
The Maconomy RESTful Web Services

Programmer’s Guide
2021

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published September 2021.

© 2021 Deltek Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result
in severe civil or criminal penalties. All trademarks are the property of their respective owners.

©Deltek Inc., All Rights Reserved ii

Revision Date Description

1.0 2015 First version of the programmer’s guide describing the now dep-
recated version of the Maconomy RESTful web services.

2.0 2021 Updated to cover Containers Web Service version 2.0 and addi-
tional new services.

2.1 2021 Configuration added to describe server.ini settings relevant for
the Maconomy RESTful web services covered.

2.2 2021 Updated to cover Containers Web Service version 3.0:
• Tree table panes are now supported and hence dot indices

have been introduced for pointing out Record Positions.
• Partial Data Responses extended to cover the new move

record patch operation.

Media Types covers the version parameter now part of the
custom media types.

Web Access Configuration extended with section about diagnostic
logging.

The different versions of the Maconomy RESTfull web services
are now shortly described in Versions.

2.3 2021 Updated to cover Containers Web Service version 4.0:
• Filtering parameters may be supplied in the request body

instead of as query parameters.
• When no fields parameter is supplied, only key fields are

included in the filter response.
• For table panes with moveable records, the container

Specification exposes a moveMode property and targeted
title properties upTitle, downTitle, indentTitle, and
outdentTitle.

Updated to cover Root Web Service version 2.0.

©Deltek Inc., All Rights Reserved iii

Contents

1 Introduction 1
1.1 REST . 1

1.1.1 Resources . 1
1.1.2 Hyperlinks . 2
1.1.3 Other Styles of Web Services . 2
1.1.4 Further Reading . 2

1.2 cURL . 3
1.3 Version History . 3

1.3.1 Changes in Maconomy 2.5.2 . 4
1.3.2 Changes in Maconomy 2.5.3 . 5
1.3.3 Changes in Maconomy 2.5.4 . 5

2 General 7
2.1 Proxy Requirements . 7
2.2 JSON . 8
2.3 Media Types . 8

2.3.1 Accept Request Header . 8
2.3.2 Content-Type Request Header . 9

2.4 Compression . 10
2.5 Language . 10
2.6 Formats . 10
2.7 Data Types . 11

2.7.1 Integer . 12
2.7.2 Real . 12
2.7.3 Amount . 12
2.7.4 Boolean . 12
2.7.5 String . 12
2.7.6 Date . 13
2.7.7 Time . 13
2.7.8 Enum . 13
2.7.9 Time Duration . 14
2.7.10 Auto Timestamp . 14

iv

CONTENTS

2.8 Authentication . 14
2.8.1 HTTP Basic Authentication . 14
2.8.2 Maconomy Reconnect Authentication 17
2.8.3 Kerberos . 18
2.8.4 OpenID Authentication . 19
2.8.5 Two-Factor Authentication . 21

2.9 Request Identification in APM Logs . 27
2.10 Client Identification in APM Logs . 29
2.11 Status Codes and Errors . 29

2.11.1 Error Responses . 32

3 Root Web Service 35
3.1 Handshake . 38
3.2 Installation . 38

4 Containers Web Service 42
4.1 Specification . 46

4.1.1 Actions . 49
4.1.2 Fields . 53
4.1.3 Foreign Keys . 56
4.1.4 Related Containers . 65

4.2 Filtering . 69
4.2.1 Paging . 72
4.2.2 Sorting . 73
4.2.3 Fields Selection . 74
4.2.4 Restrictions . 75

4.3 Container Instances . 76
4.3.1 Concurrency Tags . 79
4.3.2 Data Resource . 80
4.3.3 Fields Slicing . 82
4.3.4 Deleting an Instance . 86

4.4 Working with Data . 86
4.4.1 Record Positions . 87
4.4.2 Creating a Data Entry . 88
4.4.3 Loading a Data Entry . 94
4.4.4 Adding a Table Record . 98
4.4.5 Updating a Record . 99
4.4.6 Deleting a Record . 101
4.4.7 Moving a Table Record . 102
4.4.8 Printing . 103
4.4.9 Applying an Application Action 105
4.4.10 Partial Data Responses . 107

4.5 Warnings and Notifications . 111
4.5.1 HTML Entity Escaping . 115

©Deltek Inc., All Rights Reserved v

CONTENTS

4.6 Web Access Configuration . 115
4.6.1 Access Lists . 116
4.6.2 Web Access Contract . 118
4.6.3 Diagnostic Logging . 119

5 Popup Types Web Service 120

6 File Drop Web Service 123

7 Logging Web Service 127

8 User Settings Web Service 131

9 Configuration 135
9.1 Root Web Service Configuration . 135

9.1.1 Version Information . 136
9.1.2 Shortnames . 136

9.2 Containers Web Service Configuration . 136
9.2.1 Container Instances Cache Mode 136
9.2.2 Container Instance Expiry . 139
9.2.3 Container Instances Limit . 139
9.2.4 Auto Position Fields . 139

9.3 Popup Types Web Service Configuration 139
9.4 File Drop Web Service Configuration . 140
9.5 Logging Web Service Configuration . 140
9.6 User Settings Web Service Configuration 140

10 Versions 141
10.1 Root Web Service Versions . 141

10.1.1 Root Web Service Version 1.0 . 141
10.1.2 Root Web Service Version 2.0 . 141

10.2 Containers Web Service Versions . 141
10.2.1 Containers Web Service Version 1.0 141
10.2.2 Containers Web Service Version 2.0 142
10.2.3 Containers Web Service Version 3.0 142
10.2.4 Containers Web Service Version 4.0 142

