWhitelist</key>
 <string>*.example.com</string>
 <key>AuthNegotiateDelegateWhitelist</key>
 <string>*.example.com</string>
 </dict>
 </plist>

 plutil -convert binary1 com.google.Chrome.plist

 sudo -s
 cp com.google.Chrome.plist /Library/Managed Preferences/<userna

 chrome://policy

2. Open Chrome.

3. Check the values by navigating to the following URL:

Or by using the following command:

Note that using the “defaults” command only sets the “AuthServerWhitelist” and

“AuthNegotiateDelegateWhitelist” Chrome properties for the current user.

SSO Setup for Safari

No setup is needed.

SSO Setup for iOS

Follow the steps in the following guide:

Remember to put your own servername on the URLPrefixMatches field. As the name

implies, this has to contain a URL prefix. This could be

“https://myserver.example.com:8080", so basically this will be set to the base server

URL including an optional port number.

You can use Apple Configurator 2 to install the profile on a number of iPads:

 defaults write com.google.Chrome AuthServerWhitelist "*.example
 defaults write com.google.Chrome AuthNegotiateDelegateWhitelist

 chrome://policy

 defaults read com.google.Chrome

https://samuelyates.wordpress.com/2013/10/11/kerberos-single-sign-o

https://itunes.apple.com/us/app/apple-configurator-2/id1037126344

SSO Setup for Firefox

Complete the following steps:

1. In the location bar, type: about:config.

This brings up the configuration page.

2. In the Filter:box, type: negotiate.

This restricts the listing to the configuration options you need.

3. Edit network.negotiate-auth.trusted-uris to the domain against which you want to

authenticate. For instance: “.”.example.com

Domain Controller Setup

The SPNEGO authentication protocol works by assuming the presence of a specific

Service Principal Name (SPN) on the domain controller:

where name and domain are the web server DSN name and domain respectively, as

seen from the user s̓ computer.

For example, if the user is opening iAccess using the internet address https://some-

server.some-domain.com, then the browser expects one of the following SPNs to be

present on the domain controller:

SPN Setup

It is a task for the domain administrator to ensure that these SPNs are created and

associated with the existing domain account used for Maconomy SSO.

HTTP/name.domain or HTTP/name

HTTP/some-server or HTTP/some-server.some-domain.com.

https://some-server.some-domain.com/

SSO with Active Directory

For Active Directory, associating SPNs with the existing domain account is done with

the ‘setspnʼ command.

To associate SPN with an existing domain account, complete the following step:

On a command line enter the following:

where account is the name of the domain account used for Maconomy SSO.

Special Instructions for SPN Conflicts

If iAccess is installed on a web server that already hosts other web applications with

SNEGO authentication, this causes a conflict on the SPN, as an SPN can only be

associated with one domain account.

To resolve the issue, either install only one web application on each web server, or

create multiple local DNS names for the web server, so that each web application can

be accessed through different addresses and will map to different SPNs.

Maconomy Server Setup

Please refer to the Single Sign On with Kerberos section in the Deltek Maconomy

System Administrator Guide.

Additional Related Procedures

Configure Web Server to Reduce Risk of Clickjacking

You can reduce the risk of clickjacking by performing an additional step when

configuring your web server. This step applies to both Apache and IIS.

setspn -A HTTP/name account
setspn -A HTTP/name.domain account

To configure your web server and reduce the risk of clickjacking, complete the

following step:

Configure your web server to always reply with the following response headers:

These headers are then added to all responses.

Downloading Deltek Products using the Deltek Software

Manager

You can use the Deltek Software Manager (DSM) to download complete Deltek

products, hot fixes, and sub-releases. You can access DSM directly or through the

Deltek Customer Care Connect site.

When you access DSM directly, you will be prompted to log on before you can access

the application. If you access DSM from within the Deltek Customer Care site, you do

not have to log on since you are already logged in to the Customer Care site.

Accessing DSM Directly

To access Deltek Software Manager directly, complete the following steps:

1. Launch Deltek Software Manager by taking one of the following actions:

Click here: http://www.deltek.com/ On your desktop, click Start >> Programs >>

Deltek >> Maconomy iAccess >> Deltek Software Manager.

2. In the Deltek Software Manager logon dialog box, enter your Deltek Customer Care

User ID and Password, and click Logon.

3. To select the folder where you want to download Deltek products, click Settings

above the right pane of Deltek Software Manager.

Note: When you log on for the first time, Deltek Software Manager asks you to

select a default folder where Deltek products are to be downloaded.

Content-Security-Policy: frame-ancestors 'self'
X-Frame-Options: SAMEORIGIN

http://www.deltek.com/

4. Use the Settings dialog box to specify the folder where you want to download

Deltek products, and click OK.

Note: You can change this folder anytime in the Settings dialog box.

5. In the left pane of Deltek Software Manager, expand the Deltek product that you

want to download, if it is not already expanded.

Note: If you clicked the link in step 1 to access DSM, the application automatically

selects Maconomy iAccess for you.

6. Select the product type that you want to download. Your options are Complete,

HotFix, and Sub-Release.

7. In the table, select the check box that corresponds to the Deltek product that you

want to download. The right pane displays a message stating that the product has

been added to the download queue. To view the items in the download queue, click

View Download Queue at the bottom of the left pane.

8. Click Download at the bottom of the left pane. Deltek Software Manager downloads

the product to the folder that you selected.

Accessing DSM from within the Customer Care Connect Site

To access Deltek Software Manager from within the Customer Care Connect site,

complete the following steps:

1. In your Web browser, go to http://support.deltek.com.

2. Enter your Customer Care Connect Username and Password, and click Log In.

3. When the Customer Care Connect site displays, click the Product Downloads tab.

You are automatically logged into Deltek Software Manager.

4. To select the folder where you want to download Deltek products, click Settings

above the right pane of Deltek Software Manager.

Note: When you log on for the first time, Deltek Software Manager asks you to

select a default folder where Deltek products are to be downloaded.

5. Use the Settings dialog box to specify the folder where you want to download

Deltek products, and click OK.

Note: You can change this folder anytime in the Settings dialog box.

http://support.deltek.com/

6. In the left pane of Deltek Software Manager, expand the Deltek product that you

want to download, if it is not already expanded.

7. Select the product type that you want to download. Your options are Complete,

HotFix, and Sub-Release.

8. In the table, select the check box that corresponds to the Deltek product that you

want to download. The right pane displays a message stating that the product has

been added to the download queue.

Note: To view the items in the download queue, click View Download Queue at the

bottom of the left pane.

9. Click Download at the bottom of the left pane. Deltek Software Manager downloads

the product to the folder that you selected.

DSM Documentation and Troubleshooting

To view the online help for Deltek Software Manager, navigate to:

To view a tutorial on how to use Deltek Software Manager, navigate to:

To view more information on troubleshooting Deltek Software Manager, navigate to:

Note: The preceding troubleshooting link only works if you are logged in to Deltek

Customer Care Connect.

https://dsm.deltek.com/DeltekSoftwareManager/Help/

https://dsm.deltek.com/DeltekSoftwareManager/Tutorial/PubData/Engin

https://deltek.custhelp.com/app/answers/detail/a_id/52469

Extension

This section describes how to make client-side iAccess extensions using built-in

extension facilities as well as tooling provided by the Maconomy Extender. Client-side

extensions cover authentication methods, preferred settings, menu customization, and

updates to existing workspaces/addition of new workspaces. The primary goal of

iAccess extensions is to customize the appearance of Maconomy functionality when

leveraged over a Web user interface. If you need to make fundamental changes such

as extending core business logic and adding new fields and actions, use the Java

extension framework to create server-side extensions. While the two extension

approaches can be used together, it is important to note that the purpose of client-

side extensions is to change how Maconomy functionality is rendered, not how it

works.

The iAccess runtime is essentially version-independent. It runs on different Maconomy

backends and service pack ranges. On the other hand, the iAccess applications are

tied to specific Maconomy backends or applications (that is, Application Packaging

Units or APUs). If you install a specific iAccess FPU, it will look and act differently

depending on which Maconomy version you are running in the backend. This approach

is necessary since different Maconomy versions expose different containers, fields,

actions, system parameters, and backend extension capabilities.

When developing new iAccess extensions or upgrading existing ones, you must take

note of what the target Maconomy backend is because this restricts what containers,

actions, fields, and so on, are available. The iAccess FPU contains different

Note to the Reader The Extension model has changed significantly from

iAccess version 1 to version 2. This section describes key parts of the

iAccess 2 extension facilities. However, it is not complete and should be

considered Work in Progress. If you are unable to find what you are looking

for here, we recommend posting a question to the Engineering team through

our “iAccess for Maconomy” Deltek Collaboration space

(https://collaborate.deltekfirst.com/#!/projects/129727). We will reply there

and take note of your questions, feedback, and comments for future

iterations of this section.

https://collaborate.deltekfirst.com/#!/projects/129727

applications, each compatible with a specific range of service packs on a given major

Maconomy version. You must also look at the iAccess API version that the given

iAccess FPU exposes. The API version determines the kinds of extension possibilities

available and their properties.

Both the iAccess application version and the API version are specified in the root of the

iAccess configuration files, specifically in the application.json file. In the

following example, the iAccess application is called 17 and the current version is

1.0.2 . The FPU manifest describes the backend Maconomy versions compatible

with this application. This sample configuration complies with version 8.0.0 of the

iAccess runtime API.

The remainder of this file consists of JSON references to the four main iAccess areas:

Authentication - Configuration of available and preferred login methods.

