

Deltek Maconomy 2.3 GA
MQL Language Reference

December 2, 2016

MQL Language Reference ii

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published December 2016.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result in
severe civil or criminal penalties.

All trademarks are the property of their respective owners.

MQL Language Reference iii

Contents

Introduction .. 1

MQL, Universes, and SQL .. 1

Reading this Manual.. 1

Where to Use MQL .. 2

M-Script ... 2

MRL (Maconomy Report Language) ... 2

Commands .. 3

MSelect Command .. 3

Common Syntax .. 11

Maconomy Functions .. 14

Predefined Functions .. 14

Special Functions .. 14

Row Group Functions .. 14

Version History .. 16

MQL 1.5 ... 16

MQL 1.4 ... 16

MQL 1.3 ... 16

MQL 1.2 ... 16

Introduction

MQL Language Reference 1

Introduction

The Maconomy Query Language (MQL) is a language for interacting with the Maconomy
database. Currently only data selection is supported by MQL.

MQL, Universes, and SQL

To reduce the MQL learning curve, MQL looks similar to SQL. However, this resemblance is only
on the surface, because MQL is a language on its own.

When writing a SQL command, the developer must know the join structure of the relations in the
database. The join structure and semantic information about fields in the database, also called the
data model, is very complex in the Maconomy system.

The main difference between MQL and SQL is the separation of the data model from the
command. In SQL, the data model is specified in each command; in MQL, the data model is
specified in a Universe. This separation enables the reuse of the data model in multiple
commands, and it enables the MQL command to be developed without knowledge of the data
model. For further information on Universes, see the Deltek Maconomy Language Reference MUL.

Unlike SQL, MQL is aware of types, and especially the Maconomy type system. The types of all
expressions in an MQL command are validated before execution. This sort of validation can reveal
many errors during development.

Unlike SQL, MQL is database-independent. The Maconomy Server knows which database is
actually used, and performs a runtime translation of MQL into SQL in accordance with the
requirements of the specific database.

Reading this Manual

The formal syntax of MQL is presented in BNF (Bachus Naur Form).

Where to Use MQL

MQL Language Reference 2

Where to Use MQL

MQL is designed to be the Maconomy language for direct database access. Currently, MQL is only
used for reporting purposes, and is only available in M-Script and in MRL.

M-Script

MQL can be used from M-Script with the maconomy::mql* set of functions.

The version of the MQL command executed is dependent on the M-Script version, unless explicitly
defined in the MQL command.

In the M-Script context, actual values for parameters can be given through an M-Script object, and
the result of a command is returned as an M-Script object. Cursor definitions and result structuring
features are ignored in this context.

For further information on MQL command integration in M-Script, see the Deltek M-Script
Maconomy API Reference.

MRL (Maconomy Report Language)

MRL is used for specifying Universe Reports. A Universe Report is installed and executed on the
Maconomy Server. MQL is used in MRL for query specification.

The version of the MQL query executed is dependent on the MRL version used.

In the MRL context, formal parameters are defined outside the MQL query, but are implicitly
available inside the query. The MRL runtime framework handles actual values for the parameters.
Cursor definitions and result structuring features are available in this context.

For further information on MQL command integration in MRL, see the Deltek Maconomy Language
Reference MRL or the introduction to Universe reporting, Getting Started with Universe Reports.

Commands

MQL Language Reference 3

Commands

This section describes the current version of MQL. A version history of MQL is supplied in the
“Version History” section. Unlike SQL, an MQL command contains version identification, used for
controlling syntax and/or semantic changes. The version identification can be implicit, given by
the context of the MQL command. See Where to Use MQL for more information.

MQL commands are not case-sensitive; for instance, the command mselect equals MSelect.

mql ::=

 (<MQL 1.5> | MQL 1.5)

 mselect

MSelect Command

The mselect command retrieves rows, columns, and derived values from a Maconomy Universe.