10.3 Popup Types Web Service Versions . 143
10.3.1 Popup Types Web Service Version 1.0 143

10.4 File Drop Web Service Versions . 143
10.4.1 File Drop Web Service Version 1.0 143

10.5 Logging Web Service Versions . 143
10.5.1 Logging Web Service Version 1.0 143

10.6 User Settings Web Service Versions . 144
10.6.1 User Settings Web Service Version 1.0 144

©Deltek Inc., All Rights Reserved vi

CONTENTS

Bibliography 145

Index 146

©Deltek Inc., All Rights Reserved vii

Chapter 1

Introduction

The Maconomy RESTful web services are a collection of programmatic interfaces pro-
viding access to data and business functionality within the Deltek Maconomy ERP
product.

1.1 REST
Before going into details about the Maconomy RESTful web services, it is relevant to
quickly go over what REST is and the concepts and terminology associated with it.

REST stands for Representational State Transfer and refers to a certain architectural
style to be used when creating web services. A web service that is built on REST
principles is said to be RESTful.

1.1.1 Resources

A central concept in REST is the resource. A resource is a domain object that is uniquely
identified by a URL.

When accessing the URL of a resource, one gets a representation of the current state of
that resource back. The same resource may have multiple representations, for example,
XML or JSON. When interacting with a resource, a client program can choose the
representation it prefers.

Resources are accessed and manipulated (read, updated, deleted, and so on) by a fixed
set of HTTP verbs. The verbs used by the Maconomy RESTful web services are GET,
PUT, POST and DELETE [7]. Throughout this document, the GET verb is the one applicable,
if nothing else is mentioned.

1

CHAPTER 1. INTRODUCTION

1.1.2 Hyperlinks

Hyperlinks are a well-known concept from the web and are also pervasive in RESTful
web services. Just like on a web page, hyperlinks there point to related resources.

Hyperlinks are also used to represent available state transitions. For example, to update
the state of a resource, the client program needs to follow some specific hyperlink.
Resources have hyperlinks for all available state transitions.

Each hyperlink has an associated link relation which is simply an identifier that tells
client programs what the hyperlink can be used for (for example, accessing a related
resource, updating, submitting, transferring). When writing client programs, one should
only rely on link relations and consider all URLs opaque. One should never attempt
to guess the URL pattern for any resource. Only the link relation of a hyperlink is
guaranteed to be stable.

The REST principle of enforcing client programs to dynamically discover the service
and its hyperlinks is referred to as Hypermedia as the Engine of Application State, or
HATEOAS in short.

1.1.3 Other Styles of Web Services

REST is often contrasted with other styles of web services exemplified by the SOAP
protocol.

Rather than interacting with stateful resources via a standard set of verbs and following
the standard HTTP application protocol used consistently across many web services from
different sources, a typical SOAP web service offers a list of custom procedures that may
be invoked over the network.

Instead of assigning each domain object a URL that can be used to retrieve and manipulate
the object, a SOAP web service uses ids to refer to domain objects. The ids must then
be supplied to appropriate procedure calls to operate on the objects. HTTP is only
incidentally used to transmit messages, but none of the useful features and properties of
the web architecture are leveraged.

Rather than being discoverable by representing the possible interactions as hyperlinks, a
typical SOAP web service relies on out-of-band means (such as detailed manuals and
specifications) to communicate the interaction protocol for the web service.

1.1.4 Further Reading

It is recommended that developers working with producing or consuming RESTful
web services read the book “REST in Practice: Hypermedia and Systems Architecture”
[12].

©Deltek Inc., All Rights Reserved 2

CHAPTER 1. INTRODUCTION

1.2 cURL
This document uses the free cURL tool for all examples. If cURL is not already installed
on your machine (on macOS and Linux it is likely already installed), you can download
it from here: https://curl.se/.

On Windows, the built-in Command Prompt has poor support for quoting and escaping
URLs and other parameters to cURL. To use the cURL examples in this document, you
must install and use a shell that supports Bash-style quoting and escaping. An easy way
to do this is to install Git for Windows, which comes with the Git Bash shell emulator
and the cURL tool. Git for Windows can be found here: https://git-scm.com/

cURL allows a programmer to make HTTP requests from the command line, and is a
very valuable tool when developing client code that interacts with a web service. In this
document, cURL is used to provide working examples for the functionality, documenting
how to correctly interact with the service.

The full documentation is available from the cURL website, but the following table lists
the options used in this document.

Option Explanatory text

-i Include the HTTP response headers in the output.

-u USERNAME:PASSWORD Use the specified username and password as HTTP Basic
Authentication credentials.

-H 'HEADER: VALUE' Include the specified HTTP header in the request.

-d @FILE Make an HTTP POST request with the contents of given
file in the request body.

-X POST Make an HTTP POST request. If the -d option is not
used, the request will have an empty request body, else, if
the -d option is used, the -X POST can be left out.

-X DELETE Make an HTTP DELETE request.

1.3 Version History
The first version of the Maconomy RESTful web services was released with Maconomy
2.1.3 and consisted of a suite of web services that allowed for a number of different
interactions with a Maconomy installation. Central to the suite of web services is the
Containers Web Service allowing for interaction with the so-called Maconomy containers
which exposes all business functionality in Maconomy.

