

Deltek Maconomy®
Logging Options for Maconomy

July 10, 2020

Logging Options for Maconomy ii

While Deltek has attempted to verify that the information in this document is accurate and complete,
some typographical or technical errors may exist. The recipient of this document is solely responsible for
all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is subject to
change without notice.

This publication contains proprietary information that is protected by copyright. All rights are reserved. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, or translated into another language, without the prior written consent of Deltek, Inc.

This edition published July 2020.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and proprietary
information of Deltek, Inc. and its licensors. The Deltek software, and all related documentation, is
provided for use only in accordance with the terms of the license agreement. Unauthorized reproduction
or distribution of the program or any portion thereof could result in severe civil or criminal penalties.

All trademarks are the property of their respective owners.

Logging Options for Maconomy iii

Contents
Overview ... 1
Application Server ... 2

General Error Log .. 2
Maconomy Server Logging.. 2
Test Masks .. 2
Analyzing Odbug Files for Investigating Performance Issues ... 3
Debugging Analyzer Problems Using Test Masks .. 4
MaconomyServer.<…> --users .. 4
ShowBlockingSessions.sql .. 5

Portal and Other MScript-based Interfaces ... 7
Logging Setup ... 7
Incident IDs .. 7
Using a Parallel Log File and URL .. 8

Web Daemon .. 10
Setting up a Parallel Web Daemon ... 10

Coupling Service ... 12
Standard Coupling Service Logging .. 12

Log Files in Coupling Subfolder ... 12
Log Files in Metrics Subfolder ... 12
Log Files in servicewrapper Subfolder ... 12

Additional Coupling Service Logging ... 12
Garbage Collection Logging .. 13
Setting up a Parallel Coupling Service .. 13

Maconomy Performance Monitor (MPM) .. 16
Setting up MPM Through server.ini ... 16
Setting Maconomy Server Probes on the Application Server ... 17
Analyzing MPM Log Files .. 18

MConfig ... 20
Oracle .. 21

Alert Log and Trace Files .. 21
Setting up Oracle Tracing .. 21
Explain Plans ... 21
Materialized Views ... 22

Logging Options for Maconomy iv

Appendix A: List of Logging Switches for MScript-based Interfaces .. 23
Appendix B: List of Available Test Masks for Debugging Maconomy Server Processes 24

Overview

Logging Options for Maconomy 1

Overview
This document describes the logging features of Maconomy: What is being logged by default, which log
files exist and what additional logging can be set up, and how to interpret log output.

Logging on the application server and on the web server will be discussed as well as the logging features
of the Maconomy Coupling Service.

The target group of the document is primarily Customer Care and others who deal with Maconomy
support. Technical consultants may find it useful as well.

Application Server

Logging Options for Maconomy 2

Application Server

General Error Log
The log file is named MaconomyServer.log on all platforms (note, however, that for version 2.3 LA, the file
name is Maconomy.log). The location is <main Maconomy folder\log on Windows and /usr/maconomy/log
on Unix/Linux.

Maconomy Server Logging
The standard logging function for the Maconomy server can be enabled in two ways:

• Add a line with the content “-d” (without quotes) to the file MaconomyServer.<application>.I. The file is
located in <main Maconomy folder>\\IniFiles on Windows and in /usr/maconomy on Unix/Linux. The will
enable logging for all subsequent Maconomy server processes for <application>

• Add the parameter “-d” (without quotes) to a command-line execution of the Maconomy server. This
will enable logging for the process being started and no others.

The logging info is written to a file located in <main Maconomy folder> \Tmp on Windows and in /tmp on
Unix/Linux. The log file is named:

• Odbug<…> for Oracle based applications

• Mdbug<…> for SQL Server based applications

• Xdbug<…> for standalone program execution (no matter the database platform)

• Idbug<…> for Maconomy import/export (no matter the database platform)

The <…> part of the file name includes the process ID (PID) and some random characters.

Test Masks
Note that this section actually applies already from Maconomy v. 2.2.4.

Enabling logging as above causes some basic info to be logged including database timing. The logged
info can be specified further using test masks.

Test masks are specified in a file named TestMasks which is to be located in the MaconomyDir folder of
the targeted application. Please note:

• The file does not exist by default – you must create it yourself. To disable the file later, remove or
rename it.

• The file name must be TestMasks, not TestMasks.txt. If you create the file using Notepad, be
sure that you end up with a file with the right name, since Notepad may add “.txt” to the name
when you save the file.

The TestMasks file consists of one or more lines of the form

<log type no.> <mask no. 1> <mask no. 2> ….

The <log type no.> specifies a logging category. The most commonly used categories are 9 for
database/SQL logging and 6 for MSL logging (core Maconomy business logic).

The test masks have worked the way they do throughout many Maconomy versions. However, with
version 2.2.4 and 2.3 a number of changes are introduced.

Application Server

Logging Options for Maconomy 3

There are no changes when you switch on “-d” and don’t use test masks, the usual standard log output is
written as before, except that time stamps are now added to the log lines. However, if a TestMasks file is
found, the standard output is no longer written, only the output defined by the test masks will appear in
the log file. To add the standard output to the log file when using test masks, add a TestMasks line “1 1”.

Among the most common used test masks, possibly together with “1 1”, are:

• 9 2 3 : Database communication, including detailed cursor definitions, values of bind variables
and field values for loaded and saved records.

• 9 4 5 7 8 : Database communication, including e.g. values of bind variables. This produces less
output than “9 2 3” and will usually be sufficient

• 6 1 2 : Basic MSL tracing (procedure calls)

• 6 1 2 4 : Advanced MSL tracing on single instructions.

So you can combine multiple masks for a logging category in one line in the TestMasks file – e.g. a line “6
1 2” enables masks 1 and 2 for category 6, while masks for different categories must appear in different
line, e.g. one line with “6 1 2” and one with “9 2 3”.

Many other test masks exist. Please see appendix B.

If you enable/disable logging or change the test masks, you must restart the relevant Web daemon(s)
and/or Coupling Service(s), depending upon which client is used. For running the Maconomy server from
a command line, no restarting is needed.