The syntax for the command is as follows.

mselect ::=

 MSELECT [DISTINCT] (fieldlist|cursor)

 [AGGREGATE [(ALL|SUM|MINMAX),] [aggregatedef (,aggregatedef)*]]

 FROM module [INTERFACE id]

 [WHERE expressionshort]

 [ORDER BY qualifiedid [ASC|DESC] (, qualifiedid [ASC|DESC])*]

 [USING PARAMETERS parmfield (, parmfield)*]

fieldlist ::=

 field (, field)*

field ::=

 qualifiedfieldid |

 expressionshort AS id [TITLE string]

cursor ::=

[fieldlist [, cursor]] AS CURSOR id

aggregatedef ::=

 aggregateexp [AS id [TITLE string]] [ON idOrQualifiedid]

aggregateexp ::=

 SUM() |

 MIN() |

 MAX() |

 PCT(idOrFunctionfieldid, idOrFunctionfieldid) |

 MUL(idOrFunctionfieldid, idOrFunctionfieldid) |

 DIV(idOrFunctionfieldid, idOrFunctionfieldid) |

 constExpressionShort

parmfield ::=

 id (TYPE|:) typeid [TITLE string] [DEFAULT constExpressionShort]

Commands

MQL Language Reference 4

Universe and Field Selection

The basic functionality of the mselect command is the selection of fields from a Universe. The

Universe is selected in the from clause, and fields used elsewhere in the query are taken from this
Universe.

Unlike SQL, Universes cannot be joined in the from clause. If a join of Universes is required, then
a new Universe must be defined. Note that all Maconomy relations are also available as
Universes.

Column Selection

The fields in the select clause define the order of the columns in the result. The fields also
determine the root-selection of the used Universe. The root-selection is quite complex, but
normally you do not need to be concerned with this issue. See the Deltek Maconomy Language
Reference MUL for further information.

The following example shows the selection of two fields from the ‘Employee’ Universe, which is
also a Maconomy relation:

mselect EmployeeNumber, Name1 from Employee

EmployeeNumber

EmployeeNumber

String

Name1

(Name)

Name 1

(Title)

String

(Type)

1011 Hansa Mujaf

1012 Joe Daniels

Unlike SQL, there is no group-by clause in MQL where explicit grouping of rows can be defined. If
a field in the select clause is defined using one of the row group functions (see the “Row Group
Functions” section), implicit row grouping is done on the selected fields not defined using a row
group function.

In the following example, the field ‘EmployeeNumberCOUNT’ is defined using a row group
function, and therefore an implicit row grouping is done on the field ‘Country’.

mselect Country,

COUNT(EmployeeNumber) as EmployeeNumberCOUNT

from Employee

order by Country

Country

Country

CountryType

EmployeeNumberCOUNT (Name)

EmployeeNumberCOUNT (Title)

Integer

(Type)

UK 2

USA 10

Commands

MQL Language Reference 5

Universe Interface Option

Different interfaces can be defined in a Universe, allowing different views of the data model
defined in the Universe. The interface used in the query is selected in the from clause. If no
interface is specified, the default interface is used.

Distinct Option

The distinct option in the select clause specifies how to handle duplicate rows in the result. If the
option is selected, duplicate rows are filtered out. By default, the distinct option is not selected, that
is, all rows in the result are shown.

Field Definition

New fields can be defined in the select clause using the Maconomy functions defined in the
“Maconomy Functions” section. Unlike SQL, all fields have an associated title. The title of a new
field is defined by the title option. If no title is defined, the name of the field is used as the title.

In the following example, the Boolean field “Employed2003” is defined, indicating if the employee
was employed in the year 2003. Also, the Boolean field “Employed” is defined, indicating if the
employee is currently employed:

 mselect EmployeeNumber,

 Name1,

 DateEmployed inrange [2003.01.01 .. 2003.12.31] as

 Employed2003,

 DateEndEmployment = date’nil as Employed title “Employed ?”

 from Employee

EmployeeNumber

EmployeeNumber

String

Name1

Name 1

String

Employed2003

Employed2003

Boolean

Employed

Employed ?

