

Deltek Maconomy 2.6.2
Maconomy Tools for Developers

October 27, 2023

Maconomy Tools for Developers ii

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition October 2023.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result in
severe civil or criminal penalties.

All trademarks are the property of their respective owners.

Maconomy Tools for Developers iii

Contents

Overview ... 1

MStamper Reference .. 2

Overview ... 2

Tools Access Control .. 4

Command-Line Options Overview ... 10

Examples .. 14

MBuilder Reference ... 16

Overview ... 16

Using the MBuilder Tool .. 16

Creating Custom MOL Relations ... 19

Converting Analyzer Files .. 22

Command-Line Options... 22

MDumper Reference ... 29

Overview ... 29

Creating MDoc Information .. 29

Command-Line Options... 33

Additional Documentation.. 36

Stamping and Installing Universes and Universe Reports .. 37

Overview ... 37

Stamping and Installing ... 38

Helpful Tips ... 39

Overview

Maconomy Tools for Developers 1

Overview

To install universes, reports, and scripts in, and to dump information from, a Maconomy system,
certain tools are needed. This manual describes the following tools:

▪ Maconomy Stamper in “MStamper Reference”

▪ Maconomy Builder in “MBuilder Reference”

▪ Maconomy Dumper in “MDumper Reference”

In addition, a short guide to stamping and installing universes and universe reports is provided in
“Stamping and Installing Universes and Universe Reports,” along with tips for setting up your
editor to quickly stamp and install universes and reports.

This version of the manual describes the functionality of the tools supported by TPU X.

MStamper Reference

Maconomy Tools for Developers 2

MStamper Reference

Overview

This manual describes how to provide files that are installed on the Maconomy server with a
stamp that protects the files from accidental corruption or malicious tampering.

This manual describes MStamper version 3.12.0.

A Maconomy solution can contain a large number of data, format, and script files that are used for
reporting, integration, and web-based presentation. The authenticity and integrity of all of these
files is paramount to ensuring smooth operation, and information about who wrote what is
essential for directing questions and support calls to the right parties.

Maconomy solves these issues by providing all such files with a stamp that protects the files from
accidental corruption or malicious tampering. The stamp also contains essential information about
the origin of the file, such as author and creation date, and can also be used for restricting the
distribution of the file in various ways.

With the release of the MStamper tool, external consultants and Maconomy partner organizations
can stamp their products as they see fit, thereby getting the same high level of control of the
authenticity and distribution of their work as internal Maconomy developers.

The File Stamp

A file stamp is a block of data that is inserted into the top or near the top of the file that is being
stamped. The stamp consists of the following main components.

▪ Message digest — The message digest contains the checksum protection of the file,
along with various internal header information. The message digest makes it possible to
detect any changes to the file after it was stamped.

▪ Tracking information — Tracking information consists of author and organization fields,
creation date and time, and a history field that traces the origin of the license that was
used to stamp the file. This information is written in clear text in the stamped file, and can
also be accessed through the Maconomy Portal.

▪ License information — License information can be used to restrict the distribution of
stamped files as described in “License Model.”

After a file has been stamped, it should be treated with some caution, especially when
archived with certain compression tools or transferred over a network. A stamped file
should be treated as binary data, and must therefore not be subjected to new-line or
encoding conversions. Some programs will detect stamped files as being text, and this
could potentially perform such operations on them. This will subsequently be interpreted
as if the file had been altered, and will in effect render it useless.

License Model

The use of stamped files can be controlled in a number of ways. The restrictions stamped into a
file are only checked when data from that file interacts with the Maconomy server.

Not all checks are supported by all Maconomy file types. The following table lists the overall
contexts in which stamped files can occur and the access checks that are supported on them.
See the relevant documentation for each file type for more detailed information.

MStamper Reference

Maconomy Tools for Developers 3

 MStamper
License

MBuilder
License

M-Script Maconomy
Server

Add-ons ✓ ✓

Customer number ✓ ✓ ✓

Application version ✓

No license ✓ ✓

Login privilege ✓

Dialog access list ✓

Machine identification* ✓ ✓

Expiring date ✓ ✓ ✓

Namespace ✓ ✓

* Currently supported on Windows and Linux only.

Add-Ons

Add-ons in the stamped file are compared against the add-ons that are currently installed on the
Maconomy server. A stamped file can contain multiple lists of add-ons, and the server must have
all of the add-ons in at least one of these lists.

For example: If a file is stamped with add-ons “64,65” and “92,” the server must have either add-
on 64 and 65, or 92 to use the file.

Customer Number

You can limit the use of a file to a specific set of customers by specifying the customer numbers
(also referred to as Server Installation Numbers) for which the file is valid.

Application Version

Certain stamp formats read by the Maconomy server support an optional application version
number. If a file is stamped with such a version number, the Maconomy application must have a
compatible version.

No License

If a file uses server functionality that is normally restricted by one of the previously described
access mechanisms, the “no license” option can be used to mark contents that can be used on all
systems, regardless of whether they satisfy these restrictions.

This is a highly privileged option that is not distributed outside Maconomy.

MStamper Reference

Maconomy Tools for Developers 4

Login Privileges

If a file needs to perform actions as a particular user, you can specify this user in a login privilege.
This enables the file to assume the identity of that user on a specific Maconomy installation
without having to know the account password.

Dialog Access List

With earlier versions of MStamper, stamped scripts had access to all Maconomy dialogs through
the M-Script Maconomy API. As of MStamper 3.2, the Maconomy server dialog access list is
checked by default when a stamped script opens a dialog. If the dialog is not in the list, the
request is denied, and the script fails.

To preserve backward compatibility with existing M-Script solutions, scripts that are already
stamped with an older version of the stamper do not have their dialog access restricted.

You can also disable the dialog access check for newly stamped scripts, but this feature is now
controlled by the Tools Access Control system (see Tools Access Control).

Machine Identification

You can restrict the use of a file to a specific host machine, rather than to a Maconomy
installation. If the machine has a network adapter with a MAC (Media Access Control) address,
this address can be used to identify the machine on which the file can be used.

This check is only supported on Windows and Linux machines.

Expiring Date

An expiration date can be useful for certain time-dependent operations. A file that is stamped with

an expiration date becomes invalid at the end of the specified date.

Namespace

To avoid relation name clashes when using the MBuilder tool to install custom relations that are
written in the Maconomy Object Language (MOL), and action name clashes when installing
Maconomy entity extensions that are written using the Maconomy Entity eXtension Language
(MEXL), a four-character namespace is introduced to uniquely identify the object developer
organization. The namespace takes the form of three alphanumeric characters and an
underscore, for instance mns_, and is provided by Maconomy Development. It is written into the

license file using the Namespace field.

Tools Access Control

The stamping tool relies on the Maconomy Tools Access Control (TAC) system. The general idea
of this is that outside the Maconomy development organization a license must be provided for the
tool to work. This license can only be obtained through a TAC license file. Such license files can
be used to grant the stamping tool certain rights, thus making it possible to distribute the tool to
consultants, partners, and customers.

The License File

The TAC license file enables you to stamp files with the stamping tool outside the Maconomy

development organization. A license file contains information about who it is licensed to, when it
is issued, and the privileges that it grants to the licensee. You can also restrict the validity of the
license file by tying it to a given host machine and specifying when it will expire.

MStamper Reference

Maconomy Tools for Developers 5

By default the stamping tool looks for a license file named license.tac in the current working

directory. This file can identify the user and usually supplies the stamping tool with the license of
this user. If another license file should be used instead, you can specify this to the stamping tool
directly on the command line with the -L / --license option (see “Command-Line Options

Overview”).

The Stamped File

When a file is being stamped, it receives a subset of the TAC fields and access rights read from a
license file. As a general rule, access rights must always be passed explicitly from the license to
the file that is being stamped, and the stamped file can never get more rights than those present
in the license file. Some TAC fields are transferred implicitly to the stamped file but can be
explicitly overridden, and a few fields are auto-generated and cannot be modified.

Because access rights are not “inherited” from the license file, it is essential that the properties of
the TAC fields described in “TAC Field Overview” are understood, to pick out the fields and
values that should be included in the stamped file.

Compatibility Issues

The set of TAC fields is not static. Additions and changes can be expected on a regular basis.