Analyzing Odbug Files for Investigating Performance Issues
The timing measures in the Odbug/… files can reveal performance problems related to database
operations by showing the performance of particular SQL statements.

A tool for this analysis is available from http://10.4.9.21/cgi-bin/scanOdbug.py, where you can upload an
Odbug/… files and see the analysis output.

Alternatively, you can run the tool manually. The tool is a Python 2 script called OdbugFileScanner.py,
and you can run like this

OdbugFileScanner.py Odbug6648_a8517e80 > Odbug6648.txt

In this example we analyze the file Odbug6648_a8517e80 and write the result to Odbug6648.txt. In the
output the SQL statements found are listed, sorted by time consumption, so that the most time consuming
statement appear first. The start of the output may look like this:
Ticks/Sec = 1000

SELECT JOBENTRY.* FROM JOBENTRY WHERE INVOICINGJOBNUMBER= :1 AND (CLOSED=0 OR
BEINGREOPENED=1) AND APPROVEDFORINVOICING=0 AND ENTRYNUMBER<> :2 AND
JOBINVOICESELECTIONLINEINSTA= :3
 # Total Max
Declare 6 0 0
Open 136 0 0
FetchNext 136 189879 4814
Insert 0 0 0
Update 0 0 0
Delete 0 0 0
Close 136 235
Total 190114

This means that 6 times an SQL cursor has been declared for the statement "SELECT JOBENTRY.*
FROM JOBENTRY …”, 136 times a cursor has been opened for the statement, and 136 times a record
has been loaded (FetchNext), and 136 times the cursor has been closed. The FetchNext operations have

http://10.4.9.21/cgi-bin/scanOdbug.py

Application Server

Logging Options for Maconomy 4

in total taken 189879 ticks. Ticks is a hardware related time measuring unit which may be different for
different machines, but the script output tells us what is means here – it says Ticks/Sec = 1000, which
means that 189879 ticks is 189.879 seconds, i.e. a little more than 3 minutes. The line “Ticks/Sec = 1000”
is actually a line occurring in the original Odbug… file, written by the Maconomy server. Usually Ticks/Sec
is 1000 on Windows and 100 on Unix/Linux but always check the value in the Odbug … output.

Interpreting the output above we note that 190 seconds used for only 136 fetches which is to be
considered bad performance (a rule of thumb is that if figures in the Total column are “much higher” than
the corresponding figures in the # column, it’s a sign of bad performance). Here is it likely that indexes are
not applied in a useful way, so the indexes on the JOBENTRY should be considered, and possibly an
extra index might be added.

Another possible interpretation: 189879 ticks for 136 fetches means that average is 1396 ticks, the Max
value 4814 ticks is clearly higher but not extremely higher. If the Max value is extremely higher than the
average, so that most of the time is used by a few operations, it may be an indication that database locks
are causing the performance problems.

Debugging Analyzer Problems Using Test MasksTest masks can be used for debugging related to the
Maconomy analyzer reports. Here they work in a way that is a little non-standard since they not only
produce the usual Odbug…/Mdbug… files but also some files ROE… and XMQL…, located within the
same folder – and there may be several of these files for each session – and the info generated through
the test masks are in those files. To enable this kind of logging, use a setup specifying test masks “21 1”,
“22 1” and “24 1” (written in three separate lines).

Debugging Analyzer Problems Using Test Masks
Test masks can be used for debugging related to the Maconomy analyzer reports. Here they work in a
way that is a little non-standard since they not only produce the usual Odbug…/Mdbug… files, but also
some files ROE… and XMQL…, located within the same folder There may be several of these files for
each session and the info generated through the test masks are in those files. To enable this kind of
logging, use a setup specifying test masks “21 1”, “22 1” and “24 1” (written in three separate lines).

MaconomyServer.<…> --users
With Maconomy version 2.3 the monitoring of user sessions, processes etc. changes substantially. The
related info is no longer stored in shared memory tables on the Maconomy server machine, but in the
database. The purpose of this is to support the Scalable Server concept where multiple Maconomy server
machines can connect to the same Maconomy database. Furthermore high-level locks are no longer
used by Maconomy.

The tools also change: mmem no longer exists – instead a new Maconomy Server command option is
used for displaying info on users and sessions. The command requires specification of both an
application and a shortname. e.g.:

MaconomyServer.w_19_0.prod -Smacoprod --users

The output may look like this:
Nov 11 2016 14:40:18
Username Client Created Accessed Session ID

Jack Jones RPC User 14:32:27 14:32:38 42a789016f664fddb2a228663d8e4b6a
Jill Jackson RPC User 14:23:29 14:23:30 85327889a73e4241becf3daa5a7face2

Note that RPC User is the client type for the Workspace Client. You do not see the user process related
to a Maconomy Server PID, but that is not possible anyway when using Coupling Service and Workspace
Client.

Application Server

Logging Options for Maconomy 5

There are some additional options for the --users parameter modify the output, e.g. --users:ext for adding
dates and info on timeout status. You may also with --users:time=relative get the time displayed relative
to “now”. See the “MaconomyServer -h” help text for all options.

ShowBlockingSessions.sql
The ShowBlockingSessions.sql scripts show the current database lock status. They require sysdba rights,
and they show the status for the entire database instance (which may include multiple Maconomy
shortnames and non-Maconomy data). There are different scripts for Oracle and SQLServer, for which
the output looks quite different but the info is similar.

There are two main cases for using the script.

1. If users are massively being blocked (i.e. their sessions are “hanging”), it is likely to be because
of database locks. Running ShowBlockingSessions.sql can show which processes are holding
and locks, and terminating these processes is often the way to solve the problems.

2. Some performance problems are caused by e.g. batch jobs taking a lot of database locks,
thereby blocking each other or blocking human users’ activities. One way to explore such cases
is to set up ShowBlockingSessions.sql to run regularly, usually once every minute. Analyzing the
full log output may help with solving the problems.

Some notes on database locks: Database locks are not generally “evil”--on the contrary, they are vital for
running database systems by preventing data corruption (e.g. if multiple users update the same records
at the same time). Normally, a database lock should only be held for a short time, so if you are dealing
with a situation where you suspect database locks to cause problems, only consider those locks that
prevail in the ShowBlockingSessions.sql output for at least a minute (e.g. by occurring in two consecutive
outputs when ShowBlockingSessions.sql is run once per minute).