Boolean

1011 Hansa Mujaf Yes Yes

1012 Joe Daniels No No

...

Structuring the Result

Unlike SQL, Mselect contains features for structuring the result of the query. The result structure
might be ignored if the location where the command is executed does not support this feature. See
“Where to Use SQL.”

Aggregate Definition

With an aggregate definition, the sum, minimum, and maximum of values in a result column can
be calculated. This kind of aggregate is called column aggregates. Further aggregates can be
defined using the column aggregates as input for some simple calculations. This kind of aggregate
is called aggregate aggregates.

Column Aggregates

Column aggregates can be defined explicitly for each column or defined implicitly for all integer,
real, and amount columns for which a row group function is used. With the explicit definition, the
aggregate can be assigned to a name and given a title, whereas with the implicit definition, names
are constructed from the column name. The names of aggregates can be used when referring to
the aggregates, for example in Universe Reports, where the aggregates can be used in the layout
file.

Commands

MQL Language Reference 6

Implicit column aggregates are performed on all integer, real, and amount columns defined using
a row group function. Valid values for the implicit column aggregate definition are as follows.

ALL Sum, minimum, and maximum of all columns defined using a row
group function are calculated.

SUM Sum of all columns defined using a row group function is
calculated.

MINMAX Minimum and maximum of all columns defined using a row group
function are calculated.

If no name is specified in an explicit column aggregate definition, a name is assigned to the
aggregate exactly as if it was implicitly defined.

In the following example, aggregate calculation is performed on the real column
‘NumberOfWeekSUM’, which is a field in the Universe “JobUniverse” defined using the row group
function SUM. Aggregate calculation is also performed on the integer column “cTrans,” defined in
the query using the row group function COUNT. Note that aggregate calculation is not performed
on the integer column “integerField” because it is not defined using a row group function. Notice
also the names assigned to the aggregates.

 mselect Employee.EmployeeNumber,

 Employee.Name,

 NumberOfWeekSUM as hours,

 1 as iField,

 count(Employee.EmployeeNumber) as cTrans

 aggregate all

 from JobUniverse

 where TimeSheet.PeriodStart inrange [2003.01.01 .. 2003.12.31]

 order by Employee.EmployeeNumber

Employee.EmployeeNumb

er

EmployeeNumber

String

Employee.Name

Name 1

String

hours

???

Real

iField

???

Integer

cTrans

???

Integer

1011 Hansa Mujaf 70.0 1 2

1012 Joe Daniels 47.5 1 7

 117.5

(hours$SUM)

 9

(cTrans$SUM)

 47.5

(hours$MIN)

 2

(cTrans$MIN)

 70.0

(hours$MAX)

 7

(cTrans$MAX)

In the following example, an explicit column aggregate is defined to calculate the sum of the
“iField” column, which is not included in the implicit column aggregations because the column is
not defined using a row group function. Note the name “iFieldMin” assigned to the “min” explicit-
aggregate definition of the “iField” column.

Commands

MQL Language Reference 7

 mselect Employee.EmployeeNumber,

 Employee.Name,

 NumberOfWeekSUM as hours,

 1 as iField,

 count(Employee.EmployeeNumber) as cTrans

 aggregate all,

 sum() on iField,

 min() as iFieldMin on iField

 from JobUniverse

 where TimeSheet.PeriodStart inrange [2003.01.01 .. 2003.12.31]

 order by Employee.EmployeeNumber

Employee.EmployeeNu

mber

EmployeeNumber

String

Employee.Name

Name 1

String

hours

???

Real

iField

???

Integer

cTrans

???

Integer

1011 Hansa Mujaf 70.0 1 2

1012 Joe Daniels 47.5 1 7

 117.5

(hours$SUM)

2

(iField$SUM)

9

(cTrans$SUM)

 47.5

(hours$MIN)

1

(iFieldMin)

2

(cTrans$MIN)

 70.0

(hours$MAX)

 7

(cTrans$MAX)

Aggregate Aggregates

Aggregate aggregates can be defined using column aggregates and constants as input for some
simple calculations. This can, for example, be used for calculation of overall averages.