These changes can generally be expected to be backward-compatible in the sense that files that
are stamped with previous versions of the stamping tool continue to work with newer versions of
the Maconomy technology suite.

However, the opposite cannot be guaranteed: files that are stamped with a newer version of the
stamping tool might be rejected by older applications, because the stamp contains fields that the
older application does not recognize. If possible, files should therefore always be stamped with
the stamping tool from the same TPU version as the installation on which the files are to be
deployed.

However, it may not be possible to use the old stamping tool if the license file that is being used
has undergone changes that prevent the old stamping tool from reading it. In such cases, a
newer stamping tool must be used, and if the target Maconomy installation cannot read the
stamped files that are produced by this newer stamping tool, a TPU upgrade of the Maconomy
installation is the only solution.

To reduce the frequency of these incompatibilities, two kinds of TAC fields exist:

▪ Mandatory TAC fields must be recognized and understood by the stamping tool and all
applications that read stamped files. If a mandatory TAC field is not recognized, the file is
rejected. These fields can be recognized by the TAC_ prefix.

▪ Optional TAC fields can be ignored if the stamping tool or application that is reading the
stamped files does not recognize them. If the application does recognize the TAC fields,
it must respect any restrictions that are imposed by these fields. These fields can be
recognized by the TAC* prefix.

In this way, the introduction of a new optional TAC field will not break backward compatibility with
earlier applications, whereas the introduction of a mandatory TAC field will.

TAC Field Overview

Some TAC fields can be specified on the command line with the option -T / --TAC (see

“Command-Line Options Overview”.) Others are auto-generated by the stamping tool and only
appear in the license file or stamped output. The following tables list all of these fields, along with
their purposes and whether their values can be edited. The names of TAC fields are case-
sensitive and must appear exactly as shown in the following table.

MStamper Reference

Maconomy Tools for Developers 6

Some TAC fields can occur in both license files and ordinary stamped files; others are reserved
for the license files. The following table shows the fields that can occur both places, while the next
table shows the license file-only fields. In both tables, the Edit column indicates whether you can
edit the field’s value.

Field ID Edit Description

AddOns Yes2 A comma-separated list of add-on numbers that are
required on the server. Several such lists can be
specified.

AllowIgnoreDialog-

AccessControl

Yes3 A Boolean value that specifyies whether the script is
allowed to disable dialog access control when
opening dialogs. This enables the script to access
dialogs that the user is otherwise not allowed to
open.

ApplicationVersion Yes The Maconomy application version or range of
versions for which this file is valid. Syntax:

<Lang> [<MajorVer> [. <MinorVer>]].

This field is only supported for certain server-side
file types such as DDL and dialog access lists.

Author Yes1 The identity of the licensee.

CreationDate No The current date (D.M.Y).

CreationTime No The current time (H:M:S).

CustomerNumber Yes2 A customer number for which the licensee is
allowed to stamp scripts. More than one entry may
exist. (See command-line option: -c / --

customernumber in “Command-Line Options

Overview”.)

Format Yes2 Identifies the format of the stamped file. Applications
that read the stamped file might impose restrictions
on the file formats that they accept.

History No Creation history of the stamped file. More than one
entry may exist. These fields come before any other
entries, and the top-most entry is the most recent.

IsLicense No This field is used to prevent a stamped file from
being misused as a license file, because the formats
might otherwise be identical.

LoginPrivilege Yes2 Special login privileges on the Maconomy server. M-
Script only; see command-line option -l / --login in
“Command-Line Options Overview.”

MStamper Reference

Maconomy Tools for Developers 7

Field ID Edit Description

MaconomyHQ Yes3 A Boolean value that specifies whether the stamped
file was created by the Maconomy development
organization. All of the stamped files that are
released by Maconomy based on TPU 50 or later
have this field set to yes. If it is omitted on the

command line, it defaults to no, but if it is absent in

a stamp, it defaults to yes.

Namespace Yes3 An entity and relation namespace in which the
licensee is allowed to add customer relations or
extended entities to a Maconomy installation with
the MBuilder tool.

NoLicenseRequired Yes3 A Boolean value that specifies whether license
requirements on the server apply to the stamped
file. If this field is set to yes, the stamped file is

allowed to circumvent all license checks on the
server. If absent, it defaults to no.

Organization Yes1 The organization of the licensee.

UseDialogAccessList Yes3 A Boolean value that specifies whether the
Maconomy server’s dialog access list should be
checked when scripts invoke the MScript
Maconomy API. If this field is set to yes, the dialogs

that are accessed by the script must be in the dialog
access list. If it is omitted on the command line, it
defaults to yes, but if it is absent in a stamp, it

defaults to no.

Version No The version number can be used to maintain
backward compatibility with TAC information that
was written by earlier versions of the stamping tool.
It can also be used to deprecate an old stamping
tool, forcing the user to upgrade. The stamper will
refuse to process a file that has a version number
that is higher than its own.

1 Value can only be changed when creating a license file.

2 Value must be in the set that is specified in the license file.

3 Value in stamped file is restricted by the value in the license file.

Field ID Edit Description

ExpiringDate Yes2 The date on which the license file expires. The
default is the current date. The format is D.M.Y, with
the empty string being equal to “never.”

MStamper Reference

Maconomy Tools for Developers 8

Field ID Edit Description

FormatPrivileges Yes1 Specific format privileges that are granted to the
licensee. See Format Privileges for details.

MAC_Address

Yes1 A MAC address for which the license file is valid.
More than one entry may exist. Only supported on
Windows™ and Linux.

Privileges

Yes1 Specific stamping privileges that are granted to the
licensee. See Stamping Privileges for details.

1 Value must be in the set that is specified in the license file.

2 Value must be in the range that is specified in the license file.

Stamping Privileges

Each function in the stamping tool must be enabled by the TAC check before it can be used. If

the stamping tool is run from within the Maconomy organization on a machine that satisfies the
TAC environment check, all functions are enabled by default. Otherwise, privileges are disabled
unless specifically granted by a license file.

Normally a function in the stamping tool can only be used if the corresponding privilege is in the
license file. However, for the unscramble function, which operates on an already stamped file, an
exception is made if the file stamp is a subset of the license, that is, if the stamp could have been
created using the rights that are granted by the license file. This enables users to unscramble
their own stamped files, as well as files that were stamped by developers within the same
organization.

Privileges are represented as a bit field, where each bit represents one privilege. Different
privileges can be combined using bit-wise disjunction (OR), and the resulting bit field is passed to
the stamping tool as a hexadecimal (hex) number in the Privileges TAC field. The following table
provides an overview of the available privileges and their bit-field values.

Because it is tedious and error-prone to combine bit-field hex values manually, keywords are
defined for each privilege that can be used when assembling a set of privileges. The keywords
that can be used are:

▪ The TAC field name that is associated with the privilege (See TAC Field Overview).

▪ The short or long form of the command-line argument that is associated with the privilege
(see Command-Line Options Overview).

▪ -l* or --login* to set the “Global Login” privilege.

To assemble a set of privileges, the corresponding keywords can be combined in a comma-
separated list as the argument to –-TAC Privileges (see TAC Field Overview) or they can be
specified one by one in separate command-line arguments.

Example

To grant privileges to the options -c, -a, and -u you can use any of the following commands:

--TAC Privileges –c,-a,-u

--TAC Privileges –-customernumber,--addons,--unscramble

--TAC Privileges CustomerNumber,AddOns,-u

MStamper Reference

Maconomy Tools for Developers 9

--TAC Privileges 2,-a,40

--TAC Privileges -c –-TAC Privileges AddOns,40

Privilege Description Hex Bin

Add-on Licensee is allowed to use the option -a

/ --addons.

0010 0000 0000

0001 0000

Create TAC Licensee is allowed to use the option -C

/ --CreateTAC.

0008 0000 0000

0000 1000

Customer number Licensee is allowed to use the option -c

/ --customernumber.

0002 0000 0000

0000 0010

Global login Licensee is allowed to use the server
wildcard ‘*’ in login privileges. Privilege
keyword: -l* / --login*.

0204 0000 0010

0000 0100

Login Licensee is allowed to use the option –l

/ --login.

0004 0000 0000

0000 0100

Namespace Licensee is allowed to specify the TAC
field Namespace.