Platform - Configuration and tweaking of low-level iAccess runtime mechanics.

Shell - Configuration of the sidebar menu, notifications, and preferences.

Workspace - Configuration of workspaces and their layouts.

The following subsections describe these areas in greater detail.

{
 "api": "8.0.0",
 "application": {
 "name": "17",
 "version": "1.0.2"
 },
 "authentication": {
 "$ref": "Authentication:Authentication"
 },
 "platform": {
 "$ref": "Platform:Platform"
 },
 "shell": {
 "$ref": "Shell:Shell"
 },
 "workspace": {
 "$ref": "Workspace:Workspace"
 }
}

A Note about iAccess Configuration Files

iAccess configurations use the JSON format, a standard notation similar to XML.

During runtime, iAccess requests a single configuration file describing all extensions

(standard or custom). This file is called application.json and is retrieved through

the configurations end point in the REST API. In the iAccess source configuration

files, the notation (see the following example)

is a heavily used modularization technique. The JSON object is replaced (or macro

expanded) by the Authentication.json configuration file located in the

Authentication folder.

When the iAccess configuration files are processed by the REST API, all JSON

properties with the prefix T$ are translated to the language utilized by the end-user.

For example, if an iAccess source configuration file has the following contents:

then a Spanish user receives the following content in his/her browser:

The translation relies on standard Maconomy dictionaries. It only works if a dictionary

containing the required terms exists in the chosen language.

Authentication

{
 "$ref": "Authentication:Authentication"
}

{
 "T$title": "Hello World"
}

{
 "title": "Hola mundo"
}

The authentication part is the first main area of iAccess extension. It specifies the

authentication methods available to end-users when they log in to iAccess. How you

configure authentication determines the screen end-users see when they first visit the

iAccess web page. For a sample configuration, refer to the following text:

Although this is probably the simplest area in terms of iAccess configuration,

authentication is often hard to get right in actual installations. As an installation

consultant, you must focus on setting up the right infrastructure and specifying a

corresponding preferred authentication method. The preferred method determines

how iAccess will redirect the browser for the user accessing the root URL (for example:

/) If you specify maconomy as preferred, iAccess will redirect the browser to the

/maconomy URL so the user can enter login credentials there.

iAccess currently supports four different authentication methods:

Maconomy : A standard Maconomy login page where the user can enter his/her

username and password.

Domain : A domain login page where the user can enter domain, username, and

password.

{
 "preferred": "maconomy",
 "methods": {
 "maconomy": {
 "enabled": true
 },
 "domain": {
 "enabled": true
 },
 "sso": {
 "enabled": true
 },
 "azure": {
 "enabled": true
 }
 }
}

SSO : Single Sign-On using Kerberos authentication and the SPNEGO protocol

[@rfc4178; @rfc4559] which takes the user past the login screen and directly into the

application. If the login fails, the user is redirected to the domain login page as a

fallback.

Azure : Single Sign-On using Azure which takes the user through the Azure login flow.

This flow varies depending on the customer s̓ setup. To force account selection during

the Azure login flow, the user can opt to append prompt=select_account to the

iAccess URL as an extra query parameter.

If you disable an authentication method, you also disable the iAccess URL associated

with that login method. Deltek recommends that only required authentication methods

are left enabled on production installations.

Subcontractor Login

It makes sense for a company with different types of users sharing an iAccess

installation to employ more than one authentication method. For example, a company

with domain login configured for its employees will need a different method for

subcontractors who are not allowed on the domain. In this case, the company can

provide Maconomy credentials for its subcontractors. The company can then choose

domain login as its preferred authentication method on the system, but instruct its

subcontractors to log in to iAccess using the /maconomy URL which leads directly to

the Maconomy login page. The suggested configuration for this is as follows:

{
 "preferred": "domain",
 "methods": {
 "maconomy": {
 "enabled": true
 },
 "domain": {
 "enabled": true
 },
 "sso": {
 "enabled": false
 },
 "azure": {
 "enabled": false
 }

Platform

The second main area of iAccess extension is the platform part which specifies various

low-level iAccess behaviors. You can find the default configuration of the platform part

in the Platform.json file:

Usage Tracking

The usage tracking part concerns the integration between iAccess and Google

Analytics. This feature was also present in iAccess version 1 and is used to track page

views, events, errors, and other usage data about end-users. You can acquire your

own tracking ID directly from Google, and add it to the configuration so you can collect

usage data about an iAccess installation. In the following excerpt, the Google Analytics

tracking ID UA-123456789-1 is added to the standard configuration:

 }
}

{
 "usageTracking": {
 "$ref": "Usagetracking"
 },
 "containers": {
 "$ref": "Containers"
 },
 "typeAhead": {
 "$ref": "Typeahead"
 }
}

{
 "enabled": true,
 "endUserOptIn": true,
 "trackingId": "UA-123456789-1"
}

The two mandatory properties, enabled and enduserOptIn , are used to (1)

enable/disable tracking completely and (2) show/hide the cookie consent banner. If

tracking is disabled, then iAccess still creates cookies in the browser but performs no

actual tracking. If the end-user opt-in is disabled, then users are not presented with a

banner informing them of tracking.

Containers

The containers part is active and is a new feature introduced in iAccess version 2. The

containers configuration allows consultants to supply additional metadata about REST

API containers. This is necessary because the specification of containers that we get

through the containers endpoint only describes a subset of the semantics of the

backend. The configuration format follows a very simple convention: it is an object with

properties matching the container names from the REST API. You can add information

about each container s̓ various aspects, and the iAccess runtime will then adapt to this

new data.

Singleton Containers

Maconomy makes a special distinction between normal and singleton containers.

Whereas normal containers represent collections of resources, singleton containers

always represent a single resource. This leads to a slightly different navigation

interface in the REST API. Only very few containers are singletons, and these are not

specifically identified by the REST API. However, since some of these are very

prominent for most users, iAccess allows the consultant to add information about

singletons in the containers configuration.

{
 "TimeRegistration": {
 "card": {
 "singleton": {
 "DateVar": "card.datevar",
 "EmployeeNumberVar": "card.employeenumbervar"
 }
 }
 }
}

The preceding excerpt specifies TimeRegistration as a singleton container. DateVar

and EmployeeNumberVar are used when navigating with this container. Singleton

properties on the right side refer to internal names used by the REST API when

navigating this container.

File Actions

Another feature of the containers configuration is the ability to add information about

file actions. The REST API supports actions for uploading files. However, it does not

specify which ones are actually file actions. This information is important since the

protocols for dealing with file actions are different from those for normal actions, both

in the iAccess runtime and in terms of messages exchanged between the browser and

the REST API.

{
 "ExpenseSheets": {
 "card": {
 "actions": {
 "AttachDocument": {
 "attachments": {
 "required": true,
 "allowMultipleAttachments": true
 }
 }
 }
 },
 "table": {
 "actions": {
 "AttachDocumentToLine": {
 "attachments": {
 "required": true,
 "allowMultipleAttachments": false
 }
 }
 }
 }
 }
}

The preceding configuration specifies that the AttachDocument action on the

ExpenseSheets card pane and the AttachDocumentToLine action on the corresponding

table pane are file actions. Both require an attached file, but they differ in the number

of files they allow as attachments.

Action Parameters

Some Maconomy actions require certain variables to have a particular value when

executed. The REST API does not specify these variables, so iAccess can add this

information as so-called parameters in the container configuration. In the following

example, the ApproveAbsenceEntry action on the card pane of the

AbsenceEntryOverview container is configured to require four variables as parameters,

namely: EntryDateVar, ValidTillVar, NumberOfDaysVar, and ReasonVar.

Filter-As-Table Panes

Standard Maconomy containers have at least one of the following pane types: card,

table, and filter. iAccess 2 includes a new special type called Filter as Table which is

handled purely on the client-side. This pane type allows consultants to render a

standard filter pane as a table pane. In general, filters are read-only whereas tables are

editable. When using a filter as a table, the currently selected record is actually the

corresponding card pane record. This makes the filter appear as an editable table,

"AbsenceEntryOverview": {
 "card": {
 "actions": {
 "ApproveAbsenceEntry": {
 "parameters": {
 "EntryDateVar": "card.entrydatevar",
 "ValidTillVar": "card.validtillvar",
 "NumberOfDaysVar": "card.numberofdaysvar",
 "ReasonVar": "card.reasonvar"
 }
 }
 }
 }
}

although it takes a bit longer to respond since iAccess has to load the corresponding

card record whenever the user selects a filter row.

To make a filter pane available as a table, you may need to add additional field

specifications in the containers configuration file. In the preceding example, two

changes are added. First, the RelatedEntryValidTill field is specified as immutable. This

is a performance optimization which states that this field will not change its value when

its card record is edited. This means that iAccess does not to need to reread the field

when a user edits the card record. Second, the EmployeeName1 field is mapped to the

EmployeeNameVar field. This is necessary in cases where an underlying database

column has different field names depending on whether it is shown in the filter or in the

card. The mapsTo attribute allows iAccess to link these two fields.

Configuration Attributes for Controlling Caching of New Record Data

When a new card or table record is created, iAccess sends a request to the server to

obtain default values for the new record. By default, these values are cached for all

containers. iAccess 2.4.1 introduces a configuration setting that you can use to disable

caching for a specific container.