The simple calculations available are division using “div,” multiplication using “mul,” and %-
calculation using “pct.” An aggregate aggregate cannot be associated with a column; that is, the
“on” option is not valid.

In the following example, implicit column aggregates are defined as in the previous examples.
Additionally, the aggregate aggregate “aaOverallAvg” is defined using the column aggregates
“hours$SUM” and “cTrans$SUM.”

Commands

MQL Language Reference 8

 mselect Employee.EmployeeNumber,

 Employee.Name,

 NumberOfWeekSUM as hours,

 count(Employee.EmployeeNumber) as cTrans

 aggregate all,

 div(hours$SUM, cTrans$SUM) as aaOverallAvg

 from JobUniverse

 where TimeSheet.PeriodStart inrange [2003.01.01 .. 2003.12.31]

 order by Employee.EmployeeNumber

Employee.EmployeeNumber

EmployeeNumber

String

Employee.Name

Name 1

String

hours

???

Real

cTrans

???

Integer

1011 Hansa Mujaf 70.0 2

1012 Joe Daniels 47.5 7

 117.5

(hours$SUM)

9 (cTrans$SUM)

 47.5 (hours$MIN) 2 (cTrans$MIN)

 70.0 (hours$MAX) 7 (cTrans$MAX)

13.056 (aaOverallAvg)

Cursor Definition

A cursor is a named group of result columns. Naming a group of columns is needed when
references are made to multiple queries. This is the case in MRL Reports where multiple queries
can be defined and referred to in the layout of the report.

A cursor can contain a subcursor. A subcursor specifies that for each different value of the result
row outside the subcursor, a list of rows with values inside the subcursor is to be generated. A
subcursor is needed in connection with the aggregate option, when a subtotal is needed for a
group of columns.

The cursor definitions are ignored if the location where the command is executed does not support
this feature. See Where to Use MQL.

In the following example, a subcursor named “JobCursor” is defined, grouping the job related
columns. The effect is that for each employee row, a list of rows (one row for each job), and a
subtotal for each employee is generated.

Commands

MQL Language Reference 9

 mselect [Employee.EmployeeNumber,

 Employee.Name,

 [Job.JobNumber, NumberOfWeekSUM] as cursor JobCursor

] as cursor EmployeeCursor

 aggregate sum

 from JobUniverse

 where TimeSheet.PeriodStart inrange [2003.01.01 .. 2003.12.31]

 order by Employee.EmployeeNumber, Job.JobNumber

Employee.EmployeeNu

mber

EmployeeNumber

String

Employee.Name

Name 1

String

Job.JobNumber

???

String

NumberOfWeekSUM

???

Real

1011 Hansa Mujaf 10 40.0

 20 30.0

 70.0

(NumberOfWeekSUM$SUM)

1012 Joe Daniels 10 37.5

 30 10.0

 47.5

(NumberOfWeekSUM$SUM)

 117.5

(NumberOfWeekSUM$SUM)

Restriction

Restrictions on the result rows can be specified in the where clause of the mselect command. A

large number of Maconomy functions are available for restriction specifications. See Maconomy
Functions.

In the following example, all employees who are employed later than the beginning of this month
are listed:

 mselect EmployeeNumber, Name1

 from Employee

 where DateEmployed >= getfirstofmonth(getdate())

 order by EmployeeNumber

Unlike SQL, the mselect command does not have a having clause. In SQL, the having clause is

used for restrictions that contain a row group function. In Mselect, such restrictions are also
specified in the where clause.

In the following example, all countries with fewer than 5 employees are shown.

 mselect Country

 from Employee

 where COUNT(EmployeeNumber) < 5

 order by Country

Commands

MQL Language Reference 10

Unlike in SQL, in MQL subqueries cannot be used in a restriction. A subquery is a query used in
the where clause. Subqueries will be introduced in a future version of MQL. Note that subqueries
can be used in a restriction defined in the Universe.