0100 0000 0001

0000 0000

No license Licensee is allowed to use the option -n

/ --nolicense.

0020 0000 0000

0010 0000

Official Licensee is allowed to use the option -p
/ --package.

0080 0000 0000

1000 0000

Unscramble Licensee is allowed to use the option -u

/ --unscramble.

0040 0000 0000

0100 0000

Viewable Licensee is allowed to use the option -V

/ --viewable.

0001 0000 0000

0000 0001

Format Privileges

For each file format that is supported by the stamping tool, a format privilege enables the licensee
to read and write files of that format. The licensed formats are represented as a comma-
separated list in the FormatPrivileges TAC field. The following table shows the supported

formats.

Some format privileges overlap with the stamping privileges. For instance, the format privilege
“License” implies the presence of the privilege “Create TAC.”

MStamper Reference

Maconomy Tools for Developers 10

Format Description

License TAC license file format.

Mscript Full-featured MScript format.

MScript4 Stamp format compatible with MScript 4.0 and earlier. This format is
supplied for use with legacy installations only, and the privilege to use
this format is only distributed under special circumstances.

MRL Maconomy Report Language format.

MUL Maconomy Universe Language format.

MPL Maconomy Print Language format.

UDL Universe Definition Language format.

MQL Maconomy Query Language format.

MEXL Maconomy Entity Extension Language format.

MDEL Maconomy Dialog Extension Language format.

DDL Dialog Definition Language format.

XML Unspecified XML format.

Config Maconomy Server configuration files format(s).

Command-Line Options Overview

The stamping tool is invoked as:

MStamper (options) (file)*

One or more files can be specified on the command line after the options. If no files are specified,
the program reads from standard input. Note that the options -m, -u, and -s cannot be used

when reading from standard input. Supported options are listed in the following table.

MStamper Reference

Maconomy Tools for Developers 11

Command-Line Options

Option Description

-a <addOnList>

--addons <addOnList>
Specifies that the stamped script should run on systems
with all of the add-ons in <addOnList>, which is a comma-

separated list of integer values. Used in license files, the
legal groups of add-ons are restricted to those specified.

Example: '-a 64,65' or '-a 67'

Required privilege: 10

-c <custNo>

--customernumber <custNo>
Specifies that the stamped script should run on systems
with customer number <custNo>. Option -c can be used

more than once.

Used in license files, the legal customer numbers are
restricted to those specified.

Required privilege: 2

-C

--CreateTAC

Create a TAC license file. Information from the current TAC
license and from TAC fields specified on the command line
is compiled into a new TAC license. Use the -o option to

specify the name of the license file.

Required privilege: 8

-f <format>

--format <format>

Specify the stamp format to use. Valid format strings are:

MScript, MScript4 (default, no block modifiers); MRL,
MUL, MOL, MPL, MQL, UDL, MEXL, MDXL, DDL,

Config ('--' line prefix), XML ('<!--','-->' block comments).

Example: --format MRL

If a format is not specified, MStamper infers it from the input
file’s extension.

-h

--help

Display help information.

-L <filename>

--license <filename>

Specify the TAC license file. License information and access
privileges are read from this file. The default is a license file
named license.tac in the current working directory.

MStamper Reference

Maconomy Tools for Developers 12

Option Description

-l <user>:<servers>

--login

<user>:<servers>

Specifies a login privilege for the stamped script. The script
can log in as the user <user> on the Maconomy servers

that have the specified installation numbers (comma-
separated list) without specifying a password. The wildcard
token * can be used to match all servers.

Used in license files, the legal login privileges are restricted
to those specified.

Example:

-l john:12345678,87654321

-l bob:*

Required privilege: 4 (+ 204 for '*')

-m

--modify

The input files are modified instead of sending output to a
separate file. This option cannot be used if option -o is

used. Note that either -o or -m must be used if -u or -s is

not specified.

-n

--nolicense

Specifies that the stamped script should run on any system.
No special license is required. This option cannot be
combined with -c or -a.

Required privilege: 20

-o <fileName>

--output <fileName>

Output is written to <fileName>. Otherwise, output is sent

to standard output. This option cannot be used if more than
one input file is specified, if option -m is used, or if -O is

used, except when reading from the standard input.

-O <dir>

--OutputDir <dir>

Output directory when processing files. This option cannot
be used with option -m or if -o is used, except when reading

from the standard input.

-p

--package

Stamp a file as being an official M-Script package. Does not
scramble the file. Use the option --scramble to turn

scrambling on again.

Required privilege: 80

--pedantic
Treat warnings as errors.

-r

--readable

Stamp the file, but do not scramble it.

MStamper Reference

Maconomy Tools for Developers 13

Option Description

--restamp This option enables the stamper to repair broken stamps.
This can be especially useful with readable files that have
been subjected to localization.

To restamp a file you must have all of the privileges that are
necessary to produce the stamp in the file. If the file is
scrambled, you must also have the specific privilege to
unscramble.

Required privilege: 40

--scramble
If the option --package has been used to stamp a file, use

this option to turn scrambling on again.

The --package option does not scramble files, and it turns

scrambling off.

-s

--strip

This option implies option -u but also strips the licensing

information from the file, thus returning it to its original form.

-T <field> <value>

--TAC <field> <value>

Specify a value for a TAC field.

-u

--unscramble

This option makes the stamping tool work in reverse mode,
which means that a stamped file is unscrambled to a
readable form. To unscramble a file, you must either have
all of the privileges that are necessary to produce the stamp
in the file, or the specific privilege to unscramble.

Required privilege: 40

-v

--version

Display version information.

-vv

--vversion

Display extended version information.

-V

--viewable

Make it possible to view the file unscrambled using the
simple M-Script viewer. Note that the MScript viewer is
deprecated, and so is this option.

Required privilege: 1

-x <key> <value>

--extra <key> <value>

Specify optional extra information to be stamped into the
script. This information is readable in the stamped file. More
than one pair of extra information is allowed.

This is not backward-compatible with M-Script versions 1.0-
4.0.

MStamper Reference

Maconomy Tools for Developers 14

Examples

In the following examples we assume the identify of John Johnson. John is the head consultant of
Johnson Consulting, Inc., which is a small but highly profitable consulting company due to its
partnership agreement with Maconomy.

Johnson Consulting does a lot of customization for its clients, mostly M-Script programming in the
Maconomy Portal. To ensure that the clients do not modify the solutions that they receive or even
resell them, John wants to stamp all of the M-Script files that they distribute with the customer
number of the client. John also has several consultants on staff, and he also wants to keep track
of which files each of them produces.

From Maconomy, John has obtained a TAC license file that enables him to use the MStamper
executable that was distributed with their Maconomy installation. The license allows him to
specify customer numbers in the files that he is stamping, and also gives him the privilege to
create individual license files for the members of his staff.

The command-line examples contain little or no explanation of the options used. See Command-
Line Options Overview for more information.

Stamping a File

The most common use of the stamping tool is to stamp a file. Say that John has a list of files
file1...filen that he wants to stamp with a specific customer number (custno). Assuming that

the license.tac license file resides in the current directory, he can invoke the MStamper from a

command line like this:

MStamper –c custno -m file1...filen

This will modify the files and stamp them with the specified customer numbers.

If the license file resides in some other directory or does not have the name license.tac, he can

specify its location with the –L option:

MStamper –L dir\license.tac –c custno -m file1...filen

Because there is more than one input file, he cannot specify the output file. Had there been only
one input file, he could have replaced the -m option with -o to write the stamped file to the

directory out:

MStamper –L dir\license.tac –c custno -o out\file file

Creating a License File

John wants to create an individual license file for one of his consultant staff members, Jim James.
Jim should be able to stamp M-scripts with customer numbers and to unscramble already
stamped scripts. John must also remember to set the expiration date of the license, because the
default is always “today.” By specifying an empty string, he can disable the expiration restriction:

MStamper –L dir\license.tac –C –T Author "Jim James"

–T Privileges –c,-u –T FormatPrivileges MScript

-T ExpiringDate "" –o license.jim.tac

Now John has created a license file for Jim called license.jim.tac. The author field has been

changed to “Jim James,” so this will be the author information in all of the files that Jim stamps.