Until now ShowBlockingSessions.sql has often been combined with mmem in order to determine which
Maconomy users are related to the blocking or blocked sessions. However we are about to release new
and improved versions of the ShowBlockingSessions.sql scripts, which can retrieve info on Maconomy
users from the database and include it in the output.

Here is an example of ShowBlockingSessions.sql output (a number of columns are omitted below for
clarity):

LOCKER_PID WAITER_PID SQL_TEXT_WAITER
---- ---------- ------------ --------------- --
10636:7052 7312:10368 TX: SELECT SYSTEMNUMBER.* , ROWID FROM SYSTEMNUMBER WHERE NUMB
11424:11800 7188:8064 TX: SELECT JOBBALANCE.* , ROWID FROM JOBBALANCE WHERE JOBNUMBE
12348:10180 3784:4884 TX: SELECT FINANCEPERIOD.* , ROWID FROM FINANCEPERIOD WHERE AC
6052:10768 10188:6968 TX: SELECT JOBHEADER.* , ROWID FROM JOBHEADER WHERE JOBNUMBER=
6052:10768 6688:776 TX: SELECT JOBINVOICEDISTRIBUTION.* , ROWID FROM JOBINVOICEDISTR
6052:10768 10636:7052 TX: SELECT FINANCEPERIOD.* , ROWID FROM FINANCEPERIOD WHERE AC
6052:10768 11424:11800 TX: SELECT FINANCEPERIOD.* , ROWID FROM FINANCEPERIOD WHERE AC
6052:10768 12348:10180 TX: SELECT INTERNALJOBINFORMATION.* , ROWID FROM INTERNALJOBINFO
6052:10768 7428:13288 TX: SELECT JOBHEADER.* , ROWID FROM JOBHEADER WHERE JOBNUMBER=
6052:10768 11524:8040 TX: SELECT JOBHEADER.* , ROWID FROM JOBHEADER WHERE JOBNUMBER=
6052:10768 1448:9332 TX: SELECT FINANCEPERIOD.* , ROWID FROM FINANCEPERIOD WHERE AC

Application Server

Logging Options for Maconomy 6

This example is from Windows where PIDs are shown with a related thread number as in 6052:10768.
Above process 6052:10768 is a LOCKER_PID blocking several other processes shown under
WAITER_PID, e.g. 10636:7052 and 11424:11800 which in turn block other processes. You can also see
a part of the SQL executed by the waiting (i.e. blocked) processes.

Portal and Other MScript-based Interfaces

Logging Options for Maconomy 7

Portal and Other MScript-based Interfaces

Logging Setup
The MScript based interfaces/clients include the Portal, the Maconomy Web Services (Maconomy WS),
the standalone MScript interface and the MScript side of Maconomy Touch.

The web server log files for the MScript interfaces e.g. for the Portal, reside in the <web server root>/cgi-
bin/Maconomy folder – the same folder as the web server executable files. Logging is enabled using the
parameter file, e.g. MaconomyPortal.<…>.I or MaconomyWS.<…>.I also in the cgi-bin\Maconomy folder.

By default, only error messages are written to the log file. To add information about communication,
processed data, etc., logging can be enabled this way:

In the file parameter file, e.g. MaconomyPortal.<…>.I, locate the line

Log = …

By default, the parameter is set to none, i.e. “Log = none”, this means that only error messages are
written to the log file. To add information about communication, processed data etc. change the
parameter value to switch on different kind of detailed logging, e.g.

Log = login

for logging login processes or

Log = scripts

For logging script execution load and time information,.

The logging switches may be combined, e.g.:

Log = login;scripts

The full set of logging switches are listed in Appendix A.

When replicating a specific problem that is being investigated a useful setup is

Log = all

which combines most of the available log switches - this produces a lot of log output and should therefore
only be used when you are able to replicate a problem within a limited time frame. In cases where logging
needs to be switched on for longer time frames, specific switches should be used.

When investigating a performance related issue which also can be replicated within a limited time frame
this setup can also be useful:

Log = performance;tab

which also produces a lot of output – the tab changes the log format to be TAB separated which is
convenient for automatic processing of the log.

NB! The “Log = …“ line is present in the parameter file by default – always modify that line, do not add a
new “Log = …“ line.

Enabling/disabling logging for Portal etc. does not require restart of e.g. Web Daemons.

Incident IDs
If an error occurs in the Portal, a “pink screen” window like this is often shown:

Portal and Other MScript-based Interfaces

Logging Options for Maconomy 8

Note the Incident ID displayed, here 8rmwbkb4r3. The value itself has no meaning, but it points to the
output that has been logged. So if you open the Portal log file and search for the displayed incident ID,
you can find the place where more detailed info on the incident is logged.

Using a Parallel Log File and URL
Switching on portal logging will apply not only to a planned replication session but also to other user
sessions. On a production system, this may produce a log file where it is hard to filter out the relevant log
info.

Portal and Other MScript-based Interfaces

Logging Options for Maconomy 9

To avoid this problem, you can set up a parallel portal login:

1. In the cgi-bin/Maconomy folder on the web server, create copies of the Portal executable and the
corresponding parameter (.I) file, and add a significant string, e.g. “.debug” to the copy file names.
Example: if the Portal executable is named MaconomyPortal.macoprod.en_US.exe and the
corresponding parameter file is named MaconomyPortal.macoprod.en_US.I, name the copy files
MaconomyPortal.macoprod.en_US.debug.exe and MaconomyPortal.macoprod.en_US.debug.I

2. Open the copy parameter file (in the example MaconomyPortal.macoprod.en_US.debug.I) and
change the Log parameter as desired, typically to “Log = all”, leave other parameters unchanged
and close the file

3. When replicating the problem scenario, log on the portal with a modified version of the URL. E.g.
if the URL normally used is
http://maconomy.company.com/cgi-bin/Maconomy/MaconomyPortal.macoprod.en_US_MCS.exe/
instead use
http://maconomy.company.com/cgi-
bin/Maconomy/MaconomyPortal.macoprod.en_US_MCS.debug.exe/

The logging for the session will then be stored in a separate log file – in the example it will be
MaconomyPortal.macoprod.en_US.debug.log.