For example, to disable caching of new record data for both the card and the table

panes of the ExpenseSheets container, add the following attributes to the

Containers.json file:

"AbsenceEntryOverview": {
 "filterAsTable": {
 "fields": {
 "RelatedEntryValidTill": {
 "immutable": true
 },
 "EmployeeName1": {
 "mapsTo": "EmployeeNameVar"
 }
 }
 }
}

Type Ahead

Type Ahead is a feature available in table panes which lets the user perform changes,

such as adding, editing and deleting lines, or running line actions, without having to

wait for a server response after each action. The requested changes are queued and

executed in the background.

In some cases, it might be desirable to disable this functionality, or to control how

many uncommitted changes a user is able to make. This can be configured using the

attributes available in the Typeahead.json file.

Shell

The shell part is the third main area of iAccess extension, and this refers to the part of

the application that surrounds the workspace area after the user logs in. The core

configuration covers the sidebar menu as well as the documentation URL, settings,

and notifications in the top-right corner.

{
 "ExpenseSheets": {
 "card": {
 "cacheInitResponse": false,
 ...
 },
 "table": {
 "cacheInitResponse": false,
 ...
 }
 },
 ...
}

{
 "menu": {
 "$ref": "Menu"
 },

Menu

The sidebar menu is configured in the Menu.json file. The workspace part of the

iAccess configuration contains the total list of available workspaces. The menu is a

subset of these workspaces, ordered in groups. There is no limit to the number of

groups nor the number of workspaces within a group. iAccess does not allow the use

of nested groups, so avoid adding too many groups and workspaces to the menu.

Doing so clutters the user interface and makes navigation difficult for the user.

Groups have a title property and a list of items. Each item represents either a

concrete workspace or a hyperlink. You can assign a title to a specific workspace. The

workspace property refers to the internal name of the workspace as declared in the

workspace part of the iAccess configuration. On the other hand, hyperlinks are

 "documentationUrl": "https://help.deltek.com/Product/MaconomyiAcc
 "settings": {
 "$ref": "Settings"
 },
 "notifications": {
 "$ref": "Notifications"
 }
}

{
 "groups": [
 {
 "T$title": "Self Service",
 "items": [
 {
 "workspace": "WeeklyTimeSheets"
 },
 ...
]
 },
 ...
]
}

composed of a title and a URL. Placing hyperlinks in the menu is convenient if access

to third-party systems is required.

Groups, workspaces, and hyperlinks have an optional visible property which

determines their visibility. To specify this property, you must use an expression. The

following example shows an excerpt of a menu where the Employee Information

workspace is only visible to users with either the Project Manager or HR Manager role.

When specifying a role name.

Documentation URL

The documentation URL is a simple hyperlink to external documentation. It is rendered

as a question mark in the top-right corner of the screen. By default, it points to the

standard hosted help from Deltek. It is version-specific because the <version>

placeholder is substituted with the iAccess version at runtime. Customers who prefer

to use their own external documentation (such as a page on an internal Sharepoint

site) can simply replace the URL here.

Settings

Settings concern iAccess language and formatting. Select the language used in

iAccess from the dictionaries installed on the Maconomy server. To further filter the

server list of languages, you can use the couplingconfiguration.mcsl.xml file

found in the ‘Definitionsʼ folder on the server.

Aside from specifying the preferred language, you need to configure the fixed flag

which states whether the user can change the language used. If you set the fixed flag

to ‘false ,̓ the user can change the language on the login screen and in the settings

dialog inside iAccess. If you set the fixed flag to ‘true ,̓ make sure the preferred

language is actually available from the server. In other words, the iAccess language

{
 "T$title": "Employee Information",
 "workspace": "EmployeeInformation"
 "visible": "hasRole('ProjectManager', 'HRManager')"
}

configuration must be aligned with the set of dictionaries installed on the server and

with any filters defined in the MCSL specification.

Default data formatting is location-specific. This format controls rendering of dates, as

well as the decimal separator and digit grouping used. You can edit the preferred

location and the settings for that location. You also have the option to assign

formatting to a specific location by using the fixed property. The following example

shows the preferred and fixed properties in use, as well as a single location

configured with a date format, a decimal separator, and a digit grouping system.

You can also configure the optional minutesThreshold property, which determines

whether a time entry is interpreted as minutes or hours. The default value is ‘10,̓ which

means that an entry of ‘10ʼ is interpreted as 10 minutes, and an entry of ‘11ʼ is

interpreted as 11 hours.

Notifications

Use the recalculation object to configure how often iAccess retrieves the

notifications computed on the server. Specifically, you can use the interval

property to configure how often iAccess should request the recalculation of a specific

user s̓ notifications. You can also set the initialDelay property to configure when

{
 "preferred": "da_DK",
 "fixed": false,
 "available": {
 "da_DK": {
 "date": {
 "short": "dd/MM/y"
 },
 "symbol": {
 "decimal": ",",
 "group": "."
 }
 },
 ...
 }
}

iAccess should start the recalculation after the user logs in. Both of these properties

are specified in minutes. If you make the recalculation interval too short, you risk

causing a serious system-wide performance degradation.

Customization Procedures

Create a Menu Group

You can create a menu group, and move specific menu items into this group.

To create a menu group:

1. In the Standard and Solution Files Filter Search field, type the Menu.json filename.

You can also specify the file path (that is: Web >> iaccess >> [iAccess version] >>

shell >> menu.json).

2. In the search results, double-click the Menu.json file for the iAccess version you

want to customize. The Extender opens the Menu.json file.

3. Click the Copy selected file as extension to active project icon.

4. In the Menu.json file, look for the “groups” property. You create menu groups under

this property. For example, if you want to create a menu group for workspaces used

by Time and Expense users, edit the code as follows:

From

{
 "recalculation": {
 "initialDelay": 30,
 "interval": 30
 }
}

{
 "groups": [
 {
 "T$title": "Self Service",
 "items": [
 {

To

5. Select the code for all the workspaces you want to move into the new group. Make

sure you include the braces for each workspace object.

For this example, select the code for the following workspaces: Weekly Time

Sheets, Daily Time Sheets, Expenses, Mileage, Favorites, Absence, and Purchase

 "T$title": "Weekly Time Sheet",
 "workspace": "WeeklyTimeSheets"
 },
 ...
]
 },

{
 "groups": [
 {
 "T$title": "Time & Expense",
 "items": [

]
 }
 {
 "T$title": "Self Service",
 "items": [
 {
 "T$title": "Weekly Time Sheet",
 "workspace": "WeeklyTimeSheets"
 },
 ...
]
 },

 {
 "T$title": "Weekly Time Sheet",
 "workspace": "WeeklyTimeSheets"
 },

Orders.

6. Cut and paste the selected code inside the brackets of the “items” property in the

new menu group you created.

For this example, the code for the new menu group should now read:

 {
 "groups": [
 {
 "T$title": "Time & Expense",
 "items": [
 {
 "T$title": "Weekly Time Sheet",
 "workspace": "WeeklyTimeSheets"
 },
 {
 "T$title": "Daily Time Sheet",
 "workspace": "DailyTimeSheets"
 },
 {
 "T$title": "Expenses",
 "workspace": "ExpenseSheets"
 },
 {
 "T$title": "Mileage",
 "workspace": "MileageSheets"
 },
 {
 "T$title": "Favorites",
 "workspace": "Favorites"
 },
 {
 "T$title": "Absence",
 "workspace": "Absence"
 },
 {
 "T$title": "Purchase Orders",
 "workspace": "PurchaseOrders"
 }
]

7. Click the Save icon.

8. To deploy your changes, click the Commit and Push changes to Server

Repository icon.

9. In the window that displays:

a. Fill out the Commit message field with the details of your customization. b. You

can select the Deploy immediately check box. c. Click OK.

The Extender pushes your changes to the server repository, and displays a

progress bar.

10. In the Deployment success message that displays, click OK.

11. To view your changes:

a. Pull up the browser window with your open iAccess system. b. Hold down the

CTRL key, and click Refresh.

Restrict Access to a Menu Group

You can restrict access to a menu group such that it is only visible to users with

specific roles.

To restrict access to a menu group:

1. In the Standard and Solution Files Filter Search field, type the Menu.json filename.

You can also specify the file path (that is: Web >> iaccess >> [iAccess version] >>

shell >> menu.json).

2. In the search results, double-click the Menu.json file for the iAccess version you

want to customize. The Extender opens the Menu.json file.

3. Click the Copy selected file as extension to active project icon.

4. In the Menu.json file, scroll down to the menu group to which you want to restrict

access.

 }
]
 }

5. Add a visible property to this menu group. For example, if you want to restrict

access to a newly created Time and Expense menu group such that only users

assigned to specific roles can view the workspaces under the group, edit the code

as follows:

From

To

Note: Roles refer to window groups you set up in the Workspace Client.

6. Click the Save icon.

7. To deploy your changes, click the Commit and Push changes to Server

Repository icon.

8. In the window that displays:

a. Fill out the Commit message field with the details of your customization. b. You

can select the Deploy immediately check box. c. Click OK.

"groups": [
 {
 "T$title": "Time & Expense",
 "items": [
 {
 "T$title": "Weekly Time Sheet",
 "workspace": "WeeklyTimeSheets"
 },

"groups": [
 {
 "T$title": "Time & Expense",
 "visible": "hasRole('iAccess T&E', 'iAccess Manager')",
 "items": [
 {
 "T$title": "Weekly Time Sheet",
 "workspace": "WeeklyTimeSheets"
 },

The Extender pushes your changes to the server repository, and displays a

progress bar.