Suppose now that John rethinks his choice of license to give Jim: With a license that never
expires, John will never be able to restrict Jim’s TAC privileges, because Jim can always just use
a backup of his old license. John therefore decides to give Jim a license that will be valid until

MStamper Reference

Maconomy Tools for Developers 15

New Year's Eve 2005. He also wants to restrict the license to be valid only on Jim’s laptop, which
he happens to know has the MAC address 00e0f8d8.

MStamper –L dir\license.tac –C –T Author "Jim James"

–T Privileges –c,-u –T FormatPrivileges MScript

-T ExpiringDate "31.12.2005" –T MAC_Address 00e0f8d8

–o license.jim.tac

John reconsiders once again: Jim might be tempted to use the license to do some work for the
company's clients on his own time. Not very likely, but better safe than sorry. While John cannot
completely prevent this, he can restrict the companies for which Jim is licensed to do
development work. If Jim is doing work for only two clients in the next month, John can stamp the
customer numbers of these clients into Jim’s license file, thus forcing him to stamp every file to
one of these clients. By making the license file expire at the end of the month, John can also
ensure that Jim will not be able to do any work for these clients later on without obtaining a new
license file.

MStamper –L dir\license.tac –C –T Author "Jim James"

–T Privileges –c,-u –T FormatPrivileges MScript

-T ExpiringDate "31.05.2005" –T MAC_Address 00e0f8d8

-T CustomerNumber custno1 –T CustomerNumber custno2

–o license.jim.tac

Here John used -T CustomerNumber to set the customer numbers. This is equivalent to the -c

option, which is only retained for historic reasons.

More Examples

For more examples, see Stamping and Installing Universes and Universe Reports.

MBuilder Reference

Maconomy Tools for Developers 16

MBuilder Reference

Overview

This manual describes how to install reports, Analyzer reports, universes, entity and dialog
extensions, and other custom enhancements to Maconomy on the Maconomy Server.

This manual describes MBuilder version 6.4.0.

The MBuilder tool, version 1.0.0, was introduced in TPU 43 (server 30).

To support custom-built enhancements to Maconomy, such as custom universes and universe
reports, MBuilder was introduced to support the installation of such files on the server. The
following languages are supported by MBuilder:

▪ MUL — Maconomy Universe Language

▪ MRL — Maconomy Reporting Language

▪ MOL — Maconomy Object Language

▪ MEXL — Maconomy Entity eXtension Language

▪ MDXL — Maconomy Dialog eXtension Language

The purpose of the MBuilder is to install universes (MUL files), reports (MRL files), report layouts
(MPL files), report M-scripts (MS files), and Maconomy entity and dialog extensions (MEXL and
MDXL files). In addition, functionality to add external relations to a Maconomy installation is
provided using MOL files with MBuilder. For more information about the individual languages,
please consult the references listed in “Additional Documentation.”

Using the MBuilder Tool

The MBuilder tool runs primarily in three modes: MRL report (and MPL report layout and report
M-script) installation, MUL universe installation, and custom MOL relation creation.

General Options

A set of general options is available in MBuilder, and a few of them are described here. For a
complete list of all options, see Command-Line Options. The mandatory option --Maconomy[Dir]

takes as an argument the folder path of the installation, for example,
D:\Maconomy\MaconomyHomes\W_8_0 on Windows NT. MBuilder uses a set of character

conversion tables that are contained in a standard Maconomy installation. If MBuilder is used
from a machine that has no Maconomy installation, a folder to the necessary character
conversion tables can be specified using the --CCTablePath option.

When installing customer-specific reports, universes, and so on, the option --

Customization[Level] Custom is mandatory. Finally, the --Path option specifies the folder of

the source files that are necessary in the installation or creation (that is, the MRL, MPL, MUL or
MOL files).

Installing MRL Reports, MPL Report Layouts, and Mscripts

When MRL reports and possibly their corresponding MPL layouts and report Mscripts are
developed (see the MRL Language Reference for more details), they must be installed on the
Maconomy server using MBuilder.

MBuilder Reference

Maconomy Tools for Developers 17

Installation of one or more MRL reports is normally done using the --Report[s] option. This also

installs the associated layouts and report M-scripts. The file names of a layout and report M-script
must equal those of their associated report, except for file extensions. If, for example, you want to
install the report myReport.mrl, the layout must be named myReport.mpl, and the report M-

script must be named myReport.ms. You can exclude the reports, layouts, or the report M-scripts

from being installed by using one of the two options --MplOnly (do not install the report and the

report M-script) or --MrlOnly (do not install the layout and the report M-script).

If an MRL file is not present, you can install a layout anyway by using the option --layout. In this

case, the file name of the layout must be equal to the file name of the installed report (except for
the extension). If the file names are not identical, the option --Report must be used to define the

full module name of the report, in addition to the option --layout, which still specifies the layout

file name.

The reports are installed in the Maconomy system under the customization level Custom when
the mandatory option --Customization[Level] Custom is used.

Before installation, the report, layout, and report layout files must be stamped using the
MStamper tool. When stamping the files, the option --readable must be used for the MStamper.

For more information, see the MStamper Reference.

Support for MRL 1.3, Links, and Report Collections

MRL version 1.3 introduced links and report collections.

If a report contains links, the option --ValidateLinks must be used whenever the links are to be

validated. Sometimes, however, a report links to a report that is not yet installed (for example
itself). In such situations, link validation fails, meaning that link validation should be disabled
(which it is by default). To ensure valid links, run MBuilder with link validation enabled, after the
report to which links are made has been installed.

Report collections may be associated with several layouts (but at most one report Mscript).
MBuilder automatically finds the associated files. The strategy for associating layouts with a
report is as follows: an MPL file is associated, provided that the first unqualified part of its file
name matches the first unqualified part of the report file name. For example, if the report is called
a.mrl, MBuilder associates all files in the present directory named a.mpl, a.b.mpl, a.c.mpl,

a.b.c.mpl, and so on with the report, but ab.mpl or ab.c.mpl are not associated. As described in

the MRL Language Reference, each layout must specify which member of the collection it is to be
associated with.

Debug Information for Installed MRL Reports

MBuilder can return debug information for an installed MRL Report. The returned debug
information contains a list of parameters for the report and the SQL statements that are used
when the report is executed. Note that to get the debug information for a report, the report must
be installed in advance on the Maconomy server.

The debug information is returned when the option --DebugInfo <sqltype> is used. The

<sqltype> selects the type of SQL that is generated. The name of the installed report is given

with the mandatory attribute --ReportName <name>.

The following example shows debug information for the installed report dw::R001.

Report, debug info

===

id : 'dw::R001'

title : 'Demo Report 001'

MBuilder Reference

Maconomy Tools for Developers 18

Parameters

id : 'parmEmployeeNumbers'

title : 'Employees'

mandatory : 1

defaultValue : ''

SQL for cursor ''

SELECT r1.EmployeeNumber AS EmployeeNumber,

r1.Name1 AS EmployeeName,

SUM(((((((r2.NumberOfDay1+r2.NumberOfDay2)+r2.NumberOfDay3)+r2.Num

berOfDay4)+r2.NumberOfDay5)+r2.NumberOfDay6)+r2.NumberOfDay7)) AS

NumberOfWeekSUM

FROM

ACEmployee r1, ACTimeSheetLine r2

WHERE r1.EmployeeNumber = r2.EmployeeNumber AND (1=1)

GROUP BY r1.EmployeeNumber,

r1.Name1

ORDER BY r1.EmployeeNumber ASC

Installing MUL Universes

As for MRL reports, MUL universes must be installed in the Maconomy installation. Installation of
MUL universes is done using the --Universe[s] option. The universes are installed in the
Maconomy system under the customization level Custom when the mandatory option
--Customization[Level] Custom is used. When installing a universe, the source file is installed

next to the runtime version of the file. The source file is not used by the server, but keeping the
source file near the runtime file makes it easy to find if you need to modify it.

All MUL universes must be installed using MBuilder.

Before you install universes, the files must be stamped using the MStamper. When stamping the
files, the options --readable --format WBL must be used for MStamper. For more information,

see the MStamper Reference.

Installing Entity and Dialog Extensions

Entity extensions and dialog extensions are specified in MEXL and MDXL files, respectively, and

are used for adding custom actions to entities (objects) in Maconomy and specifying how they are
displayed in individual dialogs. For more information, see the Maconomy Extension Languages
Reference.