You may combine this setup with setting up a parallel Web Daemon – this is explained in the Web
Daemon section of this document. In that case you must modify the DaemonPort setting in the
MaconomyPortal.macoprod.en_US.debug.I file to match the CGI port of the parallel Web Daemon.

http://maconomy.company.com/cgi-bin/Maconomy/MaconomyPortal.macoprod.en_US_MCS.exe/
http://maconomy.company.com/cgi-bin/Maconomy/MaconomyPortal.macoprod.en_US_MCS.debug.exe/
http://maconomy.company.com/cgi-bin/Maconomy/MaconomyPortal.macoprod.en_US_MCS.debug.exe/

Web Daemon

Logging Options for Maconomy 10

Web Daemon
You can enable logging for a Web Daemon e.g. to look for errors (e.g. connection problems) or to explore
problems with the Web Daemon’s server pool being exhausted.

To enable logging for a particular Web Daemon, open the corresponding WebDaemon.<…>.I file which
located in <main Maconomy folder>\IniFiles (Windows) or /usr/maconomy (Unix), and insert a line

LogFileName = <log file by full path>

and restart the Web Daemon.

Besides from error messages, the important lines in the log are those like:

2016-10-20(18:13:13.861) Server status: -bbb/ -....

Each character in the ”-bbb…” part shows the status of the servers in the pool. The important status
characters are ‘.’ for not running, ‘-‘ for ready to serve and ‘b’ for busy. With default minimum and
maximum values for the server pool, 2 and 16, the status string after starting the Web Daemon and
before any user actions will look like

2016-10-20(18:11:43.482) Server status: --...

showing 2 servers ready (corresponding to the minimum) and 14 (= 16 - 2) not yet started.

The critical situation is if all, or almost all, servers frequently are busy during longer intervals, i.e. if the
status string looks like

2016-10-20(18:17:25.915) Server status: bbbbb bbbbb bbbbb b

it is a sign of the server pool running full, and increasing the maximum server pool size, i.e. the
MaxServerProcs parameter in WebDaemon.<…>.I, may solve the problems.

Setting up a Parallel Web Daemon
Setting up a parallel Web Daemon for problem investigation, including scenario replication, is often useful
in order to separate out the log data for a replication session and to avoid using resources for logging
other processes. Also, you will not have to restart Web Daemons used by other users.

It is useful to have two Maconomy server processes running for the replication – start the processes like
this, each in its own Command Line window:

MaconomyServer.w_17_0.tst -Smacoprod -f -d --port 4666 > C:\maconomy\Tmp\Odbug1.txt
2>&1

MaconomyServer.w_17_0.tst -Smacoprod -f -d --port 4667 > C:\maconomy\Tmp\Odbug2.txt
2>&1

Substitute the application name and shortname, and use port numbers that are not currently in use on the
machine. The two port numbers must be consecutive, like 4666 and 4667 in this example.

Then, start a WebDaemon process in a third Command Line window like this;

Web Daemon

Logging Options for Maconomy 11

On Windows:

C:\maconomy\tpu.NTx86.17_0.p103.dir\bin\WebDaemon.exe -debug --
ServerPort=4666 --MultipleServerPorts=1 --CGIPort=4421 --CGICallbackPort=4521 --
MinServerProcs=2 --MaxServerProcs=2 -i WebDaemon.macoprod.4103

On Unix/Linux:

WebDaemon.macoprod.4103 -debug --ServerPort=4666 --
MultipleServerPorts=1 --CGIPort=4421 --CGICallbackPort=4521 --MinServerProcs=2 --
MaxServerProcs=2

Here WebDaemon.macoprod.4103 should be substituted by name of the “real” Web Daemon and the port
numbers should not be currently in use. On Windows the TPU in the command should be the TPU
currently associated with the application.

The ‘--' parameters for the Web Daemon command modify the parameters in the
WebDaemon.macoprod.4103.I file, so you get a Web Daemon with a server pool with exactly two
processes – which will be processes you started earlier.

The Web Daemon output will be like the log output explained above. Wait for the status line to show ‘-‘
(“ready to serve”) for both servers (“Server status: --“) before starting the Java Client / Portal.

The parallel Web Daemon in this example runs on CGI port 4421, so when using this Web Daemon you
should use a parallel URL for the Java Client or Portal, and in the Jaconomy.<…>.I or
MaconomyPortal.<…>.I for the parallel URL the DaemonPort setting must be modified to the CGI port of
the parallel Web Daemon – in this example 4421.

Coupling Service

Logging Options for Maconomy 12

Coupling Service
For the Maconomy Coupling Service, some standard logging functionality runs permanently, and different
kinds of additional logging can be enabled when needed.

Standard Coupling Service Logging
The standard Coupling Service log files are located within <Coupling Service main folder>/log which by
default has two or three subfolders coupling, metrics and servicewrapper (the latter only exists on
Windows).

A script is available that can gather these files together with configuration info into a ZIP file. The script is
located within <Coupling Service main folder>/exportlog and named exportlog.bat for Windows and
exportlog.sh for Unix/Linux. The generated ZIP file will be located in <Coupling Service main
folder>/exportlog/output.

Log Files in Coupling Subfolder
These files contain error and warning messages plus notifications from the Coupling Service. There are a
number of files for various kinds of information, the most important ones are maconomy.log and
maconomy-uncaught.log. The files are “rotated” daily, meaning that new files are started from scratch
every day and files from earlier days will have a date mark included in their names, e.g. maconomy-2016-
10-26.log, while Today’s log files have no date mark in their names.

Log Files in Metrics Subfolder
These files contain statistic data being gathered constantly, which often is useful when tracing errors and
performance problems. The info is generally gathered on an hourly basis and written into CSV files
(comma separated files) which can be read with e.g. Microsoft Excel.