©Deltek Inc., All Rights Reserved 3

https://curl.se/
https://git-scm.com/

CHAPTER 1. INTRODUCTION

1.3.1 Changes in Maconomy 2.5.2

In the version of the Maconomy RESTful web services released with Maconomy 2.5.2, a
major rewrite of the Containers Web Service has been carried out. The previous version
of the Containers Web Service (CWS1) used a model that in certain situations incurred
a non-negligible performance overhead. For each interaction, the server had to do a large
amount of recalculations.

To address this performance issue, a different interaction model is used in the improved
version of the Containers Web Service (CWS2). To interact with the data within a
container using CWS2, it is necessary to create a so-called container instance holding
important parts of the container’s state. This eliminates the need for the recalculations
that were necessary in CWS1 and has greatly improved performance. CWS2 now performs
on par with other APIs used by Maconomy clients. iAccess for Maconomy 2.5.2 uses
CWS2 and sees significant performance improvements.

In this document, we only describe how to work with CWS2. For a detailed description
of CWS1, we refer to the previous version of this document.

The most important changes to the Maconomy RESTful web services in Maconomy 2.5.2
are summarized below:

• A new Root Web Service has been added. From here, all other active RESTful web
services can be discovered in accordance with the HATEOAS principle.

• All web services now have their own custom media types. This allows for versioning
of the services and for client programs to stay compatible by requesting particular
versions. For backwards compatibility, some web services can still be addressed
with application/json in Accept and Content-Type headers. However, this is
discouraged and in the future, such requests may fail with 406 Not Acceptable
or 415 Unsupported Media Type.

• As described above, the Containers Web Service has been reimplemented in a new
version 2:

1. All interactions with a container’s data now go through a container instance
which needs to be created first (see Container Instances). This has led to a
significant performance improvement.

2. Two features have been added to significantly reduce the amount of data
transferred between the client program and the server:

– You can limit the number of fields returned in data responses (see Fields
Slicing). This is in particular relevant for containers where the client
program is only interested in a small subset of the container’s fields.

– Partial Data Responses is a new feature that, if enabled, causes the server
to reply with only changes to data instead of the full data response. This

©Deltek Inc., All Rights Reserved 4

CHAPTER 1. INTRODUCTION

means that only the changed field values are communicated and unaltered
records are completely left out of the data response.

3. Printing where print layout selection is necessary now works for all containers.
Previously, prints where the client program had to select a print layout did
not work with the Containers Web Service.

4. Containers with variable state now work correctly. Previously, containers with
significant variable state malfunctioned to various degrees. Time Registration
is an example of such a container and so are containers where the client
program has to select in the card pane which records will be displayed in the
table pane.

1.3.2 Changes in Maconomy 2.5.3

In the version of the Maconomy RESTful web services released with Maconomy 2.5.3, the
Containers Web Service now fully supports data containers that have tree table panes
with hierarchically organized records. From a client program’s perspective, the main
differences are:

• JSON objects received as representations of table pane records now reflect any
hierarchical structure.

• Record Positions are pointed out by so-called dot indices.

• A new move record patch now occurs in connection with Partial Data Responses.

With the File Drop Web Service included in Maconomy 2.5.3, a file drop can no longer
be both resolved and retrieved by a client program. Instead a file drop can now either
be resolved or retrieved.

1.3.3 Changes in Maconomy 2.5.4

In the version of the Maconomy RESTful web services released with Maconomy 2.5.4,
Filtering and foreign key searching (see Foreign Keys) in Containers Web Service have
changed in the following ways:

• The filtering parameters fields, restriction, orderBy, offset, and limit may
now be supplied as properties of a JSON object in the body of a filter or foreign
key search POST request instead of as query parameters.

• When no fields parameter is supplied with a filter or foreign key search request,
only key fields are included in the filter response.

Also, the Specification of a container’s table pane now holds more details about any
defined move action, allowing client programs to discover in advance if records may only
be moved around inside their current context.

©Deltek Inc., All Rights Reserved 5

CHAPTER 1. INTRODUCTION

Finally, the version information exposed as part of a root resource representation in the
Root Web Service has been streamlined and thus extended with an application build
number.

©Deltek Inc., All Rights Reserved 6

Chapter 2

General

This chapter covers some of the concepts that are relevant across all the Maconomy
RESTful web services.

2.1 Proxy Requirements
To be secure, the Maconomy RESTful web services must be deployed behind an SSL/TLS
termination proxy (a reverse proxy) encrypting the traffic between the server and the
client. Direct access via http must be blocked, and the client’s use of the https protocol
must be communicated to the web service by having the proxy set the following request
header:

X-Forwarded-Proto: https

In order to eliminate any header injection vulnerability, the reverse proxy must flush
the dominating X-Forwarded-Host header and populate it with the host information
expected to appear in the hyperlinks produced by the web services.

Also, if the path of the root resource of the Maconomy RESTful web services is configured
to something other than /, the reverse proxy must pass this information along using a
Maconomy-Forwarded-Base-Path request header. If, for example, the root resource is
available at /maconomy-api, the following header must be set by the reverse proxy:

Maconomy-Forwarded-Base-Path: maconomy-api

7

CHAPTER 2. GENERAL

2.2 JSON
Every resource of the the Maconomy RESTful web services can be requested in a JSON
format [1, 4] only.1

JSON is a lightweight data interchange format derived from JavaScript. It is widely
used in RESTful web services and is prominent in dynamically typed languages such as
JavaScript, Ruby and Python. Mature tooling and library support is also available for
Java and .NET languages.