MEXL

The MEXL source files can be named freely, but when they are installed they are given their
entity name (possibly abbreviated). For example, MBuilder would rename the source file
myJobHeader.mexl, which extends the JobHeader entity, to jobheader.mexl on the server. Only

one MEXL file per entity can exist on each level of customization (that is Standard, Solution,

and Custom).

MBuilder Reference

Maconomy Tools for Developers 19

M-Script source files must be located in the correct module structure. For example, if the source
file myJobHeader.mexl contains the specification of an action with method=myAction() in

package=MScript::JobHeader::MyActions(1.2), the file

MScript\JobHeader\MyActions.1.2.ms must exist relative to the location of the

myJobHeader.mexl source file.

The -ee option installs MEXL and associated M-Script files on the server. To install the MEXL

files only, add the option -eo.

MDXL

The MDXL source files can be named freely, but when they are installed they are given their
dialog name (possibly abbreviated). For example, MBuilder would rename the source file
myJobs.mdxl, which extends the Jobs dialog, to jobs.mdxl on the server. Only one MDXL file

per dialog can exist on each level of customization (that is, Standard, Solution, and Custom).

The -de option installs MDXL files on the server.

Character Encoding: Using Non-Western Characters

Universes may use non-Western characters, such as Cyrillic. In these cases universes must be
installed with the proper character encoding. Before running MBuilder, the environment variable

MACONOMY_LCP_ENCODING

must be set on the system to which the universes are installed. For example, if Cyrillic encoding
is used on a Windows system, the value of the environment variable is Windows-1251.

Character encoding is specified in the initialization file of the Maconomy server. However,
because MBuilder is independent of these settings, setting the MACONOMY_LCP_ENCODING variable

in the server initialization file is not sufficient; that is, you must set both the initialization file and
the environment variable.

Creating Custom MOL Relations

MOL—the Maconomy Object Language—is the language that is used for making external
relations available in the Maconomy system. The external relations are accessible like other
Maconomy objects (relations) and can, for instance, be incorporated in universe reports using the
languages MQL and MUL.

Prerequisites

To facilitate the use of custom relations, add-on 103 (“Custom Database Extensions”) must be
active on the installation. In addition, a license file that contains the customer-specific namespace
must exist (the license file is supplied by Maconomy).

When the custom relations are installed on an installation (when the custom DbDesc file is copied

to the Database folder of the Maconomy installation), they can be accessed (read-only) like any

other Maconomy standard relation, for example, from MUL universes, M-Script, and so on.

DbDesc Creation

To create custom MOL relations, one or more MOL source files that contain object specifications
must be prepared in advance. See the MOL Language Reference for more information about how
to use MOL. The names of the MOL objects must be prefixed by the customer-specific
namespace that is supplied by Maconomy. These files are passed to MBuilder using the --

Objects option.

MBuilder Reference

Maconomy Tools for Developers 20

The MOL source files are compiled into a binary database description file, a DbDesc file. The

compilation includes a namespace validation of all MOL objects and the namespace given in the
license file. The license file is passed to MBuilder using the option --LicenseFile.

The following is an example of a MOL object using namespace abc.

<MOL 1>

<Object abc_MySalary>

.Componentid :String :Key+

.Target :Integer

.Salary :Amount

.SalaryGroup :String :"Salary level"

<End Object>

The name of the resulting binary DbDesc file is in the form

DbDesc.<namespace>[.<subname>].xdd

where <namespace> is the four-letter namespace string that is supplied by Maconomy, and

<subname> is an optional naming string, for example:

DbDesc.abc.MySalary1.xdd

or without subname:

DbDesc.abc.xdd

The optional subname is specified using the option --SubName.

Installation of the new DbDesc file is done manually by copying the new DbDesc file to the server

MaconomyDir/Database folder. Note that none of the existing DbDesc files (DbDesc and possibly

DbDesc.Portal) may be deleted or renamed.

Creating the Database Views

The MOL specifications only constitute the Maconomy side of the process, that is, the
specification in Maconomy terms of fields, types, and attributes. For every MOL object, a
corresponding database table or view must be created manually. It is essential that the MOL
objects and their database table counterparts correspond in field definitions, that is, field order,
types, and so on. See the next section for more information about the Maconomy type system’s
correspondence with database table types. The actual implementation of the database table is
highly database-specific and must be done manually. To gain access to remote databases, the
database table can be implemented as a database view that references external data.

Maconomy Types vs. Database Types

When using the MOL language, all field definitions must adhere to the Maconomy Type System;

that is, all MOL fields must consist of one of the predefined Maconomy types. The custom-
created database relations or views that correspond to each MOL object must likewise obey a set
of Maconomy Type System conversion rules, depending on the individual database installation. In
the following table, all of the supported Maconomy types are listed with their specific database
counterparts. This means that, for example, the MOL field myDate of Maconomy type AMOUNT

must be implemented as NUMBER(20,2) in an Oracle database.

MBuilder Reference

Maconomy Tools for Developers 21

Type Conversion Table

Maconomy Null Value Formal Notes Oracle SQL Server DB2

INTEGER 0 INTEGER INTEGER INTEGER

REAL 0 REAL FLOA FLOAT

AMOUNT 0 NUMBER(20,2) FLOAT DECIMAL(20,2)

BOOLEAN 0 [0, 1] INTEGER INTEGER INTEGER

STRING ' '(one blank) String max.

255 chars.

VARCHAR(N1) VARCHAR(N1) VARCHAR(N1)

DATE ' ' (one blank) yyyy.mm.dd VARCHAR(12) VARCHAR(12) VARCHAR(12)

TIME ' ' (one blank) hh:mm:ss VARCHAR(8) VARCHAR(8) VARCHAR(8)

<Enumeration> -1 <Enumvalues> INTEGER INTEGER INTEGER

The sizes of the database string fields depend heavily on the individual database installation.
The default (and maximum) size is 255, but if string fields are included in database indexes,
special limitations on the total size of all index fields might exist for the individual database
installation.

Example

In an Oracle database, the fields in the MOL

object abc_MySalary below...

<MOL 1>

<Object abc_MySalary>

.Componentid :String :Key+

.Target :Integer

.Salary :Amount

.SalaryGroup :String :" Salary

level"

<End Object>

...must be implemented as fields

of the following types:

Componentid VARCHAR(255)

Target INTEGER

Salary NUMBER(20,2)

SalaryGroup VARCHAR(255)

Viewing DbDesc Contents

The DbDesc files are binary files and cannot be viewed. However, MBuilder offers functionality to
dump the contents of a specified custom DbDesc file in text format. Using the option --Dump, a

custom DbDesc file can be specified, and the contents will be dumped to a text file. The name of

the text dump file is similar to the DbDesc file, but substituting the extension .xdd for .txt. For

instance, the dump file for the file DbDesc.abc.MySalary1.xdd is called

DbDesc.abc.MySalary1.txt. The dump file contains all relations, fields, types, and so on.

MBuilder Reference

Maconomy Tools for Developers 22

Converting Analyzer Files

To run the Analyzer in the Windows client, the compiled Analyzer files that worked for the old
(pre-4) version of the Analyzer must be converted to a new format. This is done by first running
the MBuilder, which creates universes and relations, and then running the server with a specific
option, which installs the views.

Converting Files

All compiled Aalyzer files (.grf) should be located in the Analyze folder in the MaconomyDir on

the server.

Files are converted by running MBuilder with the option --Analyzer.

When the MBuilder tool has been run without errors, you must run the server with certain
command-line options to install views. Execute the following command on the server as the
“maconomy”user:

MaconomyServer.<appshortname> -S<shortname> --AnalyzerViews

For instance:

MBuilder --Analyzer --MaconomyDir /data/maconomy/w_8_0

MaconomyServer.w_8_0 -Sw80 --AnalyzerViews

The commands are the same on Windows NT and Unix.

Command-Line Options

MBuilder can be invoked in four modes: install reports and/or report layouts and/or report M-
scripts, install universes, create DbDesc, and finally dump DbDesc content information.

Overview

Some of the command-line options are generic and can be applied in all modes, and some

options are specific to the selected mode. The notes that are referenced in the “Note” column are
listed after the tables in this section.