9. In the Deployment success message that displays, click OK.

10. To view your changes:

a. Pull up the browser window with your open iAccess system. b. Log out, then log

in again.

Remove a Menu Item

To remove a menu item:

1. In the Standard and Solution Files Filter Search field, type the Menu.json filename.

You can also specify the file path (that is: Web >> iaccess >> [iAccess version] >>

shell >> menu.json).

2. In the search results, double-click the Menu.json file for the iAccess version you

want to customize. The Extender opens the Menu.json file.

3. Click the Copy selected file as extension to active project icon.

4. In the Menu.json file, delete the workspace from the list. Make sure you also delete

the braces before and after the workspace object.

For example, if you want to remove the Weekly Time Sheets menu item, edit the

code as follows:

From

To

"T$title": "Self Service",
"items": [
 {
 "workspace": "WeeklyTimeSheets"
 },
 {
 "workspace": "DailyTimeSheets"
 },

5. Click the Save icon.

6. To deploy your changes, click the Commit and Push changes to Server

Repository icon.

7. In the window that displays:

a. Fill out the Commit message field with the details of your customization. b. You

can select the Deploy immediately check box. c. Click OK.

The Extender pushes your changes to the server repository, and displays a

progress bar.

8. In the Deployment success message that displays, click OK.

9. To view your changes:

a. Pull up the browser window with your open iAccess system. b. Hold down the

CTRL key, and click Refresh.

Rename a Menu Item

To rename a menu item:

1. In the Standard and Solution Files Filter Search field, type the Menu.json filename.

You can also specify the file path (that is: Web >> iaccess >> [iAccess version] >>

shell >> menu.json).

2. In the search results, double-click the Menu.json file for the iAccess version you

want to customize. The Extender opens the Menu.json file.

3. Click the Copy selected file as extension to active project icon.

4. In the Menu.json file, add a “T$title” property to the workspace object you want to

rename. For example, if you want to change the name of the Employee Information

workspace to “Employee Info”, edit the code as follows:

"T$title": "Self Service",
"items": [
 {
 "workspace": "DailyTimeSheets"
 },

From

To

5. Click the Save icon.

6. To deploy your changes, click the Commit and Push changes to Server

Repository icon.

7. In the window that displays:

a. Fill out the Commit message field with the details of your customization. b. You

can select the Deploy immediately check box. c. Click OK.

The Extender pushes your changes to the server repository, and displays a

progress bar.

8. In the Deployment success message that displays, click OK.

9. To view your changes:

a. Pull up the browser window with your open iAccess system. b. Hold down the

CTRL key, and click Refresh.

Customize a Search Filter Name

{
 "workspace": "EmployeeSelfService"
},
{
 "workspace": "EmployeeInformation"
},

{
 "workspace": "EmployeeSelfService"
},
{
 "T$title": "Employee Info",
 "workspace": "EmployeeInformation"
},

You can rename the search filters found in some workspaces.

To customize a search filter name:

1. In the Standard and Solution Files Filter Search field, type the name of the

heading.json file for the workspace that you want to customize. You can also

specify the file path. For example, if you want to rename the My Open search filter

found in the Expenses workspace, search for the ExpenseSheets_Heading.json file,

or specify the following file path: Web >> iaccess >> [iAccess version] >>

workspace >> EmployeeSelfService >> ExpenseSheets >>

ExpenseSheets_Heading.json.

2. In the search results, double-click the heading.json file for the iAccess version you

want to customize. The Extender opens the heading.json file.

3. Click the Copy selected file as extension to active project icon.

4. In the heading.json file, scroll to the “selection” property. Under this, the “options”

property lists the available search filters for a workspace.

5. Edit the “T$title” property for the search filter you want to rename. For example, if

you want to rename the My Open search filter, edit the code as follows:

From

To

6. Click the Save icon.

"options": {
 "MyOpenExpenseSheets": {
 "T$title": "My Open",
 "restriction": "not FullyApproved and EmployeeNumber = employee
 }

"options": {
 "MyOpenExpenseSheets": {
 "T$title": "My Open Expenses",
 "restriction": "not FullyApproved and EmployeeNumber = employee
 }

7. To deploy your changes, click the Commit and Push changes to Server

Repository icon.

8. In the window that displays:

a. Fill out the Commit message field with the details of your customization. b. You

can select the Deploy immediately check box. c. Click OK.

The Extender pushes your changes to the server repository, and displays a

progress bar.

9. In the Deployment success message that displays, click OK.

10. To view your changes:

a. Pull up the browser window with your open iAccess system. b. Hold down the

CTRL key, and click Refresh.

Workspace

The workspace part is the fourth main area of iAccess extension. It specifies the

structure and layout for all workspaces available in iAccess. This part represents the

majority of iAccess extension capabilities, since end-users spend most of their time in

the workspaces. It has two components: a set of workspaces, and a set of global

definitions.

{
 "workspaces": {
 "Absence": {
 "$ref": "EmployeeSelfService:AbsenceMgmt"
 },
 ...
 },
 "definitions": {
 "$ref": "GlobalDefinitions"
 }
}

In the Workspace.json file (as shown in the preceding example), the

workspaces property is a map of all embedded workspaces, and includes the entire

collection of workspaces. The sidebar menu is a subset of this collection.

The definitions property specifies a set of named styles that can be used across

workspaces.

Each workspace has a unique name that serves as its internal identifier and an

external, localizable title. The contents of a workspace has two main parts: the data

bindings and the layout (as shown in the following example). The data bindings is a

configuration of the Maconomy containers that provide data for the workspace. These

containers are bound together in a tree, similar to how workspace definitions (MWSL

specifications) are done for the Workspace Client. On the other hand, the layout is a

configuration of how this tree of Maconomy containers is rendered to the end-user.

This corresponds roughly to dialog layouts (MDML specifications) for the Workspace

Client. The following subsections discuss data bindings and layouts in greater detail.

Data Bindings

Copy to come.

Layouts

Copy to come.

Wizards

{
 "name": "ExpenseSheets",
 "T$title": "Expenses",
 "dataBindings": {
 ...
 },
 "layout": {
 ...
 }
}

Copy to come.

Customization Procedures

Rename a Card Action

iAccess has several actions available in the card part of each workspace. You can

customize the names of most of these actions.

To rename a card action:

1. In the Standard and Solution Files Filter Search field, type the name of the

ActionBar.json file that corresponds to the workspace you want to customize. You

can also specify the file path. For example, if you want to rename the Submit action

in the card part of the Expenses workspace, search for the

ExpenseSheets_ActionBar.json file, or specify the following file path: Web >>

iaccess >> [iAccess version] >> workspace >> EmployeeSelfService >>

ExpenseSheets >> ExpenseSheets_ActionBar.json.

2. In the search results, double-click the ActionBar.json file for the iAccess version you

want to customize. The Extender opens the ActionBar.json file.

3. Click the Copy selected file as extension to active project icon.

4. In the ActionBar.json file, scroll to the instance of the “actions” property that

contains the action you want to rename. This property lists the actions that you are

allowed to customize.

5. Edit the “T$title” property for the action you want to rename. For example, if you

want to rename the Submit action, edit the code as follows:

From

To

"actions": [
 {
 "T$title": "Submit",
 "source": "SubmitExpenseSheet"
 },

6. Click the Save icon.

7. To deploy your changes, click the Commit and Push changes to Server

Repository icon.

8. In the window that displays:

a. Fill out the Commit message field with the details of your customization. b. You

can select the Deploy immediately check box. c. Click OK.

The Extender pushes your changes to the server repository, and displays a

progress bar.

9. In the Deployment success message that displays, click OK.

10. To view your changes:

a. Pull up the browser window with your open iAccess system. b. Hold down the

CTRL key, and click Refresh.

Rename a Field

To rename a field:

1. In the Standard and Solution Files Filter Search field, type the name of .json file

for the part of the workspace that contains the field you want to rename. You can

also specify the file path. For example, if you want to rename the Total Amount

field found in the card part of the Expenses workspace, search for the

ExpenseSheets_Card_Row.json file, or specify the following file path: Web >>

iaccess >> [iAccess version] >> workspace >> EmployeeSelfService >>

ExpenseSheets >> ExpenseSheets_Card_Row.json.

2. In the search results, double-click the .json file for the iAccess version you want to

customize. The Extender opens the .json file.

3. Click the Copy selected file as extension to active project icon.

"actions": [
 {
 "T$title": "Submit My Expense",
 "source": "SubmitExpenseSheet"
 },

4. In the .json file, scroll down to the “column” property for the column that contains

the field you want to rename.

5. Edit the “T$title” property for the field you want to rename. For example, to change

the name of the Total Amount field to Full Amount, edit the code as follows:

From

To

6. Click the Save icon.

7. To deploy your changes, click the Commit and Push changes to Server

Repository icon.

8. In the window that displays:

a. Fill out the Commit message field with the details of your customization. b. You

can select the Deploy immediately check box. c. Click OK.

The Extender pushes your changes to the server repository, and displays a

progress bar.

9. In the Deployment success message that displays, click OK.

10. To view your changes:

a. Pull up the browser window with your open iAccess system. b. Hold down the

CTRL key, and click Refresh.

"unitField": {
 "T$title": "Total Amount",
 "source": "AmountBase",

"unitField": {
 "T$title": "Full Amount",
 "source": "AmountBase",

API Reference
The following section gives an overview of all parts of the configuration API. Each

configuration part consists of a JSON object with a set of properties.

Application

The application name and version.

Properties: name, version

name

The name of the application. Usually, the name bears some resemblance to core

Maconomy release versions.