The metrics log files are “rotated” so that they are started from scratch when the Coupling Service is
restarted. The sets of files from each rotation is stored within a separate subfolder under <Coupling
Service main folder>/log/metrics, e.g.
<Coupling Service main folder>/log/metrics/csv/csv-internal-20161010-160908-3600sec

Log Files in servicewrapper Subfolder
These only exist on Windows and are related to issues related to the Coupling Service being run as a
Windows service. They are usually less important than the coupling and metrics log files.

Additional Coupling Service Logging
The logging in <Coupling Service main folder>/log/coupling is defined in the file <Coupling Service main
folder>\configuration\logback.xml and additional logging can be defined by adding to that file. Changes to
logback.xml will work immediately, i.e. no restart of the Coupling Service is needed.

As an example, adding this to logback.xml will add lo info on launching of workspace containers to the
maconomy.log file:
 <logger name="com.maconomy.api.container.launcher.local.McContainerLauncher" additivity="false">
 <level value="DEBUG" />
 <appender-ref ref="FILE" />
 </logger>

Use this in conjunction with Maconomy R&D.

Coupling Service

Logging Options for Maconomy 13

Garbage Collection Logging
Garbage collection may often be a subject of investigation when exploring performance problems
possibly related to the Coupling Service, and logging of garbage collection can be enabled this way:

On Windows:

Add these lines to <Coupling Service main folder>/servicewrapper/conf/wrapper.equinox.conf
wrapper.java.additional.<N>=-Xloggc:{some-folder}/gc.log
wrapper.java.additional.<N+1>=-XX:+PrintGCDetails
wrapper.java.additional.<N+2>=-XX:+PrintGCDateStamps

where <N>… are the next yet unused numbers in the wrapper.java.additional… lines in the file, and
{some-folder} is your chosen location for the log file. Note that you must use ‘/’ for the log file path, even
on Windows – and may of course choose another name than gc.log for the log file.

For Java 8, it is possible to add %t to the file name to get a date/time stamp added to the log file name,
e.g.
wrapper.java.additional.<N>=-Xloggc:F:/PUs/Logs/gc-%t.log

On Unix/Linux:

Add these lines to <Coupling Service main folder>/CouplingService.ini
-Xloggc:{some-folder}/gc.log
-XX:+PrintGCDetails
-XX:+PrintGCDateStamps

For Java 8, it is possible to add %t to the file name to get a date/time stamp added to the log file name,
e.g.
-Xloggc:F:/PUs/Logs/gc-%t.log

Note that enabling/disabling logging this way requires restart of the Coupling Service – and be aware that
the log files must be collected before next Coupling Service restart, otherwise they get overwritten.

You may extend the specification to get log file rotation:

On Windows:

Add these additional lines to
<Coupling Service main folder>/servicewrapper/conf/wrapper.equinox.conf
wrapper.java.additional.<N+3>=-XX NumberOfGCLogFiles=<number of files>
wrapper.java.additional.<N+4>=-XX:GCLogFileSize=<number>M (or K)

On Unix/Linux:

Add these lines to <Coupling Service main folder>/CouplingService.ini
-XX NumberOfGCLogFiles=<number of files>
-XX:GCLogFileSize=<number>M (or K)

The sizes of the individual files can be specified in megabytes (M) or kilobytes (K).

Setting up a Parallel Coupling Service
Setting up a parallel Coupling Service for problem investigation, including scenario replication, is often
useful, and when using Maconomy Performance Monitor (see next section), especially on a production
system, a parallel Coupling Service may prevent or limit resource problems related to use of MPM.

Coupling Service

Logging Options for Maconomy 14

To set up a parallel Coupling Service:
1. Make a copy of the entire CouplingService folder.

2. Change (at least) these settings in <main Coupling Service folder>/configuration/server.ini:
web.port, coupling.dirmi.port and webdaemon.port (the latter only for v. 2.3 and later), it may also
be preferable to limit the number of server processes (the server.max setting), and if MPM is to
be used, enable it as explained in the section on MPM.

3. Start the Coupling Service from a command line:
CouplingService -console
which will open a special OSGi console window

 If you are debugging the Portal you should also set up a parallel Portal URL, as explained
earlier, and set its DaemonPort parameter to the new value of webdaemon.port in server.ini.

 If you are debugging the WSC, log on with the new value of web.port in server.ini.

4. Terminate the parallel Coupling Service by entering close in the OSGi console window.

If you also need Odbug/Mdbug log files, you can combine the parallel Coupling Service with running
parallel Maconomy Server processes. In that case the setup is a little more complex.

To combine the parallel Coupling Service with running parallel Maconomy Server processes:
1. Make a copy of the entire CouplingService folder

2. Change these settings in <main Coupling Service folder>/configuration/server.ini: web.port,
coupling.dirmi.port and webdaemon.port (the latter only for v. 2.3 and later). If MPM is to be used,
enable it as explained in the section on MPM

3. In <main Coupling Service folder>/configuration/server.ini also:

 Set server.max = 1

 Set server.pool = 1

 Set a new value for server.port, which must be a port not in use

 Out.-comment the line server.en_US_W.pool =… (put a ‘#’ sign at the line start)

 If any other server.<…>.max = … or server.<…>.pool = … are enabled, out-comment
them

 In-comment the line
server.defaults.database-shortname = <shortname>
by removing the leading ‘#’ character and substitute <shortname> with the targeted
shortname

4. Start a parallel Maconomy Server process:
MaconomyServer.<application> -S<shortname> -f -d --port <server.port>
C:\maconomy\Tmp\Odbug1.txt 2>&1
where <server.port> is the changed port number you have set in server.ini

5. Start the Coupling Service from a command line:
CouplingService -console
which will open a special OSGi console window

6. Start one more parallel Maconomy Server process:
MaconomyServer.<application> -S<shortname> -f -d --port <server.port>
C:\maconomy\Tmp\Odbug2.txt 2>&1
where <server.port> is same value as for the first process – this will be the process the WSC or
Portal actually connects to.

Coupling Service

Logging Options for Maconomy 15

7. Log on with the WSC or Portal using the changed port numbers for web.port or webdaemon.port

8. When done, terminate the parallel Coupling Service by entering close in the OSGi console
window – this will also terminate the parallel Maconomy Server processes.