Generic Options

Option Argument Note Description

-h

--Help

<boolean>
 Display the help text.

-v

--Version

 Display the current program version.

-m

--Maconomy[Dir]

<folder>
(M) Select Maconomy folder.

-cc

--CCTablePath

<folder>
 Select special CCTable folder that

contains character conversion table
files. Used if no Maconomy
installations exists.

MBuilder Reference

Maconomy Tools for Developers 23

Option Argument Note Description

-c

--

Customization[Level]

<cust-level>
 Which customization level to install in

(default: Custom).

-p

--Path

<folder>
 Folder for directory that contains files

to use (default: .)

-nb

--NoBackup

<boolean>
 Do not make backup of files

overwritten by the installer (default:
false).

-ow

--Overwrite

<boolean>
 Allow overwrite of existing installed

files (reports and dialog extensions)
(default: false).

-ef

--ErrorFile

<filepath>
 Full path for error file. stderr is used

if not specified.

-lf

--LogFile

<filepath>
 Full path for log file. stdout is used if

not specified.

-hl

--HaltLevel

<errorlevel>
 Define errorlevel (and higher) on which

the program halts (default: Error).

-el

--ErrorLogLevel

<errorlevel>
 Define errorlevel (and higher) on which

the program logs (default: Warning).

-a

--Validation

<level>
 Define level for semantic validation

(default: Complete).

-b

--Verbose

<verboselevel>
 Log data during run. Enable several

options by adding ids (default: 0).

-s

--Simulate

<boolean>
 Do not perform the installation,

simulate it. Only perform the checking
(default: false).

Report, Report Layout, and Report M-Script Installation Options

Option Argument Note Description

-r

--Report[s]

<filename(s)>
(1,2) Name(s) for report(s), layout(s) and

report M-script(s) to install.

-l

--Layout[s]

<layoutname(s)>
(1,2) Layoutname(s) for layout(s) to install.

-ro

--MrlOnly

<boolean>
 Only install the MRL report file (default:

false).

MBuilder Reference

Maconomy Tools for Developers 24

Option Argument Note Description

-po

--MplOnly

<boolean>
 Only install the MPL layout file (default:

false).

-di

--DebugInfo

<sqltype>
(1,3) Dump debug information for an

installed report.

-rn

--ReportName

<modulename>
(3) Name of an installed report.

-vl

--ValidateLinks

<boolean>
 Perform validation of links (default:

false).

Universe Installation Options

Option Argument Note Description

-u

--Universe[s]

<filename(s)>
(1) Compile and install the specified MUL

file(s).

Entity Installation Options

Option Argument Note Description

-ee

--

EntityExt[ensions]

<filename(s)>
 Install the specified MEXL file(s),

including any M-scripts referenced in
package attributes.

-eo

--MexlOnly

<boolean>
 Install only the MEXL file(s), not the M-

Script files (default: false). This

option is appended to the line (usage:
-ee <file> -eo)

Dialog Installation Options

Option Argument Note Description

-de

--

DialogExt[ensions]

<filename(s)>
 Install the specified MDXL file(s).

Custom Relation Creation Options

Option Argument Note Description

-o

--Object[s]

<filename(s)>
(1) Create a DbDesc file (for example

DbDesc.namespace.xdd) that

contains data from the specified MOL
files.

MBuilder Reference

Maconomy Tools for Developers 25

Option Argument Note Description

-li

--LicenseFile

<filepath>
 File path to specific license TAC file

including namespace (default
./License.tac).

-sn

--SubName

<name>
 Subname for the DbDesc file (for

example,
DbDesc.namespace.subname.xdd)

(default: empty).

-op

--OutputPath

<filepath>
 Define outputfolder for the DbDesc file

(default: .).

Custom Relation Dump Options

Option Argument Note Description

-d

--Dump

<filepath>
(1) Dump relation documentation for

specified custom DbDesc file.

Output name is the same as the input
name with a txt extension.

Analyzer Conversion Options

Option Argument Note Description

-z

--Analyzer

(1,4) Convert all Analyzer (.grf) files in the

Analyze directory in MaconomyDir

Notes

▪ (M) The option is mandatory.

▪ (1) One of either --Report and/or --Layout or --Object or --Universe or –Dump

or --Analyzer or --Dialog or --DebugInfo must be specified.

▪ (2) If only --Report is specified, MRL, MPL and MS files (if they exist) are installed.

If only --Layout is specified, only the MPL file(s) is installed. The filename of the MPL

file must be identical to the filename in the layout name

If both --Report and --Layout are specified, only the MPL file(s) are installed. The

filename of the MPL file(s) is given by --Report (same order)

▪ (3) If --DebugInfo is specified then --ReportName is mandatory

▪ (4) When running --Analyzer, the only generic options available are verbose and
Maconomy(Dir)

MBuilder Reference

Maconomy Tools for Developers 26

Types

The following tables specify the available types for the MBuilder options.

Generic Option Types

Option Type Values Description

<boolean> {Empty}=Ye

s

| Yes

| No

| True

| False

<errorlevel>: System

| Fatal

| Error

| Warning

| Notify

Internal system error.
Syntax error and so on.
Major semantic error in specification (system unable to
run).
Minor semantic error in specification (system is (partly)
runable).
Non-optimal specification.

<filename(s)> {File

name}*

| All

Specified files.
Use all files of right type in given directory.

<modulename(s)> {Module

name of

report}*

Example: Module::Submodule::MyReport.

<cust-level> Custom

| Solution

| Standard

Install as Custom extension.
Install as Solution extension (not available).
Install as Maconomy extension (not available).

<level> Syntax

| Complete
Syntax checks only.
Syntax and semantic checks.

Report and Report Layout Installation Types

Option Type Values Description

<verboselevel> [0..15] Bitmask, consists of the following values:
0 – No output (except errors).
1 – Parsed file name(s).
2 – Dump output file name(s).
4 – Error count.
8 – Dump parsed file data (as tags and attributes).

MBuilder Reference

Maconomy Tools for Developers 27

Option Type Values Description

<sqltype> Oracle

| MSQL

| DB2

| DebugOracle

| DebugMSQL

| DebugDB2

| Debug

SQL for Oracle is generated.
SQL for Microsoft SQL-Server generated.
SQL for IBM DB2 generated.
SQL for Oracle is generated in nice format.
SQL for Microsoft SQL-Server generated in nice
format.
SQL for IBM DB2 generated in nice format.
Special debug SQL in nice format.

Universe Installation Types

Option Type Values Description

<verboselevel> [0..63] Bitmask, consists of the following values:
0 - No output (except errors).
1 - Parsed file name(s).
2 - Error count.
4 - Dump parsed file data (as tags and attributes).
8 - Dump interface to universe.
16 - Dump testsuite data.
32 - Dump dependency data.

Dialog Extension Installation Types

Option Type Values Description

<verboselevel> [0..15] Bitmask, consists of the following values:
0 - No output (execpt errors).
1 - Parsed file name(s).
2 - Dump output file name(s).
4 - Error counts.
8 - Dump parsed file data (as tags and attributes).

Custom Relation Creation Types

Option Type Values Description

<verboselevel> [0..1] Bitmask, consists of the following values:
0 - No output (execpt errors).
1 - Progress info.

Additional Documentation

The following set of related documentation is available:

▪ Getting Started with Universe Reports

▪ MRL Language Reference

▪ MUL Language Reference

▪ MOL Language Reference

MBuilder Reference

Maconomy Tools for Developers 28

▪ MQL Language Reference

▪ Maconomy Extension Languages Reference

▪ Stamping and Installing Universes and Universe Reports

Version History

MBuilder 6.3.0

Support for installing MXEL and MDXL files added.

MBuilder 6.0.0

Support for installing report collections with multiple layouts added. Option

--ValidateLinks added.

MBuilder 5.0.0

Support for installing Report M-scripts added.

MBuilder 4.0.0

Option --overwrite added.

MBuilder 3.0.1

Added debug information for installed MRL Report.

MBuilder 1.0.0

Initial version.Text

MDumper Reference

Maconomy Tools for Developers 29

MDumper Reference

Overview

This manual describes how to extract, or dump, information from a Maconomy installation. The
information that is dumped by MDumper can be viewed as HTML files using MDoc, which is a
part of the MDumper.