Type Required Default Value

string true n/a

version

The version of this particular application. This version number is NOT related to core

Maconomy versions.

Type Required Default Value

string true n/a

AuthenticationType

Representation of available methods of logging in to iAccess.

Azure

No description available

Properties: enabled

enabled

No description available

Type Required Default Value

boolean true n/a

Configuration API

The core application configuration is split into four main areas: authentication,

platform, shell, and workspace. The entire configuration has an API version used to

guarantee compatibliity and enforce upgrades. Finally, the configuration includes a

dictionary of the static terms embedded in iAccess. These terms are localized before

the client receives the configuration from the REST API.

Properties: api, application, authentication, platform, shell, workspace

api

The version of the configuration format that this representation conforms to. Versions

follow the SemVer standard.

Type Required Default Value

string true n/a

application

The application name and version.

Type Required Default Value

Application true n/a

authentication

Authentication determines preferred login mechanism as well as general configuration

of the login flow.

Type Required Default Value

IAuthenticationConfiguration true n/a

platform

General configuration that spans the entire application

Type Required Default Value

IPlatformConfiguration true n/a

shell

The application shell covers the menu, documentation, notifications and auxiliary

features such as settings, change password and about information.

Type Required Default Value

IShellConfiguration true n/a

workspace

Configuration of general properties that span all workspaces as well as configuration

of individual workspaces in terms of data bindings and layouts.

Type Required Default Value

IWorkspaceConfiguration true n/a

Domain

No description available

Properties: enabled

enabled

No description available

Type Required Default Value

boolean true n/a

EmployeeLookup

Configuration properties related to looking up employees for mentioning in messages.

Properties: restriction

restriction

An optional restriction to be applied when searching for employees. For example:

"Blocked = false" .

Type Required Default Value

Type Required Default Value

string false n/a

Formatting

Configure formatting rules for data types.

Properties: amount, autotimestamp, boolean, date, enum, integer, real, string, time,

timeduration

amount

No description available

Type Required Default Value

IAmountFormatting false n/a

autotimestamp

No description available

Type Required Default Value

IAutoTimestampFormatting false n/a

boolean

No description available

Type Required Default Value

IBooleanFormatting false n/a

date

No description available

Type Required Default Value

IDateFormatting false n/a

enum

No description available

Type Required Default Value

IEnumFormatting false n/a

integer

No description available

Type Required Default Value

IIntegerFormatting false n/a

real

No description available

Type Required Default Value

IRealFormatting false n/a

string

No description available

Type Required Default Value

IStringFormatting false n/a

time

No description available

Type Required Default Value

ITimeFormatting false n/a

timeduration

No description available

Type Required Default Value

ITimeDurationFormatting false n/a

IActionAttachmentConfiguration

No description available

Properties: required, allowMultipleAttachments

required

This flag specifies if file attachments are required for this action. Defaults to false .

Type Required Default Value

boolean true n/a

allowMultipleAttachments

This flag specifies if multiple attachments are valid for this action. Note that the action

will be executed once for every attachment. For example, this flag could be set to

true for the action AttachDocument in the ExpenseSheets container, as

calling this action multiple times with new files will simply attach more files to the same

expense sheet. On the other hand, this flag should be false for the action

ImportDocument in the table part of DocumentArchives , as running that action

more than once will replace the document previously attached to the line.

Type Required Default Value

boolean true n/a

IActionConfiguration

No description available

Properties: attachments, parameters

attachments

Specifies whether attachments (i.e. file uploads) should be available for this action.

Type Required Default Value

IActionAttachmentConfiguration false n/a

parameters

Specifies fields which act as parameters to this action. The values of these fields will

be transmitted as singleton parameters when the action is executed. Only fields from

the card pane can be specified. The listed field names must be mapped to singleton

identifiers in the card pane s̓ singletonIdentifiers attribute.

Type Required Default ValueType Required Default Value

array [string] false n/a

IAmountFormatting

No description available

IAuthenticationConfiguration

Set up authentication schemes.

Properties: preferred, methods

preferred

The preferred method of performing login. This method determines the entry route

when arriving from the bare, default ‘/‘ URL.

Type Required Default Value

AuthenticationType true n/a

methods

Used to disable/enable individual login methods.

Type Required Default Value

Methods true n/a

IAutoTimestampFormatting

No description available

IAvailableFormats

No description available

IBooleanFormatting

No description available

ICardPaneConfiguration

No description available

Properties: singletonIdentifiers, stateParameters, navigationParameters,

refreshAfterActions, actions, cacheInitResponse

singletonIdentifiers

Maps field names to singleton identifiers.

Type Required Default Value

string -> string false n/a

stateParameters

Specifies state parameter fields for this container. State parameters are fields that are

not persisted on the server side. In order for the state of these fields to be maintained

across REST requests, their values have to be included in every request as singleton

parameters.

Type Required Default Value

array [string] false n/a

navigationParameters

Specifies navigation parameter fields for this container. Navigation parameters are

fields in the card part of a container that control the internal navigation state of the

container. In particular, they control the resource which will be the target of actions

performed on this container. Fields defined as navigation parameters cannot be

changed together with any other fields in the workspace.

Type Required Default Value

array [string] false n/a

refreshAfterActions

Specifies actions which require the container to be re-read after they are executed.

Some container card actions can have side-effects causing the card record to vanish.

This behavior might not be reported correctly through the REST API. Listing such

actions using this property lets iAccess handle them correctly. For example, the action

printinvoice could be listed for the invoiceediting container.

Type Required Default Value

array [string] false n/a

actions

Additional configuration for actions.

Type Required Default ValueType Required Default Value

string -> IActionConfiguration false n/a

cacheInitResponse

Specifies whether caching of init responses is allowed for this pane. If set to true ,

then init responses will be cached; when set to false , they will not be cached. If not

specified, the default behavior is to cache init responses.

Type Required Default Value

boolean false n/a

IContainerConfiguration

Specifies additional configuration options for a container.

Properties: filter, card, table, filterAsTable

filter

Configuration for the filter pane.

Type Required Default Value

IPaneConfiguration false n/a

card

Configuration for the card pane.

Type Required Default Value

Type Required Default Value

ICardPaneConfiguration false n/a

table

Configuration for the table pane.

Type Required Default Value

ITablePaneConfiguration false n/a

filterAsTable

Configuration for the filter-as-table pane.

Type Required Default Value

IFilterAsTablePaneConfiguration false n/a

IConversationConfiguration

Configuration of the conversation functionality.

Properties: enabled, refreshInterval, employeeLookup, conversationTypes

enabled

Determines if the conversation functionality is enabled in iAccess. For example:

"true" .

Type Required Default Value

string true n/a

refreshInterval

The refresh interval in seconds. The list of unread messages in the message center

component is automatically refreshed once per this time interval. For example: 60

indicates that the refresh happens every minute.

Type Required Default Value

number true n/a

employeeLookup

Configuration properties related to looking up employees for mentioning in messages.

Type Required Default Value

EmployeeLookup false n/a

conversationTypes

A mapping between conversation types and workspaces supporting these

conversations. This mapping is used by the message center to open a workspace

associated with a conversation, and to navigate to a record to which the conversation

is attached.

Type Required Default Value

string -> IConversationType true n/a

IConversationType

No description available

Properties: workspace, parameters

workspace

The name of the target workspace for the conversation type.

Type Required Default Value

string true n/a

parameters

A map of url parameters for the workspace linking to primary keys of the object

attached to the conversation.

Type Required Default Value

string -> string false n/a

IDateFormatting

No description available

IEnumFormatting

No description available

IFilterAsTablePaneConfiguration

No description available

Properties: fields, actions

fields

Configuration of additional fields for the filter-as-table pane. By default, filter-as-table

includes only fields that have the same name and type in the filter pane as in the card

pane. However, additional fields can be configured: 1) If a field from the filter pane

exists has a corresponding field in the card pane, but with a different name, then a

mapping between the names can be defined. 2) If a field is available in the filter pane

only, then such a field can be shown as a read-only field in the filter-as-table pane.

This property maps field names from the filter pane (which are also the names used in

the filter-as-table pane) to a configuration of each field.

Type Required Default Value

string -> unknown false n/a

actions

Additional configuration for actions.

Type Required Default Value

string -> IActionConfiguration false n/a

IFormats

No description available

Properties: preferred, fixed, available

preferred

No description available

Type Required Default Value

Type Required Default Value

string false n/a

fixed

No description available

Type Required Default Value

boolean false n/a

available

No description available

Type Required Default Value

IAvailableFormats true n/a

IGLobalDefinitions

Definitions are used to share common referable concepts and items across different

workspaces and areas of iAccess.

Properties: css, infoBubbles, sizes, styles, colors

css

Predefined CSS that can be referred and used across all workspaces.

Type Required Default Value

string -> unknown true n/a

infoBubbles

Info-bubbles that can be used across all workspaces.

Type Required Default Value

string -> IReusableInfoBubbleDefinition true n/a

sizes

Mapping between symbolic names to pixel width.

Type Required Default Value

Sizes true n/a

styles

Reusable style definitions that can be applied across all workspaces.

Type Required Default Value

string -> unknown true n/a

colors

Reusable colors used across different workspaces

Type Required Default Value

string -> string true n/a

IIntegerFormatting

No description available

Properties: zeroSuppression

zeroSuppression

True if zero values should be suppressed.