Maconomy Performance Monitor (MPM)

Logging Options for Maconomy 16

Maconomy Performance Monitor (MPM)
The Maconomy Performance Monitor (MPM) is a debugging tool that is designed to time the different
processes on the Maconomy server and Coupling Service.

One instance of the MPM system is initiated inside every MaconomyServer process that is running on the
Maconomy server machine. The MPM system monitors and times much of the internal functionality in the
Maconomy server, such as actions, SQL expressions, MQL requests, Universe Report requests, and so
on.

Using MPM is especially useful for exploring performance problems that are not database related, or
problems where we do yet know what they are related to. An advantage of MPM is that it can be enabled
dynamically, with no need for restarting Web Daemons or Coupling Services.

The framework contains a set of predefined time measuring objects, called probes, placed in, for
example, the code of the Maconomy Server or the Coupling Service. Each of these probes is an object
dedicated to a specific monitoring task. An example of a task is measuring the execution time of MSL
dialog scripts. Besides measuring time, a set of attributes are assigned to every probe.

The probes can be configured and enabled on a runtime system to monitor performance or system
activity. Probes may be enabled only for a selected set of users. The output is logged in XML format.

In recent Maconomy versions, MPM is monitored through the Coupling Service. See the Maconomy
System Administrators Guide for info on how to use MPM on Maconomy systems with no Coupling
Services.

There are probes for the Maconomy Server program and probes for the Coupling Service, and they are
controlled differently.

An import rule for using MPM is:

Never enable all Maconomy Server probes for all users on a running production system. It may
cause massive performance problems.

On a non-production system, e.g. a test system, you may fully enable MPM. On a production system, you
may enable MPM, but always do it only for a limited set of Maconomy Server probes and/or a limited set
of users – and always monitor the system carefully.

Enabling all probes for the Coupling Service is usually not a problem – but still monitor the system as our
experience with this is still limited.

Setting up MPM Through server.ini
MPM is enabled/disabled/configured through the <Coupling Service main folder>/configuration/server.ini
file. The settings for MPM are located at the bottom part of the file.

The server.ini file contains a lot of “comment lines” with instructional text on the particular settings – read
this if you are in doubt about the meaning of the settings and the syntax.

By default the MPM log files are stored within <Coupling Service main folder>/log/mpm/xml. For each
enabling or change of configuration a new sub folder is created for log files, e.g. <Coupling Service main
folder>/log/mpm/xml/mpm-20161108-110504.

To enable MPM, locate the setting

mpm.enabled = false

and change the value to true – change back to false when you are done.

Up to and including Maconomy v. 2.2.3, enabling MPM this way activates all probes for both Maconomy
Server and Coupling Service for all users – i.e. the setup that should be avoided on production systems.

Maconomy Performance Monitor (MPM)

Logging Options for Maconomy 17

From Maconomy v. 2.2.4 and 2.3, a setting has been introduced:

mpm.server.all-probes = false

This means that initially all probes for Maconomy Server are not activated, i.e. only the Coupling Service
probes are active (which is not expected to cause severe performance problems). Changing the setting
value to true will activate all Maconomy Server probes – as before the setting was introduced. Activating
selected Maconomy Server probes may be done on the application server, more on that later.

Some filtering options are available in server.ini. In the file they are located within a section

mpm.filters {

…

}

Most settings in the section are by default commented out by a ‘#’ character which must be removed if
you want to change the filtering setting. Some of the filtering options are:

 session-wallclock-time. By default all sessions shorter than 10 seconds are filtered out, if you
e.g. don’t want this filtering locate the line

session-wallclock-time = >= 10

and change 10 to 0. You can use operators such as ‘<=’ or ‘>’.

 probe. If you only want some selected probes to be logged you can e.g. write

probe = MSLDialogScript or McContainerLauncher

and then only these probes are logged (plus a few more basic ones that are always included).
The setting value in this example actually means “probe name contains MSLDialogScript or probe
name contains McContainerLauncher”. You can also use ‘and’ or ‘not’ in the value specification.
There can only be one probe line in server.ini – the example shows how to specify settings for
multiple probes.
Note that the filtering applies to what will appear in the log. For the Coupling Service probes it
also defines which probes are active, while for the Maconomy Server probes the are still active
depending upon the mpm.server.all-probes setting although not appearing in the log output

 principal-name. If you want only to log only sessions for selected users – which may be a very
good idea when using MPM – you can use this setting to filter on user names

principal-name = John or "Jack D"

again this means “… contains John or …” and you can use ‘and’, ‘or’ and ‘not’ and put names
within quotes in case they contain space characters.
This setting prevents sessions for not-specified users from being logged.

Setting Maconomy Server Probes on the Application Server
For v. 2.2.4 and later where the mpm.server.all-probes setting are available, you can activate selected
server probes this way.

The mpm.server.all-probes setting in server.ini should still be false (the default value). In <application
home>/MaconomyDir/Definitions create a file MPMDefault.cfg with contents like this:

Maconomy Performance Monitor (MPM)

Logging Options for Maconomy 18

MPML 1

Client #ALL

Company <shortname>

user #ALL

probe main log
attributes all on

probe MSLDialogScript log
attributes Title on
 Start on
 ProcessTime on
 WallclockTime on

probe ROEPrint log
attributes Start on
 ReportId on
 ProcessTime on
 WallclockTime on

Substitute <shortname> with the relevant value.

In this example, the probes MSLDialogScript (Maconomy core business logic) and ROEPrint (printing) are
activated. We have experienced that this setup can run without causing performance problems even on
production systems. Maconomy Engineering may from time to time ask for activation of other probes.

It is often useful to combine enabling of MPM with setting up a parallel Coupling Service, especially on
production systems – see the section on the Coupling Service.

Analyzing MPM Log Files
The MPM log files are XML files that are often large and not easy to read manually. However, a tool is
available for the analysis. The tool is a Python 3 script called mpmAnalyzer.py.