2.3 Media Types
Each Maconomy RESTful web service introduces one or more custom JSON media types
covering the JSON representations within the web service. A main purpose of these
custom media types is version handling as explained in this section.

In the chapters Root Web Service, Containers Web Service, Popup Types Web Service,
File Drop Web Service, Logging Web Service, and User Settings Web Service, the latest
custom media type of the web service described is specified. Furthermore, Versions
presents a short description of the different versions of each of the web services and
mentions the related custom media types.

2.3.1 Accept Request Header

Taking the Containers Web Service as an example, the client program signals that it
wants to interact with version 3.0 of the service by including the following custom media
type (or one that it is compatible with) in an Accept header on the request:

application/vnd.deltek.maconomy.containers+json; charset=utf-8; version ←↩
=4.0

It is the value of the version parameter supplied that indicates which version of the
service, the client program wants to interact with. If, for example, version=1.0 instead
of version=3.0 is supplied, then the client program will reach the initial version instead
of version 3.0 of the Containers Web Service.

In general, if the client program supplies version=x.y, then the request will be handled
by some version x.y′ among the available service versions for which y′ ≥ y. If such
a compatible version of the service happens to exist, x.y′ will be the value of the
version parameter of the custom media type sent back in a Content-Type header on
any successful payload carrying response. If no compatible service version exists, a 406
Not Acceptable will be responded.

1There are a few exceptions to this rule. For example, when downloading a file using the File Drop
Web Service, the format is determined by the actual file being downloaded. The media type of a PDF
file, for example, is application/pdf.

©Deltek Inc., All Rights Reserved 8

CHAPTER 2. GENERAL

Note that leaving out a version parameter from the Accept header corresponds to
supplying a version parameter pointing out the latest version of the service. The latest
version will also be the one reached, if no Accept header is supplied at all.

In addition, note that since a request submitted towards version x.y of a service may
in fact be served by version x.y′ for some y′ > y, the client program must be able to
cope with situations where a JSON object received in a response contains some extra
properties compared to a similar version x.y response.

Finally, note that there are resources within the Maconomy RESTful web services whose
representations are not provided in a JSON format. For example, in order to retrieve
a PDF document stored in some file drop on the server (see File Drop Web Service),
the media type application/pdf must be among the types acceptable for the client
program.

2.3.2 Content-Type Request Header

When a client program submits a request body towards some Maconomy RESTful web
service, the media type of the body’s content must always be provided in a Content-Type
header on the request.

For JSON formatted payloads, the Content-Type header on the request must be pop-
ulated with a custom media type that the one derived from the Accept header is
compatible with. That is, if the client program submits an Accept header which leads
to a custom media type with version=x.y being served, then the custom media type
sent in the Content-Type header on the same request must have version=x.y′ for some
0 ≤ y′ ≤ y.

For the Containers Web Service, for example, the following is a valid Content-Type
header for the client program to provide when submitting uncommitted record data along
with a foreign key search request (see Foreign Keys) being handled by version 3.0 of the
service:

Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩
-8; version=4.0

Leaving out the version parameter from a Content-Type header corresponds to supply-
ing a version parameter holding the latest version of the service.

For requests carrying non-JSON formatted payloads, the client program must provide
an appropriate standard media type in the Content-Type header. For example, when
resolving a file drop (see File Drop Web Service), a valid Content-Type request header
contains one of the following two standard media types: application/octet-stream or
multipart/form-data.

If the client program provides an invalid Content-Type header along with a payload
carrying request, a 415 Unsupported Media Type response is sent back. This is also

©Deltek Inc., All Rights Reserved 9

CHAPTER 2. GENERAL

the response when the client program does not include a payload and a Content-Type
header when required.

2.4 Compression
The Maconomy RESTful web services support gzip compression via the standard HTTP
mechanism [5, section 14.4]. If a client program includes gzip in an Accept-Encoding
HTTP header on a request, the server will gzip compress the body of the response.
HTTP client library code normally handle compressed responses transparently. In cURL
it can be handled by using the --compress option.

2.5 Language
As described in the Root Web Service section, the state of the outermost root resource
includes a list of languages supported by the Maconomy system, for example:

"languages": [
{

"title": "Dansk (Danmark)",
"locale": "da_DK",
"tag": "da-DK"

},
{

"title": "English (United States)",
"locale": "en_US",
"tag": "en-US"

}
]

In this example, the system is configured to support two languages, Danish and US
English.

To specify the preferred language for a resource, include an Accept-Language HTTP
header in the request holding the relevant language tag. For example, to get the resource
state in US English include -H 'Accept-Language: en-US', or, to get the resource state
in Danish, include -H 'Accept-Language: da-DK'.

To unambiguously apply the language preference, it is recommended that client programs
include an Accept-Language HTTP header with all requests. The value of the header
should be the exact language tag value of one of the supported languages.

2.6 Formats
Preferred formats can be indicated by inclusion of a Maconomy-Format HTTP header in
a request. This is significant in the cases where the server will apply formatting to the

©Deltek Inc., All Rights Reserved 10

CHAPTER 2. GENERAL

data. For example, when printing an expense sheet using the Containers Web Service,
the user’s date format and decimal separator should be used in the printed document.
Conversely, the formats do not apply to container data values that are independent of
the user’s locale and format preferences.

Consider the following example:

Maconomy-Format: date-format="dd-MM-yyyy", time-format="HH:mm", thousand- ←↩
separator=".", decimal-separator=",", number-of-decimals=2

This example shows all the possible format directives that the client program may specify.
Not all possible date and time formats are supported by the Maconomy system.