Ordering

The order of the result rows can be specified in the order-by clause. Unlike in SQL, in MQL only
fields selected in the select clause can be used for ordering. It is always a good idea to specify the
order-by clause, because if it is not specified, the order is undefined.

The result rows may be sorted in ascending or descending order. Valid values for the order option
are as follows.

ASC Ascending sorting, this is the default value.

DESC Descending sorting.

In the following example, the result rows are ordered ascending on the field
“Employee.EmployeeNumber” and then descending on the field “Job.JobNumber.”

 mselect Employee.EmployeeNumber,

 Employee.Name,

 Job.JobNumber,

 NumberOfWeekSUM

 from JobUniverse

 order by Employee.EmployeeNumber asc,

 Job.JobNumber desc

Employee.EmployeeNumber

EmployeeNumber

String

Employee.Name

Name 1

String

Job.JobNumber

???

String

NumberOfWeekSUM

???

Real

1011 Hansa Mujaf 20 30.0

1011 Hansa Mujaf 10 40.0

1012 Joe Daniels 30 10.0

1012 Joe Daniels 10 37.5

Parameter Definition

The mselect command can be parameterized using the parameter section of the command.

Parameterization of an mselect command can be used in parts of the Maconomy system that

support this feature. See Where to Use MQL.

The advantage of formal parameter specification is that type-safe values can be assigned at
execution time, and that a command can be validated without being executed (static validation).

A parameter defined in the parameter section can be used as any other field reference. The type
of the parameter must be specified, whereas the title and default value are optional. If a default
value is specified, this value is used if no actual value is given at execution time.

In the following example, all employees employed within a given date range are listed. If
“parmDateBegin” equals 2003.01.01 at execution time, all employees employed after the first of
January 2003 are listed. If no actual values for the parameters are given at execution time,
employees employed after today are listed.

Example:

Commands

MQL Language Reference 11

 mselect EmployeeNumber, Name1

 from Employee

 where DateEmployed inrange [parmDateBegin .. parmDateEnd]

 order by EmployeeNumber

 using parameters parmDateBegin type date default date’today,

 parmDateEnd type date

Common Syntax

This section describes common elements of the MQL language.

Expressions

Expressions are used in restrictions and in field definitions. Every expression has an associated
type, which is inferred from the explicit type given by field reference, by type given by constant, or
by type given by function type schema. A type error occurs if the inferred type does not match the
expected type of an expression. If for instance an expression is used as a restriction, the type of
the expression must be the type Boolean. Note that implicit type conversions are not performed.
Functions are available for doing explicit type conversions.

expressionShort ::=

 subExpressionShort |

 fieldExpressionShort |

 constExpressionShort |

 functionExpressionShort

subExpressionShort :: =

 (expressionShort)

fieldExpressionShort :: =

 qualifiedfieldid | .id | functionfieldid

functionExpressionShort :: =

 functionExpressionShortInfix |

 functionExpressionShortPrefix

functionExpressionShortInfix :: =

 expressionShort * expressionShort |

 expressionShort / expressionShort |

 expressionShort DIV expressionShort |

 expressionShort + expressionShort |

 expressionShort - expressionShort |

 expressionShort < expressionShort |

 expressionShort <= expressionShort |

 expressionShort > expressionShort |

 expressionShort >= expressionShort |

 expressionShort = expressionShort |

 expressionShort != expressionShort |

 expressionShort <> expressionShort |

 expressionShort AND expressionShort |

 expressionShort OR expressionShort |

 expressionShort INRANGE [expressionShort .. expressionShort] |

 expressionShort IN expressionShort Special function

FunctionExpressionShortPrefix ::=

 - expressionShort |

 ! expressionShort |

 NOT expressionShort |

 id (expressionShort {,expressionShort}*) |

Commands

MQL Language Reference 12

 id ()

Identifiers

id ::=

 char (char | num)*

module ::=

 id(::id)* Job::EmployeeReport

qualifiedid ::=

 id(.id)* Jobheader.JobNumber

functionfieldid ::=

 qualifiedid $ id Jobheader.JobNumber$SUM

idOrQualifiedid ::=

 id | qualifiedid

idOrFunctionfieldid ::=

 id | functionfieldid

Types

typeid ::=

 STRING | INTEGER | REAL | AMOUNT | BOOLEAN |

 id CountryType

Apart from the basis types, the Maconomy pop-up types are also available.