Type Required Default Value

boolean false n/a

ILanguageConfiguration

No description available

Properties: preferred, fixed

preferred

The preferred locale, e.g., ‘da_DKʼ

Type Required Default Value

string true n/a

fixed

True if the language is fixed and cannot be changed by the end-user. This removes the

language selector from the both login screen and settings dialog.

Type Required Default Value

boolean true n/a

IMenu

The menu provides access to the workspaces that are available to the logged-in user.

A menu consists of workspaces ordered in groups. Different users may see different

sets of menu groups and items depending on the user s̓ privileges and context.

Properties: restoreLastWorkspace, groups

restoreLastWorkspace

Restore the last used workspace on login. Default is true.

Type Required Default Value

boolean false n/a

groups

The set of menu groups available in the menu.

Type Required Default Value

array [IMenuGroup] true n/a

IMenuGroup

A group of workspaces arranged under a common title

Properties: title, items, visible

title

The title of a group of workspaces in the menu.

Type Required Default ValueType Required Default Value

string true n/a

items

The workspaces or links contained in this menu group.

Type Required Default Value

array [unknown] false n/a

visible

Optional condition that determines if a menu part (group or item) should be visible or

not.

Type Required Default Value

string false n/a

INotificationConfiguration

Represents the configuration of notification reload and recalculation intervals.

Properties: recalculation, types

recalculation

The recalculation settings determine when the first recalculation of the end-user s̓

notifications occur and what the interval between subsequent recalculations is. All

values are specified in minutes.

Type Required Default Value

Type Required Default Value

Recalculation true n/a

types

Supported notification types as specified in the MNSL files.

Type Required Default Value

string -> INotificationType true n/a

INotificationType

No description available

Properties: workspace, parameters

workspace

The name of the workspace

Type Required Default Value

string true n/a

parameters

A map of url parameters for the workspace linking to the Focus key in question.

Type Required Default Value

string -> string false n/a

IPaneConfiguration

No description available

Properties: actions

actions

Additional configuration for actions.

Type Required Default Value

string -> IActionConfiguration false n/a

IPlatformConfiguration

No description available

Properties: usageTracking, containers, typeAhead, language,

maconomyContainerWebServiceVersion

usageTracking

No description available

Type Required Default Value

IUsageTrackingConfiguration true n/a

containers

Additional configuration for containers on a Maconomy installation.

Type Required Default ValueType Required Default Value

string -> IContainerConfiguration true n/a

typeAhead

Configuration of the type-ahead functionality.

Type Required Default Value

ITypeAheadConfiguration false n/a

language

The language configuration determines default language and whether the end-user

can change language.

Type Required Default Value

ILanguageConfiguration true n/a

maconomyContainerWebServiceVersion

The version number of the Maconomy Container Web Service REST API to use. If not

specified, then version two will be used.

Type Required Default Value

number false n/a

IRealFormatting

No description available

Properties: zeroSuppression

zeroSuppression

True if zero values should be suppressed.

Type Required Default Value

boolean false n/a

IReusableInfoBubbleDefinition

A definition of a reusable info bubble.

Properties: parameters, width, position, title, subTitle, rows, pane

parameters

No description available

Type Required Default Value

IReusableInfoBubbleParameters true n/a

width

You can optionally specify the width of the Info-bubble: xs: 200 px sm: 300 px md: 400

px lg: 400 px xl: 400 px The default behavior is: 1 column is rendered xs 2 columns is

rendered sm >2 columns is rendered md

Type Required Default Value

string false n/a

position

An optional position of the info bubble. Right is default.

Type Required Default Value

string false n/a

title

The title or heading of the info bubble

Type Required Default Value

unknown false n/a

subTitle

The sub heading of the info bubble

Type Required Default Value

unknown false n/a

rows

The rows or content of the info bubble

Type Required Default Value

array [unknown] true n/a

pane

Optional pane which is used to resolve unqualified references in this scope. If nothing

is specified then the pane from the parent scope is indirectly inherited.

Type Required Default Value

string false n/a

IReusableInfoBubbleParameters

Defines the parameters for the reusable info bubble.

Properties: fields, foreignKeys

fields

No description available

Type Required Default Value

array [string] true n/a

foreignKeys

No description available

Type Required Default Value

array [string] false n/a

ISettings

Settings represents formats, language, and other end-user configurable properties.

Properties: formats, minutesThreshold, menuSearch, formatting, userInactivityInterval

formats

The formats configuration determines the data formatting as well as whether this can

be changed by the end-user.

Type Required Default Value

IFormats true n/a

minutesThreshold

The minute threshold determines when a time entry is interpreted as minutes or as

hours. Default is ‘10ʼ which means that an entry of ‘10ʼ will be interpreted as 10

minutes, and an entry of ‘11ʼ will be interpreted as 11 hours.

Type Required Default Value

number false n/a

menuSearch

The menuSearch configuration determines if the search component is enabled in the

menu

Type Required Default Value

boolean true n/a

formatting

Configure formatting rules for data types.

Type Required Default Value

Type Required Default Value

Formatting true n/a

userInactivityInterval

The user inactivity interval in minutes. iAccess will perform certain automatic

operations, such as periodically refreshing conversations or notifications, only when

the user is active. If the inactivity timeout exceeds the number of minutes specified in

this property, then such automatic refresh will be paused.

Type Required Default Value

number false n/a

IShellConfiguration

The application shell covers the menu, documentation, notifications and auxiliary

features such as settings, change password and about information.

Properties: menu, documentationUrl, settings, notifications, conversations

menu

No description available

Type Required Default Value

IMenu true n/a

documentationUrl

The URL used for hosted help. Can be a simple string with variables such as .

Type Required Default ValueType Required Default Value

string true n/a

settings

No description available

Type Required Default Value

ISettings true n/a

notifications

No description available

Type Required Default Value

INotificationConfiguration true n/a

conversations

No description available

Type Required Default Value

IConversationConfiguration true n/a

IStringFormatting

No description available

ITablePaneConfiguration

No description available

Properties: actions, cacheInitResponse

actions

Additional configuration for actions.

Type Required Default Value

string -> IActionConfiguration false n/a

cacheInitResponse

Specifies whether caching of init responses is allowed for this pane. If set to true ,

then init responses will be cached; when set to false , they will not be cached. If not

specified, the default behavior is to cache init responses.

Type Required Default Value

boolean false n/a

ITimeDurationFormatting

No description available

Properties: type, zeroSuppression

type

No description available

Type Required Default ValueType Required Default Value

string false n/a

zeroSuppression

True if zero values should be suppressed.

Type Required Default Value

boolean false n/a

ITimeFormatting

No description available

Properties: useDropdownList, step

useDropdownList

Indicates if the time-picker should use a dropdown list or the time-selector wheel. You

specify true to use the dropdown-list or false to use the time-selector wheel.

You can also specify a number to indicate at which number of steps the time-picker

should change behavior. Default is 96, calculate as (24 / 1) * (60 / 15).

Type Required Default Value

unknown true n/a

step

Defines the steps to use for the dropdown list or the time-selector wheel.

Type Required Default Value

Type Required Default Value

ITimeStep true n/a

ITimeStep

Defines the steps to use for the dropdown list or the time-selector wheel.

Properties: hour, minute

hour

No description available

Type Required Default Value

number true n/a

minute

No description available

Type Required Default Value

number true n/a

ITypeAheadConfiguration

No description available

Properties: enabled, maximumQueueLength

enabled

This flag enables type-ahead for all workspaces. Default: true

Type Required Default Value

boolean false n/a

maximumQueueLength

The maximum number of operations that can be scheduled for execution. Default: 5

Type Required Default Value

number false n/a

IUsageTrackingConfiguration

No description available

Properties: enabled, endUserOptIn, trackingId

enabled

This flag enables usage tracking for the entire iAccess installation. Default: True

Type Required Default Value

boolean true n/a

endUserOptIn

This flag enables end-user opt-in notification about usage tracking. When the end-

user opts-in, the notification is not shown for a year unless cookies are cleared.

Default: True

Type Required Default Value

boolean true n/a

trackingId

Google Analytics tracker ID can be provided here for custom tracking of iAccess

usage.

Type Required Default Value

string false n/a

IWorkspaceConfiguration

Representation of both general configuration spanning all workspaces as well as the

setup of data bindings and layout for individual workspaces. A workspace will,

however, not appear in iAccess until it is referred from the menu.

Properties: definitions, workspaces

definitions

Global definitions contain pre-defined colors and other referrable items that span all

workspaces. These definitions are used both for convenience and as a way of ensuring

a uniform look and feel across all workspaces.

Type Required Default Value

IGLobalDefinitions true n/a

workspaces

The collection of all workspaces available to iAccess.

Type Required Default Value

array [unknown] true n/a

Maconomy

No description available

Properties: enabled

enabled

No description available

Type Required Default Value

boolean true n/a

Methods

Used to disable/enable individual login methods.

Properties: maconomy, domain, sso, azure, oauth

maconomy

No description available

Type Required Default Value

Maconomy false n/a

domain

No description available

Type Required Default Value

Domain false n/a

sso

No description available

Type Required Default Value

Sso false n/a

azure

No description available

Type Required Default Value

Azure false n/a

oauth

No description available

Type Required Default Value

Oauth false n/a

Oauth

No description available

Properties: enabled

enabled

No description available

Type Required Default Value

boolean true n/a

Recalculation

The recalculation settings determine when the first recalculation of the end-user s̓

notifications occur and what the interval between subsequent recalculations is. All

values are specified in minutes.