Simply providing an MPM log file to the script like this:

mpmAnalyzer.py <MPM log file>

will produce output like this:

Maconomy Performance Monitor (MPM)

Logging Options for Maconomy 19

WallClockTime WallClockTimeTotal Level Probe
------------ ------------------ ----- -----
 3.137 1 Main - McPerformanceMonitorService.XmlEntryVisitor
 3.137 1.1 McCouplingServiceServer - McCouplingServiceServer.executeRequest
 0.002 1.1.1 McServiceProvider.imp1.en_GB_MCS - McServiceProvider.getLease
 0.002 1.1.1.1 McRemoteInterface.imp1.en_GB_MCS - McRemoteInterface.callFunction
 0.000 0.001 1.1.1.1.1 MaconomyServer.Main
 0.023 1.1.2 McRemoteInterface.imp1.en_GB_MCS - McRemoteInterface.callFunction
 0.020 0.020 1.1.2.1 MaconomyServer.Main
 0.001 1.1.3 McRemoteInterface.imp1.en_GB_MCS - McRemoteInterface.callFunction
 0.000 0.000 1.1.3.1 MaconomyServer.Main
 0.003 1.1.4 McContainerLauncher.imp1\ekz074 - McContainerLauncher.open
 0.001 1.1.4.1 McEvent.imp1\ekz074 - McOpen.runContribution
 0.001 1.1.4.1.1 McEvent.imp1\ekz074 - McOpen.runContribution
 0.001 1.1.4.1.1.1 McEvent.imp1\ekz074 - McOpen.runContribution
 0.001 1.1.4.1.1.1.1 McEvent.imp1\ekz074 - McOpen.runContribution
 0.001 1.1.4.1.1.1.1.1 McEvent.imp1\ekz074 - McOpen.runContribution
 0.001 1.1.4.1.1.1.1.1.1 McEvent.imp1\ekz074 - McOpen.runContribution
 0.001 1.1.4.1.1.1.1.1.1.1 McEvent.imp1\ekz074 - McOpen.runContribution
 0.001 1.1.4.1.1.1.1.1.1.1.1 McEvent.imp1\ekz074 - McOpen.runContribution
 0.000 1.1.4.1.1.1.1.1.1.1.1.1 McEvent.imp1\ekz074 - McOpen.runContribution

The Level column with contents like 1.1.4.1.1.1.1.1.1 reflects the highly hierarchical tree structure of the
XML log file. You should watch the WallClockTimeTotal column for high values. The analysis script offers
a lot of options for deeper exploration, e.g.:

mpmAnalyzer.py <MPM log file> -m 6

for only showing 6 levels of the analysis tree

mpmAnalyzer.py <MPM log file> -k 1.1.4.1.1.1.1.1

for only showing the part of the tree below the node that appears as 1.1.4.1.1.1.1.1 in the output

The options may be combined like this:

mpmAnalyzer.py <MPM log file> -m 6 -k 1.1.4.1.1.1.1.1

The columns shown in the example may are the default set. However various probes have attributes that
may be important, and you can add probe attributes as columns to the output like this:

mpmAnalyzer.py <MPM log file> -s FunctionName -s SqlQuery

This will add two columns to the output, FunctionName and SqlQuery, and show the attribute values for
the probes that have these attributes. You may inspect the XML log files to find out which columns may
be interesting, but FunctionName and SqlQuery may often be good candidates.

MConfig

Logging Options for Maconomy 20

MConfig
The log file for MConfig is named MaconomyServerInstallation.log and is located in <main Maconomy
folder>\MaconomyInstallLogs (Windows) or /usr/maconomy/MaconomyInstallLogs (Unix/Linux).

The MConfig log file is important when dealing with MConfig relates issues, but it may also be relevant in
other cases, since it contains the entire installation history of a server with Maconomy systems.

Related to MConfig is also the file registry.server which contains info on installed applications the PUs
being applied, installation location and various setup parameters. On Windows it is a text equivalent of
the info stored in the registry, and it is located in the same folder as the MConfig log file, i.e. <main
Maconomy folder>\MaconomyInstallLogs. On Unix it is the file MConfig is actively using, and it is located
in /usr/maconomy.

Oracle

Logging Options for Maconomy 21

Oracle

Alert Log and Trace Files
For Oracle related problems, the alert log is often a good place to look for relevant error messages. The
name of the alert log file is alert_<SID>.log.To find the location of the alert log:

 For databases (SIDs) created using MConfig the alert log, files are located in
<Oracle base folder>/admin/<SID>/log/diag/rdbms/<SID>/<SID>/trace.

 If you cannot find it there, look up the value of the Oracle parameter diagnostic_dest, the location
will be <diagnostic_dest>/diag/rdbms/<SID>/<SID>/trace.

 If the Oracle parameter diagnostic_dest does not exist, the location is defined by the Oracle
parameter background_dump_dest

You can look up an Oracle parameter when using SQLPlus by the command

show parameters <parameter>

e.g.

show parameters background_dump_dest

The alert log file is one file in which messages accumulate. For certain incidents, trace files may be
generated. They are named <SID>…trc, and are usually located in the same folder as the alert log.
However, they may also be located in the folder defined by the Oracle parameter user_dump_dest.

Setting up Oracle Tracing
Especially when investigating issues related to the Oracle optimizer (i.e. if you suspect that indexes are
not being applied optimally), it may be useful to set up tracing of user sessions where issues are
replicated. To set up tracing, create a file OracleHints (NOT OracleHints.txt) in
<application home>/MaconomyDir/Definitions (if it does not already exist) and insert these lines

SETUP alter session set events '10053 trace name context forever, level 1';
SETUP alter session set events '10046 trace name context forever, level 12';

Web Daemons or Coupling Service (whatever is relevant) must be restarted unless you are using this
together with parallel server processes and Web Daemons (if so, you must modify OracleHints before
you start the parallel server processes).
This will generate trace files for client session as explained above. Close down the client, and wait a little
while, before you pick up the trace files.

When done, revert the changes to the OracleHints setup.

Explain Plans
Examining explain plans for particular SQL statements can reveal problems with missing indexes and
other cases of non-optimal use of indexes. When using SQLPlus this is the way to show explain plans:

To make output more readable:

set linesize 150

For subsequent SQL statements, run them and display explain plan:

set autotrace on

Oracle

Logging Options for Maconomy 22

For subsequent SQL statements, don’t run them, just display explain plan:

set autotrace traceonly explain

For subsequent SQL statements, run them and don’t display explain plan (i.e. default behavior):

set autotrace on

Materialized Views
If a Maconomy system has been set up with materialized views for BPM optimization, serious
performance problems may arise if the views are somehow not functioning as desired.