This manual describes MDumper version 1.2.7.

A Maconomy installation contains a huge amount of information. To gain access to some of this
information, extracts must be made in specific formats to use it properly. MDumper is the tool to
extract, or dump, information from a Maconomy installation. The information that is dumped by
MDumper is used in various independent ways.

Some of the installation information is valuable knowledge when developing customized
extensions to Maconomy, such as universes and universe reports. To support easy access to this
information, MDumper features the concept of MDoc. MDoc is an HTML-based dump of basic
structures of the Maconomy installation.

The MDumper tool version 1.2.0 was introduced in TPU 50.

Using MDumper

The MDumper tool can be invoked in several dump modes. The important modes are the MDoc
dump mode and the Snapshot Definition dump mode.

Note that if MDumper is invoked on Linux/Unix platforms, the user who executes the tool must
have read/write access to the MaconomyDir folder.

General Options

A set of general options is available in MDumper, and a few of them are described here. The
mandatory option -Maconomy takes as an argument the folder path of the installation, for example

D:\MaconomyNT\MaconomyHomes\W_8_0 on Windows servers. The Maconomy option can also be

called -MaconomyDir or -MaconomyFolder.

MDumper uses a set of character conversion tables that are contained in a standard Maconomy
installation. If MDumper is used from a machine that has no Maconomy installation, a folder to the
necessary character conversion tables must be specified using the -CCTableFolder option.

Dump Options

To auto-generate MDoc information, use the option -DumpMDoc.

To dump snapshot definitions, use the option -DumpSnapshotDefs.

Creating MDoc Information

Using MDumper v. 1.2.0 and later, you can create an HTML-based information dump of essential
Maconomy objects.

When developing and using Maconomy universes and universe reports, it is important to know
the available objects in the Maconomy system, for example database objects (relations), universe
interfaces, and internal field types.

MDumper Reference

Maconomy Tools for Developers 30

Auto-generated documentation of these basic Maconomy structures that is dumped by MDumper
is called MDoc. MDoc is an entire web site that consists of a set of HTML files. Database objects
(relations), field types, and universe interfaces are described in the MDoc system.

MDoc is created using the MDumper option -DumpMDoc <destfolder> where <destfolder> is

an existing destination folder. For example, on Windows the command could look like this:

MDumper –MaconomyFolder c:\maconomy\w_8_0 –DumpMDoc c:\MDoc

Running MDumper with the -DumpMDoc option extracts a huge amount of information from the

specified Maconomy installation, and consequently the actual execution of MDumper may take
some time.

The MDoc dump is a static view of the system as it looks at the time of the generation of the
MDoc dump. This means that after the installation of new universes, and so on, the MDoc web
site must be regenerated to reflect the current Maconomy installation. Information that is only
available in the database (such as dynamic type enumerations) is not accessible using MDoc.

After the dump is completed, the MDoc destination folder structure looks similar to the following
example (only the MDoc/html folder is expanded):

MDoc

+-- html

| +-- relations

| +-- universeinterfaces

| +-- styles

| +-- index.html

|

+-- installation

+-- xml

All information is dumped as structured XML data in the xml subfolder. After the XML files are
dumped, they are translated into HTML using the XSLT style sheets found in the installation

folder.

All MDoc information is based on client-side scripting, and can thus be accessed without the use
of a web server. To view the MDoc information, open the file

MDoc/html/index.html

in a browser. Note that the MDoc web site is dependent on the use of JavaScript, so the browser
must be JavaScript-enabled.

When starting MDoc in a browser, you see the following after you expand the Maconomy entry.

MDumper Reference

Maconomy Tools for Developers 31

The page is divided into two panes. The left-hand pane is a tree view of all of the available
information. Selecting links in the tree view shows the corresponding description page in the right-
hand pane. The description page depends on the kind of object that is shown.

If you choose a universe Interface, the resulting window could look like the following.

MDumper Reference

Maconomy Tools for Developers 32

The description page shows information about the selected universe such as title, interface
groups, and their fields.

Relation description pages show information about title, fields, and foreign key references.

MDumper Reference

Maconomy Tools for Developers 33

Command-Line Options

Overview

Some of the command-line options are generic and can be applied in all dump modes, and some
options are specific to the selected mode.

Generic Options

Option Argument Note Description

-h

-Help

<boolean>
 Display the MDumper help text.

-v

-Version

 Display current program version.

-vv

-VVersion

 Display current program version in

extended format.

-m

-Maconomy[Folder|Dir]

<folder>
(M) Select Maconomy folder (for example,

/maconomy/w_8_0).

MDumper Reference

Maconomy Tools for Developers 34

Option Argument Note Description

-CCTableFolder <folder>
 Select special CC_Table folder

containing character conversion table
files. Used if no Maconomy installation
exist.

-OutputFolder <folder>
 Destination folder for MDumper output.

-SpecificDbDesc <filepath>
 Full path to specific DbDesc file to be

dumped from.

-DumpRelationTypes <enumlist>
 Force relations of specific types to be

dumped. <enumlist> contains a

space-delimited list of one or more of
the following options: [Standard |
Expired |

Network | Portal | System |

Application | Universe |

Custom |

Analyzer]+.

-ExcludeRelationTypes <enumlist>
 When -DumpRelationTypes is

used, -ExcludeRelationTypes

rejects a list of relations of specific
types. <enumlist> contains a

space-delimited list of one or more of
the following options: [Standard |

Expired | Network | Portal |

System |

Application | Universe |

Custom |

Analyzer]+.

-DumpIndexList
 Dump index list.

-DumpMDoc <folder>
 Generate an MDoc dump of the

Maconomy installation into the
specified output folder.

-DumpSnapshotDefs <modulename>
 Dump snapshot definition information.

<modulename> is the name of an

installed Universe Report, such as
Module::Submodule::MyReport

MDumper Reference

Maconomy Tools for Developers 35

Option Argument Note Description

-Verbose <verboselevel

>
 Log data during run. Enable process

information output by increasing level
of information (0-5):

0=No output

1=All errors

...

5=All output.

The default is 0.

DumpIndexList Options

Option Argument Note Description

-DumpIndexList
(1) Internal option

DumpMDoc Options

Option Argument Note Description

-DumpMDoc <folder>
(1) Generate an MDoc dump of the

Maconomy installation into the specified
output folder.

DumpSnapshotDefs Options

Option Argument Note Description

DumpSnapshotDefs <modulename>
(1) Dump snapshot definition information.

<modulename> is the name of an

installed universe report, such as

Module::Submodule::MyReport

-SQLTypes <sqltypes>
 Create a DbDesc (such as

DbDesc.namespace.xdd) that contains

data from the specified MOL files.

-Namespace <name>
 Filepath to specific license tac file

including namespace (default
'./License.tac').

Notes

▪ (M) The option is mandatory.

▪ (1) One of -DumpIndexList, -DumpMDoc, or -DumpSnapshotDefs must be specified.

MDumper Reference

Maconomy Tools for Developers 36

Additional Documentation

The following related documentation is available.

▪ Getting Started with Universe Reports

▪ MUL Language Reference

▪ MRL Language Reference

▪ MOL Language Reference

Stamping and Installing Universes and

Universe Reports

Maconomy Tools for Developers 37

Stamping and Installing Universes and
Universe Reports

Overview

This brief how-to guide describes the steps that are involved in stamping and installing universes
and universe reports.

It is intended for graduates from the Maconomy Reporting Developer certification course.

You have been trained as a Maconomy Certified Reporting Developer, and you have received
your license file. Now you want to test your knowledge and create, stamp, and install your own
universes, universe reports, and layouts.

At the training, it was easy: Just press a keyboard shortcut in the Crimson editor, and everything
worked nicely. However, now you must set up your own production environment.

Even though the MStamper and MBuilder manuals help you to set up this environment, this
document helps you to get started quickly. The necessary options for stamping and installing are
described, and suggestions are made to make stamping and installing a straightforward process.

Stamping — A Synopsis

A file stamp is a block of data that is inserted into the top or near the top of the file that is being
stamped. The stamp consists of the following main components:

▪ Message digest — The checksum protection of the file, along with internal header
information.

▪ Tracking information — Author and organization fields, creation date and time, and a
history field, which traces the origin of the license used to stamp the file.