Properties: initialDelay, interval, quarantinePeriod

initialDelay

The initial delay in minutes between the time the user logs in and when the first

recalculation of notifications is requested. The reason for not requesting recalculation

immediately is that the server should be set up to recalculate every night such that the

notifications are already up to date on login.

Type Required Default Value

number true n/a

interval

The interval in minutes between each request for recalculation of the user s̓

notifications. Care should be taken when setting this interval as recalculation of

notifications can be a very performance intensive process. If the interval is set to a low

value then overall system performance may degrade significantly.

Type Required Default Value

number true n/a

quarantinePeriod

The quarantine period property defines the minimum quarantine period between

repeated client requests for recalculation of notifications.

Type Required Default Value

number true n/a

Sizes

Mapping between symbolic names to pixel width.

Properties: xs, sm, md, lg, xl, custom

xs

No description available

Type Required Default Value

number true n/a

sm

No description available

Type Required Default ValueType Required Default Value

number true n/a

md

No description available

Type Required Default Value

number true n/a

lg

No description available

Type Required Default Value

number true n/a

xl

No description available

Type Required Default Value

number true n/a

custom

No description available

Type Required Default Value

Type Required Default Value

string -> number true n/a

Sso

No description available

Properties: enabled

enabled

No description available

Type Required Default Value

boolean true n/a

Miscellaneous
The following section contains a migration guide which describes how to migrate a

customized iAccess installation. We also include a troubleshooting guide with a few

tips about how to overcome typical installation issues.

Migration Guide

The following sections describes the steps needed for migrating from one specific

version of iAccess to another. If the version that you are currently using is not

mentioned here, or if you have received a special release or hotfix, please get in touch

with the iAccess development team for further instructions.

Our long term goal in iAccess 2 is to make all migrations automated through tool

support in the Maconomy Extender. However, this functionality is not yet available.

Hence, manual steps are always required. When migrating iAccess 2 extensions, it is

important to notice that such migrations have two dimensions:

1. If the Maconomy backend has changed version then the standard iAccess

configuration files will most likely be extracted from a different iAccess application.

In that case, it is important to inspect the differences between the source iAccess

application and the target one since fields, layout, workspaces, and available

configurations may have changed. The easiest way to do this is to use a Diff tool to

compare the old standard files with the new ones. These standard files are always

placed in the Web folder in MaconomyDir on the Maconomy server.

2. Since iAccess uses Agile methodology (with frequent smaller releases), the

configuration API often changes. The API version is specified in the manifest of the

iAccess FPU. This version should match the one given in the application.json

root configuration file. When the API changes, it is important to validate one s̓

existing extensions in the context of the target iAccess FPU. This can be done

through the validation facility in the Maconomy Extender.

From 2.2 to 2.2.3

Changes To Menu Configuration

Two non-backward compatible changes have been introduced to the subsection of the

configuration that deals with the menu.

The defaultWorkspace property was used to specify the workspace iAccess

should load on login. This property has been de-supported and must be removed from

all menus.

The condition property on groups and items in the menu has been replaced by the

visible property as part of the introduction of a more general-purpose expression

language. Previously, the visibility of groups and items could be guarded by either

simple true/false expressions or lists of role names. The new visible property is a

string containing an expression. If the expression evaluates to true, the group or item is

made visible. Otherwise, it will be hidden. This expression can rely on system

parameters and similar environment information, and has greater expressiveness than

those used in previous versions.

Here is an example of how a conditional menu group must be rewritten to comply with

the new syntax.

From

To

"groups": [
 {
 "T$title": "Time & Expense",
 "condition": ["iaccess t&e", "iaccess_manager"],
 "items": [
 {
 "T$title": "Weekly Time Sheet",
 "workspace": "WeeklyTimeSheets"
 },

"groups": [
 {
 "T$title": "Time & Expense",
 "visible": "hasRole('iAccess T&E', 'iAccess Manager')",

Style Property Renamed To Css

With the introduction of traffic lighting and dynamic styles, the existing style

property has been renamed to css . This applies across all layouts. Here is an

example of how to migrate part of a layout.

From

To

 "items": [
 {
 "T$title": "Weekly Time Sheet",
 "workspace": "WeeklyTimeSheets"
 },

"columns": [
 {
 "ref": "EntryText",
 "text": {
 "T$title": "Total"
 },
 "style": {
 "border-right": "1px solid transparent",
 "font-weight": "bold",
 "Text-align": "right"
 }
 },

"columns": [
 {
 "ref": "EntryText",
 "text": {
 "T$title": "Total"
 },
 "css": {
 "border-right": "1px solid transparent",
 "font-weight": "bold",

From 2.1 to 2.2

Update Foreign Key Definitions

If you created iAccess custom layouts specifically for Maconomy 2.4.0 and are

upgrading to iAccess 2.2 (which requires you to run Maconomy 2.4.1 in the backend),

you need to update your customizations according to the new naming conventions.

Update your custom usage of named references (that is, foreign key definitions)

according to the following list of changed names:

Dialog: Approve Expense Sheets By Employee

Dialog: Approve Purchase Order Lines By Employee

 "Text-align": "right"
 }
 },

Old: "Table_ExpenseSheetHeader"
New: "Table_CopyFromExpenseSheetNumber_ExpenseSheetHeader"

Old: "ApprovalRelationInstanceKey_ExpenseSheetHeader"
New: "Table_ExpenseSheetHeader"

Old: "ExpenseSheetHeaderEmployeeNumberVar_Employee"
New: "Table_Employee"

Old: "SuperiorEmployee_Employee"
New: "Table_SuperiorEmployee_Employee"

Old: "SecretaryEmployee_Employee"
New: "Table_SecretaryEmployee_Employee"

Old: "TutorEmployee_Employee"
New: "Table_TutorEmployee_Employee"

Old: "ApprovalGroupInstanceKey_ApprovalGroup"
New: "Table_ApprovalGroup"

Introduction of Action Groups

Previous to this release, all actions were shown in a drop-down list called “Other

actions”. Actions are now shown on a line together with “Save” and “Revert”. The

following example:

Renders actions as:

You can also make action groups. This means you can have one or more groups of

actions next to the row of action buttons.

Old: "ApprovalLine_PurchaseOrderLine"
New: "Table_PurchaseOrderLine"

{
 ...
 "actions": [
 {
 "title": "Submit",
 "source": "SubmitTimeSheet"
 },
 {
 "title": "Submit",
 "source": "SubmitTimeSheet"
 }
]
 ...
}

Save | Revert | Submit | Reopen

{
 ...
 "actions": [
 {

Renders actions as:

 "title": "Submit",
 "source": "SubmitTimeSheet"
 },
 {
 "title": "Submit",
 "source": "SubmitTimeSheet"
 },
 "actions": [
 {
 "title": "Print",
 "source": "PrintTimeSheet"
 },
 {
 "title": "Copy From",
 "source": "CopyTimeSheet"
 }
],
 "title": "Even more actions",
 "actions": [
 {
 "title": "Extra action"
 ...
 },
 {
 "title": "Extra action 2"
 ...
 }
]
]
 ...
}

Save | Revert | Submit | Reopen | Other actions | Even more actions

 Print Extra action
 Copy From Extra action 2

If you leave out “title” for an action group, the group is labelled “Other actions” by

default.

From 2.1 to 2.1.1

Reusable info-bubbles

You need to manually update all custom reusable info-bubbles.

The format for the parameters atribute, found in the info-bubble definition, is updated.

From:

To:

From 2.0.x to 2.1

{
 "parameters": [
 fieldName1,
 fieldName2,
 ...
],
 ...
}

{
 "parameters": {
 "fields": [
 fieldName1,
 fieldName2,
 ...
]
 },
 ...
}

iAccess 2.1 includes the parameterized workspace panes feature, a functionality that

introduces a breaking change in workspace and container configurations.

Workspace Definition

You need to manually update all custom workspaces.

The format for the parameters attribute-found under the container definition in the

dataBindings section of the workspace-is updated

From:

To:

where parameterObject can be a URL parameter definition or an expression

parameter definition.

1. URL parameter

where name is a string with the name of the parameter that will be used in the URL.

2. Expression parameter

{
 urlParameterName: fieldName,
 ...
}

{
 fieldName: parameterObject,
 ...
}

{
 "urlParameter": name
}

where expression is a string with the Expression Language expression providing

the value for the parameter. The expression may refer to fields in any pane of the

workspace, except for the pane where this parameter is defined as well as this pane s̓

descendants.

For example, the WeeklyTimeSheets.json file contained the following lines:

After the update, this is now converted to:

Layout Definition

Some breaking changes are applied to the layout definitions.

1. Label is renamed to text. This means that all instances of label elements must be

changed to text elements.

 {
 "expression": expression
 }

{
 "date": "DateVar",
 "EmployeeNumber": "EmployeeNumberVar"
}

{
 "DateVar": {
 "urlParameter": "date"
 },
 "EmployeeNumberVar": {
 "urlParameter": "EmployeeNumber"
 }
}

{
 "label: {

must be changed to

2. Action rows have been removed. Previously, you could add a row of actions

anywhere in the layout. Now, you can only add actions to the top of the layout or in a

tab.

A record element can now be added to the top of the layout. This can be thought of

as the heading defining the shown entity. In the following example, the title

defines week information for the time sheet, and the subTitle defines employee

information. The status shows the status of the time sheet, and the actionBar

contains the actions.