Directive Explanatory text

date-format This directive indicates how the server should format date
values.

time-format This directive indicates how the server should format time
values.

thousand-separator This directive indicates the character used as a thousand
separator.

decimal-separator This directive indicates the character used as a decimal
separator.

number-of-decimals This directive indicates the number of decimals to include.

2.7 Data Types
Maconomy uses eight primitive data types. For container data resources (see Containers
Web Service), these data types are embedded in JSON objects and are encoded in a
locale-independent way.

Several Maconomy data types use the number grammar rule of the JSON data interchange
format [4]. For reference the number grammar rule is defined as [11]:

number = [minus] int [frac] [exp]
decimal-point = %x2E ; .
digit1-9 = %x31-39 ; 1-9
e = %x65 / %x45 ; e E
exp = e [minus / plus] 1*DIGIT
frac = decimal-point 1*DIGIT
int = zero / (digit1-9 *DIGIT)
minus = %x2D ; -
plus = %x2B ; +
zero = %x30 ; 0

©Deltek Inc., All Rights Reserved 11

CHAPTER 2. GENERAL

2.7.1 Integer

The integer data type consists of negative and non-negative integer values: {..., -1, 0, 1,
...}.

Integer values are represented as a JSON number that must conform to the number
grammar rule [4] with the additional restriction that the number must be an integer.
Integers should not include a fraction or exponent part. Numbers may be accepted if
they include a fraction and/or exponent part as long as they are integers. Examples of
acceptable values are 1000 and -549.

2.7.2 Real

The real data type is a floating point data type.

Real values are encoded as JSON numbers. Values must conform to the number grammar
rule [4]. Examples of acceptable values are 100, .892, 2e10, and 314159e-5.

2.7.3 Amount

The amount data type is used to represent monetary values as a number of hundredths
(cents).

Amount values are encoded as integers that represent the number of hundredths in the
amount value. The restrictions and recommendations for encoding integers in JSON also
apply to amounts. Examples of acceptable values are 0, 1000, -5795.

2.7.4 Boolean

The boolean data type consists of the values true and false.

Booleans are represented as the JSON values true and false.

2.7.5 String

The string data type is used to represent text. The character set used is determined
by the enclosing JSON document and may be indicated in the Content-Type header.
UTF-8 is the default. Note that Unicode characters may be escaped using the \uXXXX
where X is a hexadecimal digit.

String values are represented as JSON string values and must conform to the string
grammar rule [4]. Examples of acceptable values are "" and "Hello world".

©Deltek Inc., All Rights Reserved 12

CHAPTER 2. GENERAL

2.7.6 Date

The date data type is used to represent a date that is composed of the year, month, and
day.

Date values are represented as a JSON string [4] whose contents conform to the date
format YYYY-MM-DD. YYYY is the year (for example, 2014). MM is the month (01 is January,
02 is February, ..., 12 is December). DD is the day of the month (01, 02, ..., 31). In
addition, to conforming to the format, a date value must be a valid date in the Gregorian
calendar.

The date data type also has a special null data value that is represented as an empty
string.

Examples of acceptable values are: "", "1950-04-05", "1945-04-25", "1946-12-16",
and "1945-11-15".

2.7.7 Time

The time data type is used to represent a time that is composed of hour, minutes, and
seconds.

Time values are represented as a JSON string [4] whose contents conform to the time
format hh:mm:ss where hh is the hour (00, 01, ..., 23), mm are the minutes (00, 01, ...,
59) and ss are the seconds (00, 01, ..., 59).

The time data type also has a special null data value that is represented as an empty
string.

Examples of acceptable values are: "", "10:59:23", and "19:21:49".

2.7.8 Enum

The enum data type (also called popup types in Maconomy) is a class of types. Each
particular enum type has a list of possible values. One example of an enum type is
CountryType, where the possible values are the countries available in the system.

In some contexts (for example, within expressions), enum values are written using the
notation PopupType'PopupLiteral, but in order to avoid the need to parse this enum
notation client-side, enum values are represented as a JSON string [4] that contains only
the enum literal value. For example, the value CountryType'Norway is encoded as the
literal string "norway".

All enum types have a special nil enum value which is represented as the string
"nil".

©Deltek Inc., All Rights Reserved 13

CHAPTER 2. GENERAL

2.7.9 Time Duration

The time duration data type is a special purpose variant of the real data type. It has
the same JSON representation as the real data type, but it specifically represents a time
duration and should be formatted accordingly by client programs if the value is to be
presented in a user interface, print, or similar context.

2.7.10 Auto Timestamp

The auto timestamp data type is a special purpose variant of the string data type. It
has the same JSON and representation as the string data type.

2.8 Authentication
Most requests towards the Maconomy RESTful web services require authentication and
in this section the protocols currently supported are presented.

Authentication may entail transmission of credentials on a request and therefore, as
described in Proxy Requirements, the Maconomy web services must be deployed behind
an SSL/TLS termination proxy that encrypts the traffic between the server and the
client. If an SSL/TLS termination proxy is not deployed, the user credentials sent to the
Maconomy RESTful web services are vulnerable to eavesdropping by an attacker.

2.8.1 HTTP Basic Authentication

Requests towards the Maconomy RESTful web services can be authenticated using HTTP
Basic Authentication [8].

Any HTTP client library normally has the ability to send HTTP Basic Authentication
credentials to the server. However, for completeness, the following describes the simple,
underlying mechanism.