Literals

constExpressionShort ::=

 kernelString | templateString | rawString |

 integer | real | amountValue |

 booleanValue | dateValue | timeValue |

 typedValue

templateString ::=

 "(char)*" "Template

string"

kernelString ::=

 @(char)*@ @Kernel

string@

rawString ::=

 '(char)*' 'Raw

string'

integer ::=

 [-]num+

real ::=

 [-]num+ . num+

Commands

MQL Language Reference 13

0.5434

 -

1010.999

amountValue ::=

 [-]num+ . num num A

100.50A

 -

2000.50A

booleanValue ::=

 true | false

dateValue ::=

 num num num num . num num . num num

2001.12.31

timeValue ::=

 num num : num num : num num [AM|PM]

23:50:01

10:03:00AM

typedValue ::=

 typeid ′ null |

 typeid ′ id

num ::=

 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

char ::=

 A | .. | Z | Æ | Ø | Å | a | .. | å | ø | å

A template string is localized dynamically before execution of the command. This means that the
string is translated using the dictionary currently selected by the user. Kernel and raw strings are
not dynamically localized.

Maconomy Functions

MQL Language Reference 14

Maconomy Functions

A wide range of functions is available for use in expressions. For each function, a type scheme is
defined. If the types of the arguments to a function do not match the type scheme, a type error is
given.

Note that even if the database is known, database functions are not available.

Predefined Functions

A list of functions exists for every released TPU.

Special Functions

Function Type schema(s)

Description

in (infix operator) (α, string) → Boolean

Returns true if the first argument is in the second argument.
The second argument must be a constant, which is either a
literal or a parameter reference.

The format of the second argument is a user interface range,
for example, "1..10", "1<" for integers, and "T*" for strings. See
elsewhere for format specification.

Row Group Functions

The row group functions create one row from a number of rows using the corresponding database
row group functions.

Function Type schema(s)

Description

sum integer → integer

real → real

amount → amount

Computes the total sum of all values in a group of rows.

min integer → integer

real → real

amount → amount

string → string

Computes the minimum of all values in a group of rows.

Maconomy Functions

MQL Language Reference 15

Function Type schema(s)

Description

max integer → integer

real → real

amount → amount

string → string

Computes the maximum of all values in a group of rows.

avg integer → integer

real → real

amount → amount

Computes the average of all values in a group of rows.

count α → integer

Count the number of rows in a group. Note that unlike sql, null
values appearing from outer joins are included in the count.

Version History

MQL Language Reference 16

Version History

MQL 1.5

The aggregation feature has been extended with explicit column aggregation and aggregate
aggregation. This extension can be used for overall average calculation. See Aggregate
Definition.

MQL 1.4

Internal release, no changes relevant for documentation.

MQL 1.3

Support for raw strings added.

Support for template strings added—that is, dynamic translation of strings.

The special in-operator added, supporting in-range functionality on user interface values.

MQL 1.2

Initial version.

Deltek is the leading global provider of enterprise software and information solutions for government
contractors, professional services firms and other project- and people-based businesses. For decades, we
have delivered actionable insight that empowers our customers to unlock their business potential. 20,000
organizations and millions of users in over 80 countries around the world rely on Deltek to research and
identify opportunities, win new business, recruit and develop talent, optimize resources, streamline
operations and deliver more profitable projects. Deltek – Know more. Do more.®

deltek.com

http://www.deltek.com/