 "template": "Some string"
 ...
 }
 ...
}

{
 "text: {
 "template": "Some string"
 ...
 }
 ...
}

"layout": {
 ...
 "record": {
 "pane": "TimeRegistrationCard",
 "T$title" : "Week ^{WeekNumberVar}^{PartVar}: ^{PeriodStartVar}
 "subTitle": {
 "reference": {
 "description": "EmployeeNameVar",
 "key": "EmployeeNumberVar"
 }
 },
 "status": {
 "source": "SelectedTimeSheetStatusVar",

Actions can be added to the tabs as shown in the following example:

Container Definition

This functionality also introduces a breaking change in the container configuration

(Containers.json).

 ...
 },
 "actionBar": {
 ...
 "actions": [
 {
 "source": "SubmitTimeSheet",
 ...
 }
 ...
]
 }
 }
 ...
}

{
 ...
 "tabs": [
 {
 "T$title": "Expense Sheets",
 ...
 "actions": [
 {
 "source": "ApproveExpenseSheetsByEmployeeCard.ApproveAll"
 }
]
 ...
 }
]
 ...
}

The singleton attribute under the card pane configuration is now replaced by

three attributes:

singletonIdentifiers - This maps field names in the card pane to REST API

identifiers, such as card.datevar.

stateParameters - This lists the fields in the card pane of this container that do

not persist on the server side, and thus need to be maintained on the client side.

navigationParameters - This lists the fields in the card pane of this container

that control the internal navigation in the card and the table. These fields cannot be

changed at the same time as other fields in the card or table panes.

From 1.x to 2.0

You need to redo all extensions from scratch. We are not delivering a migration tool at

this point. Deltek recommends that you inspect the standard extensions delivered with

iAccess 2.0, and then ask concrete questions in our “iAccess for Maconomy” Deltek

Collaboration space (https://collaborate.deltekfirst.com/#!/projects/129727).

Engineering is actively monitoring this forum to ease the transition.

Please observe that for 2.0, two new rewrite rules are added for the two new REST

endpoints that we rely on, specifically “auth” and “environment”. On IIS, an additional

rewrite rule is required as described in the “Edit Routing Rules” section. Also, you need

to configure “woff2” as a supported MIME type.

From 1.2.x and 1.3.0-3 to 1.3.4

For upgrades from the 1.2.x series, perform the steps outlined in the following

sections, and then proceed to the step given here. When migrating from 1.3.0-3

versions to 1.3.4, make sure you update all JSON references. You no longer need to

include an iAccess namespace in the names of specification files. This means you

should remove the iaccess: -prefix from JSON references. For example, change:

to

"screens": {
 "dm.dailytimesheets": {
 "$ref": "iaccess:dailytimesheets"
 }

https://collaborate.deltekfirst.com/#!/projects/129727

From 1.2.0 and 1.2.1 to 1.2.2 and 1.3.0

Some of our core terminology has changed, as outlined in the following table. This

means that you need to update the following keys in your configuration:

User Interface Concept 1.2.0 and 1.2.1 API 1.2.2 and 1.3 API

Default View defaultScreen defaultView

Views screens views

Leftnav sidebar leftnav

Since this is a breaking change, the API version has also changed. Configurations

should state that they now rely on version 2.0.0 rather than 1.2.0 .

In 1.3, we added support for the Additional Table Fields extension point in expense and

mileage sheets. This means you must merge the specifications from these views with

the new defaults from the iAccess 1.3 FPU. You can use the Maconomy Extender to

assist in this process.

We also added some new parts to the configuration. Integrate these changes by

importing the latest specifications from a new FPU and merging these with existing

customizations. Specifically, we introduced a documentationUrl under the

configuration section in application.json . In this section, we also

introduced references to two new specification files: authentication.json and

usagetracking.json . Use the Maconomy Extender to add these files.

When migrating to 1.2.2 or to 1.3.0 , remove the preferences in the following

listing from the preferences.json file. The defaults have changed and are not

valid anymore. Customize the preferences as described in the configuration section.

"screens": {
 "dm.dailytimesheets": {
 "$ref": "dailytimesheets"
 }

From 1.1.x to 1.2.x

The major difference between the 1.x versions and 1.2.x is the introduction of the

extensibility model. The table in the next section describes which configuration options

from 1.2.x replace deprecated configuration options from 1.1.x.

Configuration of Leftnav

In version 1.1.x, you could configure which views were accessible via the leftnav by

changing the this.sidebarItems array in config.js . This was done after

installation on each individual web server.

In version 1.2.x, this kind of configuration is now a part of the central view

configuration, and managed via the Maconomy Extender. You can access the

configuration of each view by following the links from application.json file. To

show/hide a particular view, set the enabled attribute to either true or false .

The mapping of view names between version 1.1.x and 1.2.x can be found in the

following table:

1.1.x View Name 1.2.x View Name

inside.timesheets dm.weeklytimesheets

"dateFormat": {
 "short": "M/d/yyyy"
},
"decimalSymbol": ",",
"digitGroupingSystem": ".",
"minutesThreshold": 10

{
 "name": "dm.dailytimesheets",
 "enabled": "true",
 ...
}

1.1.x View Name 1.2.x View Name

inside.dailytimesheets dm.dailytimesheets

inside.expensesheets.edit dm.expensesheets

inside.mileagesheets.edit dm.mileagesheets

inside.jobfavorites dm.favoritemgmt

inside.absence.tabs dm.absencemgmt

In version 1.1.x, you could specify the default leftnav tab in config.js with the

defaultSidebarItem property. In version 1.2.x, you specify the default leftnav in

the beginning of the application.json configuration as shown in the following

example:

Configuration of the Weekly Time Sheets View

In version 1.1.x, you could configure two properties of the time sheetsʼ views: daily

descriptions, and overtime specification.

In weekly timesheets, you could enable or disable daily descriptions in config.js

by setting the isDailyDescriptionsEnabled property to either true or false. In

version 1.2.x, you achieve this configuration by using the extension point

dm.additionalTableFields described in a previous section.

Finally, in version 1.1.x, you could show or hide the overtime specification in weekly

time sheets. In version 1.2.x, you achieve this by adding the overtimetype field to

the table using the extension point dm.additionalTableFields described in a

previous section.

{
 "api": "1.2.0",
 "defaultScreen": "dm.weeklytimesheets",
 "screens": ...
}

Localization

In version 1.1.x, you localized a subset of the terms (for example, error messages) by

placing a custom iAccess dictionary in the i18n folder on each web server. The 1.1.x

version was only released with dictionaries for English and Danish. In version 1.2.x, all

localization takes place on the Maconomy server through the existing localization

engine. You customize translations by editing the traditional Maconomy dictionaries on

the Maconomy server.

Troubleshooting Guide

Solutions to common installation issues are found in the Installing iAccess section. If

your issue/problem is not listed there, the following section provides some additional

clues to solve common issues. If you still cannot find a solution to your specific

problem, please post a conversation in the iAccess for Maconomy Deltek Collaboration

space or raise a support case through Customer Care to get your concrete issue

resolved.

A piece of general advice for technical consultants: Always take a look at the requests

that the browser issues when you are getting installation and/or network problems. In

particular, the AJAX requests and error responses are often useful for uncovering

installation and configuration errors. Figure @chrome shows Developer Tools in

Chrome where the Network Tab can be a very powerful tool to uncover installation and

network problems.

“Incompatible API versions…“-Error

The iAccess specification format deployed on the Maconomy server is not compatible

with the installed version of iAccess. This error usually occurs because either the

application.json specification or the iAccess installed on a given web server

have not been updated as part of a system upgrade. If the lowest number in the error

message is the required API version, then you need to upgrade the iAccess version

installed on the given web server. This requires the use of MConfig.

If the lowest number is the loaded specification API version, then update the

specification deployed to the Maconomy server. This requires the Maconomy Extender.

“Bad Request: Unable to connect to ‘configurationsʼ endpoint…“-Error

When moving from version 1.1.x to 1.2.x, iAccess becomes dependent on a new

webservice called configurations. This web service has to be available through the

proxy configuration on the web server. This is similar to how the containers and

filedrop web services are setup. See the Installing iAccess section for details.

Even if you have properly configured the configurations endpoint, you may still get the

error on certain IIS installations. The problem can then be that some IIS installations do

not allow the colon : character in URLs. To solve this, allow the colon : in the

web.config file in the root of your web server [@IISColons]. Use its unicode

encoded format %u003a in the configuration.

“A%20Network%20Error%20Occurred“-Window Opens

<configuration>
 <system.web>
 <!-- Default <,>,*,%,&,:,\,?
 or %u003c,%u003e,%u002a,%u0025,%u0026,%u003a,%u005c,%u0
 <httpRuntime
 requestPathInvalidCharacters="%u003c,%u003e,%u002a,%u0025,%u
 </system.web>
 <system.webServer>
 ...
 </system.webServer>
</configuration>

This error occurs when HTTPS has been partially or incorrectly configured on the web

server. Double-check that the web server is configured according to the steps in the

Installing iAccess section. This includes checking that the OSGi products in MConfig

are configured correctly, and that HTTPS forwarding rules are set up on the web

server.

Error 500 in the Browser on Apache 2.2 Installations

If you get a 500 error code in the browser and the following message in the Apache

error log:

configuration error: couldn't perform authentication. AuthType not set!:

the cause is an incorrect vhosts.conf file. Specifically, make sure that the line

Require all granted is not present. This problem occurs for Apache 2.2 only.

Apache 2.4 requires this line.

	DeltekiAccessforMaconomy245InstallGuide_title pages
	iAccess for Maconomy - Installation Guide