▪ License information — This information can be used to restrict the distribution of
stamped files.

When a file has been stamped, it is ready to be transferred to the server and subsequently
installed using the MBuilder tool.

The MStamper only works on computers that run Windows or Linux. This is because the
computer’s MAC address, which is required for a license file, cannot be determined on a Unix
system such as AIX.

When transferring a stamped file from the Windows platform to a Unix server, it is important that
you transfer it in binary format. If the file is transferred as text, you will be unable to install it on the
server.

Installing — A Synopsis

MBuilder is the tool that is used for installing universes (MUL files), reports (MRL files), and report

layouts (MPL files) on the Maconomy server. In addition, MOL files can be used with MBuilder for
adding external relations to a Maconomy installation.

Stamping and Installing Universes and

Universe Reports

Maconomy Tools for Developers 38

To run the installed reports in the portal, report portal components that refer to the reports must
be created with the portal designer, and the portal should be configured to allow relevant users
and roles to run the reports.

The installation must take place on the server. You must have access to the Maconomy server
to install reports and universes.

Note for Unix Users

Because you cannot stamp files on a Unix machine, and because stamped reports must be

installed using the MBuilder program on the machine that runs the Maconomy server, developers
who use Windows or Linux for development and a Unix machine for running the Maconomy
server should perform the following steps:

1. Stamp the file on the Windows/Linux development machine.

2. Transfer the stamped file to the Unix machine that runs the Maconomy server using FTP
or SCP. Remember to transfer the file in binary format.

3. Run MBuilder on the Unix machine to install the report. This can be done remotely using
Telnet or SSH.

Stamping and Installing

The stamping tool relies on the Maconomy Tools Access Control (TAC) system. This basically
means that outside the Maconomy R&D department, a license must be provided for the tool to
work. This license is obtained as a TAC license file. These license files can be used to grant the
stamping tool certain rights, thus making it possible to distribute the tool to consultants, partners,
and customers. This document describes how to stamp and install your own work.

Stamping

When stamping a file such as an MRL file, use the following command:

mstamper --readable --license <path to license file> --output <path to

output directory> <file>

Deltek recommends placing a stamped file in a folder of its own, named by the current folder plus
the extension .stamped. For example, if you are working on a report called
CompletionByDept.mrl in the folder \MyCustomer\Reports\Completion, the stamped file

should be placed in the directory \MyCustomer\Reports\Completion.stamped. This makes it

easy to distinguish between source code and stamped files.

Installing

MRL report files and MUL files must be installed on the server using the MBuilder tool. When
installing an MRL file, the MBuilder tool also installs an MPL file (a layout) with the same base
filename, if it exists.

Stamping and Installing Universes and

Universe Reports

Maconomy Tools for Developers 39

To install an MRL file (and possibly a layout), use the following command:

builder --MaconomyDir "<Application Home>" --customization Custom

--Report <stamped file>

The --customization option must be set to Custom.

In the case of a MUL file, the option --Report must be exchanged with --Universe.

Helpful Tips

Instead of running the previously described commands from the command line every time that
you need to stamp a file, you can automate the process using your development environment.
The examples in this section use the Crimson editor as an example of how to automate the
stamping and installation of a file on the server by assigning a batch file to a hotkey. Similar
functionality is available in most other code editors, such as TextPad or the Visual C++ editor.

On the Maconomy Developer web site, you can find two scripts for stamping and installing files
on the server. One script is for Windows; the other is for Unix. This section describes how to
install the Windows script for use in the Crimson editor. Note that for the script to work, the editor
must reside on the server machine.

The Maconomy Developer web site also contains syntax color-coding files for Crimson and
EditPlus.

Batch Script for Stamping and Installing

Download the script mstampAndInstall.bat from the Developer web site (go to Technology »

Tools » Miscellaneous). Note that the script was created with Windows 2000, and it may not work
with your version of Windows.

Place the script on the server, for instance in c:\maconomy.

Set Up Crimson

To run the script file from within the Crimson editor, access the Tools » Conf. User Tools
window. The following figure shows how to install the batch file in Crimson. Some comments are
added after the figure.

Stamping and Installing Universes and

Universe Reports

Maconomy Tools for Developers 40

Remember to save the setup by clicking “Save…”.

You can place the batch file mstampAndInstall.bat in any folder on the server.

Remember to enter the current directory, specified using $(FileDir) in Crimson, in the Initial dir:
field.

Be sure to select the Capture output field so that you can see the output from the command
after it has run. Otherwise, you may not be able to detect errors.

The idea behind doing it this way is that is that you can use the same batch script to support the
installation of files in multiple locations. This is achieved by supplying arguments in the Argument
field. As the Menu text field states, this tool (invoked by pressing Ctrl+1) stamps the current file
and installs it in a test environment. The location of the test environment is specified in the
Argument field. The hotkey Ctrl+2 may use the same script to stamp and install the file in a
production environment.

The script takes the following arguments:

▪ TPU folder, for instance c:\maconomy\tpu.LINUX.3600.99b13.dir

▪ APU folder, for instance c:\maconomy\w_8_0

▪ License file, for instance c:\maconomy\license.tac

▪ File name, for instance c:\source\JobAnalysisU.mul, specified using $(FileName) in

Crimson. Make sure that the filename does not contain spaces, which is not guaranteed
to work.

When you click OK, the “Stamp and Install” tool is ready to use when you press Ctrl+1.

Most editors, including TextPad and the Visual Studio editor, can be set up in a similar way. See
the documentation for your particular product.

Deltek is the leading global provider of enterprise software and information solutions for professional
services firms, government contractors, and government agencies. For decades, we have delivered
actionable insight that empowers our customers to unlock their business potential. 20,000 organizations
and millions of users in approximately over 80 countries around the world rely on Deltek to research and
identify opportunities, win new business, optimize resource, streamline operations, and deliver more
profitable projects. Deltek – Know more. Do more.®

deltek.com

http://www.deltek.com/

	Overview
	MStamper Reference
	Overview
	The File Stamp
	License Model
	Add-Ons
	Customer Number
	Application Version
	No License
	Login Privileges
	Dialog Access List
	Machine Identification
	Expiring Date
	Namespace

	Tools Access Control
	The License File
	The Stamped File
	Compatibility Issues
	TAC Field Overview
	Stamping Privileges
	Example

	Format Privileges

	Command-Line Options Overview
	Command-Line Options

	Examples
	Stamping a File
	Creating a License File
	More Examples

	MBuilder Reference
	Overview
	Using the MBuilder Tool
	General Options
	Installing MRL Reports, MPL Report Layouts, and Mscripts
	Support for MRL 1.3, Links, and Report Collections
	Debug Information for Installed MRL Reports
	Installing MUL Universes
	Installing Entity and Dialog Extensions
	MEXL
	MDXL

	Character Encoding: Using Non-Western Characters

	Creating Custom MOL Relations
	Prerequisites
	DbDesc Creation
	Creating the Database Views
	Maconomy Types vs. Database Types
	Viewing DbDesc Contents

	Converting Analyzer Files
	Converting Files

	Command-Line Options
	Overview
	Generic Options
	Report, Report Layout, and Report M-Script Installation Options
	Universe Installation Options
	Entity Installation Options
	Dialog Installation Options
	Custom Relation Creation Options
	Custom Relation Dump Options
	Analyzer Conversion Options

	Types
	Generic Option Types
	Report and Report Layout Installation Types
	Universe Installation Types
	Dialog Extension Installation Types
	Custom Relation Creation Types

	Additional Documentation
	Version History
	MBuilder 6.3.0
	MBuilder 6.0.0
	MBuilder 5.0.0
	MBuilder 4.0.0
	MBuilder 3.0.1
	MBuilder 1.0.0

	MDumper Reference
	Overview
	Using MDumper
	General Options
	Dump Options

	Creating MDoc Information
	Command-Line Options
	Overview
	Generic Options
	DumpIndexList Options
	DumpMDoc Options
	DumpSnapshotDefs Options

	Additional Documentation

	Stamping and Installing Universes and Universe Reports
	Overview
	Stamping — A Synopsis
	Installing — A Synopsis
	Note for Unix Users

	Stamping and Installing
	Stamping
	Installing

	Helpful Tips
	Batch Script for Stamping and Installing
	Set Up Crimson