When a client program tries to interact unauthenticated with a resource requiring
authentication, the server responds with the status 401 Unauthorized and includes a
WWW-Authenticate HTTP header indicating the method of authentication to be used
to gain access to the resource. In the Maconomy case, this header looks something like
this:

WWW-Authenticate: Basic realm="Maconomy"

The token Basic in the header indicates that the server requires the client to use HTTP
Basic Authentication, and hence the client has to construct HTTP Basic Authentication
credentials and retry the request.

The following is a simple Python program illustrating how to compute such creden-
tials:

©Deltek Inc., All Rights Reserved 14

CHAPTER 2. GENERAL

username = u"Administrator"
password = u"123456"

1. Combine the username and password separated by colon
combined = username + ":" + password

2. Encode the string into UTF-8 yielding sequence of bytes
utf8_bytes = combined.encode("utf-8")

3. Encode the byte sequence into Base64
base64_chars = base64.b64encode(utf8_bytes)

4. Prepend the result with the string "Basic " to indicate the ←↩
authentication method

authorization = "Basic " + base64_chars

In this example, the client program must retry the request, supplying the following
header:

Authorization: Basic QWRtaW5pc3RyYXRvcjoxMjM0NTY=

Note that Franks et al. [8] implicitly requires the credentials to be encoded as ISO-8859-1
by using the TEXT grammar rule defined in Fielding et al. [7]. However, most (but not all)
modern browsers encode the credentials as UTF-8. The Maconomy RESTful web services
follow the modern convention and require user credentials to be UTF-8 encoded. This
allows a wider range of special characters to appear in usernames and passwords.

Also note that while encoding the string as Base64 masks the password, it is trivially
reversible and completely insecure in itself. That is why the web service must be deployed
behind an SSL termination proxy to be secure (see Proxy Requirements).

Suppressing the Browser’s Login Prompt

Client programs that run in a web browser by default get the browser’s native login
prompt when the web service requires authentication. The reason is that when the
web browser detects the Basic authentication scheme in the WWW-Authenticate HTTP
response header, it automatically intercepts the response and shows its native login
prompt.

If a browser-based client program prefers to handle logins itself using a web UI instead of
the native login prompt, it must include the following custom HTTP request header:

Maconomy-Authentication: X-Basic

This causes the server to modify its subsequent WWW-Authenticate challenge to advertise
the X-Basic authentication scheme rather than the Basic authentication scheme:

©Deltek Inc., All Rights Reserved 15

CHAPTER 2. GENERAL

WWW-Authenticate: X-Basic realm="Maconomy"

Note that the client program must still use the Basic authentication scheme, rather than
X-Basic, when it supplies the username and password via the Authorization HTTP
request header.

Expired User Passwords

If the user’s password has expired, a request fails with a 401 Unauthorized status and
the WWW-Authenticate HTTP header included in the response will indicate the custom
authentication method X-ChangePassword offered by the server:

WWW-Authenticate: X-ChangePassword realm="Maconomy"

The change password authentication method authenticates the request and changes the
user’s password. The credentials are computed in a way similar to the standard HTTP
Basic Authentication described above:

username = u"Anders Hansen"
old_password = u"123456"
new_password = u"654321"

1. Combine the username, old password and new password with the required ←↩
separators

combined = username + ":" + old_password + "\n" + new_password

2. Encode the string into UTF-8 yielding sequence of bytes
utf8_bytes = combined.encode("utf-8")

3. Encode the byte sequence into Base64
base64_chars = base64.b64encode(utf8_bytes)

4. Prepend the result with the string "X-ChangePassword " to indicate ←↩
the authentication method

authorization = "X-ChangePassword " + base64_chars

The difference here is that the combined credentials are appended with a single line feed
character followed by the new password. The line feed character is usually written as \n
in string literals in programming languages. Also, the token indicating the authentication
method is X-ChangePassword, rather than Basic.

In the above example, the client program can resolve the situation by retrying the request
with the following HTTP request header:

Authorization: X-ChangePassword QW5kZXJzIEhhbnNlbjoxMjM0NTYKNjU0MzIx

©Deltek Inc., All Rights Reserved 16

CHAPTER 2. GENERAL

The user’s password is then changed to 654321 and the client program can use regular
HTTP Basic Authentication for the following requests.

Note that the X-ChangePassword authentication method may be used at any time to
allow a user to change his password.

2.8.2 Maconomy Reconnect Authentication

The Maconomy RESTful web services support a proprietary authentication mechanism
known as the Maconomy Reconnect Authentication. This authentication option allows
the client program to acquire a reconnect token on login and then use this token for
authentication in subsequent requests. Using reconnect tokens when issuing a series
of requests improves performance as the server then does not have to spend time on
expensive hash calculations doing password verification.

A client can have a Maconomy reconnect token returned either in an HTTP session
cookie or in a custom Maconomy-Reconnect HTTP header. If the client program is
browser-based, it is strongly recommend to use the HTTP session cookie option as it
offers protection against several kinds of session theft attacks while relieving the web
service client code from having to manage the login session.

HTTP Session Cookie

This is the workflow of using Maconomy Reconnect Authentication via an HTTP session
cookie:

1. The client program authenticates (for example, using HTTP Basic Authentication),
including the following header on the request:

Maconomy-Authentication: X-Cookie

2. The response received from the server includes a Set-Cookie header holding a
Maconomy reconnect token session cookie and a Maconomy-Cookie header holding
the name of that session cookie.