Here are some statements to check the status of the materialized view. For the statements shown below,
it is assumed that materialized views are applied to two Maconomy tables: JOBENTRY and
JOBINVOICELINE. This is how it is today, but it may change in the future, and the statements should be
modified accordingly.

To change the view logs run:

select count(*) from MLOG$_JOBENTRY;
select count(*) from MLOG$_JOBINVOICELINE;

This will show how many changes are currently recorded in the view logs. Under normal circumstances,
these should show zero. If they do not, it is because they currently store changes that are not transferred
to the materialized view. If it seems like the above tables are not emptied at any time, it can be because
the materialized view is not able to empty them as it should. One reason can be because more than the
two view logs have been installed but without the corresponding materialized views to empty them.

Over time, SQL statements for updating the materialized view will pile up in the shared pool. This is a
known issue in Oracle and requires that you empty the shared pool.

A stored procedure, which is usually set up with MConfig, has been developed for flushing the shared
pool once a day. To check that the flushing procedure runs as expected, execute the following command.
Failures should be zero and broken should be 'N'.

select job, what, last_date, next_date, failures, broken from dba_jobs where what
like '%maconomy_flush_shared_pool%';

To check that the flushing procedure cleaned the shared pool, execute the following command. If
successful, it should return no entries.

select sql_text from v$sql where sql_text like '/* MV_REFRESH%';

Appendix A: List of Logging Switches for MScript-based Interfaces

Logging Options for Maconomy 23

Appendix A: List of Logging Switches for
MScript-based Interfaces
Logging switches that can be enabled in the Log parameter of e.g. MaconomyPortal.<…>.I or
MaconomyWS.<…>.I in cgi-bin/Maconomy on the web server, the switches may be combined by
specifying a ‘;’-separated list, e.g. “Log = login;scripts”.

none No additional logging at all, only log errors (default)

sql Log only maconomy::sql calls.

analyzer Log only maconomy::analyze calls.

login Log only maconomy::login calls.

functions Log all maconomy:: calls.

scripts Log script execution load and time information.

serverstat Log information about server‐side timing.

query Log information about received query variables.

postdata Log all incoming POST data in a file with the same name as the M‐Script
executable appended with a .postdata.log.

cleanup Log information about session cleanup activities.

localization Log information about processing of localization dictionaries.

GUI_windowStatus Log information about opening and closing of GUI windows.

GUI_warnings Log extra information about the GUI.

client Combines script, query and localization.

server Combines sql, analyze, login, functions, and serverstat.

GUI Combines GUI_windowStatus and GUI_warnings.

all Log all of the above.

performance Log information about how various parts of M‐Script perform.

tab Make log entries in a tabular format.

Appendix B: List of Available Test Masks for Debugging Maconomy Server Processes

Logging Options for Maconomy 24

Appendix B: List of Available Test Masks for
Debugging Maconomy Server Processes
Category Mask

1: Legacy – backward compatibility
(from Maconomy v. 2.2.4 / 2.3)

1: (Generic)

6: MSL – core Maconomy business
logic

1: Basic MSL

 2: SQL-RTS – detailed basic MSL

 3: Timing

 4: Tracing at instruction level

 6: Input tracing

 7: Stack trace

 8: Trace SQL

 9; Suppress SQL

 20: Dumping

 21: Trace cache calls

 30: Extended tracing

 50: Cursor generation

7: Dialog tracing 1: (Generic)

9: SQL / Database 2: SQL tracing

 3: Loaded and modified data records etc.

 4: Query dump

 5: Bind variables (from v. 2.2.4 / 2.3)

 6: Returned data

 7: Trace SR SQL Request module (from v. 2.2.4 / 2.3)

 8: Trace SS Server SQL module (from v. 2.2.4 / 2.3)

Appendix B: List of Available Test Masks for Debugging Maconomy Server Processes

Logging Options for Maconomy 25

Category Mask

 9: MQL Universe dump (from v. 2.2.4 / 2.3)

12: Trace TDH component (popup
handling)

1: (Generic)

13: Trace print stacks

21: MQL (analyzer reports) 1: Trace compiler

 2: Explain plans

 3: Hints

22: MQL cache 1: Trace caching

 2: Dump cache

24: MQL output engine 1: (Generic)

25: Report transcoding 1: (Generic)

26: Access control management 1: (Generic)

About Deltek
Better software means better projects. Deltek is the leading global provider of enterprise software and
information solutions for project-based businesses. More than 23,000 organizations and millions of users
in over 80 countries around the world rely on Deltek for superior levels of project intelligence,
management and collaboration. Our industry-focused expertise powers project success by helping firms
achieve performance that maximizes productivity and revenue. www.deltek.com

http://www.deltek.com/

	Overview
	Application Server
	General Error Log
	Maconomy Server Logging
	Test Masks
	Analyzing Odbug Files for Investigating Performance Issues
	Debugging Analyzer Problems Using Test Masks
	MaconomyServer.<…> --users
	ShowBlockingSessions.sql

	Portal and Other MScript-based Interfaces
	Logging Setup
	Incident IDs
	Using a Parallel Log File and URL

	Web Daemon
	Setting up a Parallel Web Daemon

	Coupling Service
	Standard Coupling Service Logging
	Log Files in Coupling Subfolder
	Log Files in Metrics Subfolder
	Log Files in servicewrapper Subfolder

	Additional Coupling Service Logging
	Garbage Collection Logging
	Setting up a Parallel Coupling Service

	Maconomy Performance Monitor (MPM)
	Setting up MPM Through server.ini
	Setting Maconomy Server Probes on the Application Server
	Analyzing MPM Log Files

	MConfig
	Oracle
	Alert Log and Trace Files
	Setting up Oracle Tracing
	Explain Plans
	Materialized Views

	Appendix A: List of Logging Switches for MScript-based Interfaces
	Appendix B: List of Available Test Masks for Debugging Maconomy Server Processes