3. On subsequent requests, the client includes the following header, where <cookie
name> is replaced by the session cookie name received from the server:

Authorization: X-Cookie <cookie name>

4. Each response received from the server may include a Set-Cookie header which
updates the stored session cookie.

5. On the last request, the client includes the following header to indicate that the
server can log the user out and release any cached resources:

Maconomy-Authentication: X-Log-Out

©Deltek Inc., All Rights Reserved 17

CHAPTER 2. GENERAL

6. The response received from the server includes a final Set-Cookie header that will
expire the session cookie, causing it to be deleted from the client’s cookie store.

A Maconomy reconnect token HTTP session cookie is always marked with httpOnly to
protect it from being accessed directly by client-side scripts. If the server detects that an
authentication request is performed on a secure channel, it also marks the cookie with
secure to prevent it from being used for unencrypted requests.

Maconomy-Reconnect HTTP header

This is the workflow of using Maconomy Reconnect Authentication via a Maconomy-Reconnect
HTTP header:

1. The client program authenticates (for example, using HTTP Basic Authentication),
including the following header on the request:

Maconomy-Authentication: X-Reconnect

2. The response received from the server includes a Maconomy-Reconnect header
holding a Maconomy reconnect token.

3. On subsequent requests, the client includes the following header, where <reconnect
token> is replaced by the reconnect token received from the server:

Authorization: X-Reconnect <reconnect token>

4. Each response received from the server may include a Maconomy-Reconnect header,
and the client must always use the most recently received reconnect token.

5. On the last request, the client includes the following header to indicate that the
server can log the user out and release any cached resources:

Maconomy-Authentication: X-Log-Out

2.8.3 Kerberos

Kerberos Domain Credentials

If a Maconomy system is set up to use Kerberos authentication, any HTTP Basic Authen-
tication credentials will, by default, be interpreted as Kerberos domain credentials.

As described in Installation, the state of an installation resource includes information
about enabled authentication schemes, and by examining this, a client program should
be able to figure out if and how to use Kerberos domain credentials. In a Kerberos
authentication enabled system, the JSON object held in the authentication property
of the installation resource state will look something like this:

©Deltek Inc., All Rights Reserved 18

CHAPTER 2. GENERAL

{
"useDomainCredentialsForBasicAuthentication": true,
...,
"kerberos": {

"kdc": "PSO-DC.PSO.COM",
"realm": "PSO.COM",
"realms": {

"PSO.COM": {
"kdc": "PSO-DC.PSO.COM",
"name": "PSO.COM"

}
},
"serviceName": "MACONOMYSSO/PSO.COM"

},
...

}

The useDomainCredentialsForBasicAuthentication property holding the boolean
value true indicates that Kerberos authentication is enabled. Information about the
available Kerberos realms can be found in the kerberos property.

If a client program needs to use Maconomy credentials in a Kerberos authentication
enabled system, this has to be indicated by inclusion of the following HTTP request
header:

Maconomy-Authentication: X-Force-Maconomy-Credentials

Such a request header indicates to the server that any credentials sent with the request
are Maconomy credentials.

Kerberos Single Sign-On

If a Maconomy system is set up to use Kerberos Single Sign-On (SSO), the web service
offers authentication via the Negotiate mechanism [7]. The purpose of this mechanism is
to allow SSO by letting the client program, for example, the user’s web browser, obtain a
Kerberos ticket for the web service without user interaction. The web service forwards
these credentials to the Maconomy system for verification.

2.8.4 OpenID Authentication

If a Maconomy system is set up to use the OpenID Connect protocol [10] for authentication,
the web service accepts authorization codes issued by the configured OpenID provider
(for example, Microsoft Azure). This section assumes basic familiarity with the OpenID
protocol and in particular with the Authorization Code Flow [10, Section 3.1].

As described in Installation, the state of an installation resource includes information
about enabled authentication schemes, and in case of an openID Connect enabled system,

©Deltek Inc., All Rights Reserved 19

CHAPTER 2. GENERAL

this reveals all relevant metadata required to initiate an Authorization Code Flow. For
example:

{
"useDomainCredentialsForBasicAuthentication": false,
"schemes": {

...,
"x-oidc-code": {

"name": "x-oidc-code"
},
...

},
"openIDProviders": [

{
"authorizationEndpoint": "https://login.microsoftonline.com/d2a26c48 ←↩

-d40f-4406-8a62-68073368e07c/oauth2/authorize",
"redirectURI": "https://login.microsoftonline.com/common/oauth2/ ←↩

nativeclient",
"clientID": "29074461-0743-4bc2-a7cc-1e983ac3f2e7"

}
],
...

}

The properties authorizationEndpoint, redirectURI, and clientID tell the client
program how to initiate an authentication request towards the given OpenID provider
(in this case Microsoft Azure) using the Authorization Code Flow.

The redirectURI property holds a redirect URI which is guaranteed to be accepted
by the OpenID provider and typically resolves to an empty web page. Such a redirect
URI can be used by so-called native clients having full control over an embedded user
agent and hence the ability to extract values returned via query or fragment parameters
directly from the location of the user agent. The Workspace Client is an example of such
a client, but in principle a smartphone app could operate in the same way. All non-native
clients (such as pure web apps) have to use a redirect URI of their own that has been
pre-registered with the OpenID provider.

Once the user has successfully authenticated with the identity provider and the client
program has obtained an authorization code, this code can be used as one-time authenti-
cation credentials using the X-OIDC-Code authorization scheme. The string put into the
Authorization request header must then follow the OIDC-Credentials production rule
given by the following grammar:

OIDC-Credentials = "X-OIDC-Code" SP Authz-Cookie
Authz-Cookie = <base64-encoded Authz-Grant (no newlines)>
Authz-Grant = "<" Redirect-URI ">" ":" Authz-Code
Redirect-URI = <URI-Reference, see [RFC3986], Section 4.1>
Authz-Code = *TEXT

©Deltek Inc., All Rights Reserved 20

CHAPTER 2. GENERAL

For example, if a client program has obtained authorization code AABAQE1_2345 by use
of redirect URI https://example.com/oauth2/authorize, then the header to include
in the request will look like this:

Authorization: X-OIDC-Code ←↩
PGh0dHBzOi8vZXhhbXBsZS5jb20vb2F1dGgyL2F1dGhvcml6ZT46QUFCQVFFMV8yMzQ1

Here, the base64-encoded string following the authentication scheme token X-OIDC-Code
encodes the following string:

<https://example.com/oauth2/authorize>:AABAQE1_2345

Note that since OpenID credentials can only be used once, it is wise to also include
a Maconomy-Authentication header holding a reconnect directive in order to obtain
reconnect credentials to be used with subsequent requests (see Maconomy Reconnect
Authentication).

2.8.5 Two-Factor Authentication

If the Maconomy Two-Factor Authentication (2FA) system is enabled, a client program
must provide a second authentication factor along with the standard Authorization
HTTP header. Such second factor consists of a six-digit One-Time Password (OTP)
generated by a TOTP-compatible program running on some device, usually in the form
of a smartphone app (the first T in TOTP stands for time-based).

Since an OTP can be used only once, the user has to supply a new OTP for each and
every request. This is, unless the client program provides a header with the Maconomy
reconnect directive and uses reconnect tokens for authentication on subsequent requests
(see Maconomy Reconnect Authentication). No OTPs are required when using Maconomy
reconnect tokens.

The custom header field Maconomy-OTP is the one to be used by the client when sending
OTPs to the server. This header field is also the one used by the server when details
about authentication failures (OTP is found missing or invalid) need to be communicated
back to the client.

The format of a Maconomy-OTP header when included in a request (always along with an
Authorization header) can be described by the following ABNF:

Maconomy-OTP-Request = "Maconomy-OTP" ":" otp-request-directive
otp-request-directive = "authenticate" ";" "otp" "=" 1*DIGIT

/ "reset" [";" "method" "=" otp-reset-method]
[";" "token" "=" reset-token]

otp-reset-method = quoted-string
reset-token = quoted-string

©Deltek Inc., All Rights Reserved 21

CHAPTER 2. GENERAL

The format of a Maconomy-OTP header when included in a response (always along with a
401 Unauthorized status) can be described by the following ABNF:

Maconomy-OTP-Response = "Maconomy-OTP" ":" otp-response-directive
otp-response-directive = "required" [";" "reset" "=" otp-reset-method]

[";" "enroll" "=" "<" URI-Reference ←↩
">"]

otp-reset-method = quoted-string
URI-Reference = <URI-reference, see [RFC3986], Section 4.1>

The authenticate Directive

The authenticate directive with an otp parameter in a Maconomy-OTP request header is
used by the client to provide an OTP as a second authentication factor. For example, for
the OTP 012345, the following custom header should be included in the request:

Maconomy-OTP: authenticate;otp=012345

The reset Directive

A Maconomy-OTP request header may also contain a reset directive, which is intended
for the cases where a user wants OTP settings reset in order to allow for re-enrollment
with a new 2FA device. As sending a reset token to the user via a trusted channel is part
of such reset procedure, the trusted channel preferred by the user can be specified in the
request header using a method parameter. For example, for email:

Maconomy-OTP: reset;method=email-token

As email-token is in fact the only reset method currently supported by Maconomy, this
method is also the one being applied by default.

If a requested reset procedure is successfully initiated (the Authorization header suc-
cessfully authenticates the user and an email address owned by the user is familiar to the
system), the server sends back a response with the following Maconomy-OTP header:

Maconomy-OTP: required;reset=email-token

The body of this response contains a message instructing the user to find a reset token in
an email sent to the user by the server. To finalize the reset procedure, the reset token
received must to be included in a subsequent request using a token parameter of the
reset directive (notice the double quotes around the token):

Maconomy-OTP: reset;token="<token>"

The server’s response to such reset token request contains a handy enrollment header,
see the required directive.

©Deltek Inc., All Rights Reserved 22

CHAPTER 2. GENERAL

The required Directive

Whenever an OPT is required, but the client submits a request with either no OTP (this
is the case for reset requests, for example) or with an invalid OTP, the server sends back
a 401 Unauthorized response. This response carries an appropriate description of the
situation in its body and holds a Maconomy-OTP header with the required directive.

If an out-of-band reset process is currently in progress, the required directive is ac-
companied by a reset parameter specifying a reset method (see the reset directive),
whereas an enroll parameter is present if the user has no security token device currently
enrolled.

An enroll parameter in a Maconomy-OTP response header holds an enrollment URI
pointing to a Maconomy TOTP key resource. For example:

Maconomy-OTP: required;enroll=<http://SERVER/maconomy-api/auth/macoprod/ ←↩
totp/keyURI?account=Administrator&secret=FY5lYCVs8xIbqx8YDENI70nupSs%3 ←↩
D>

By following such an enrollment URI, the user is able to configure a preferred security
token device which can then provide all the OTPs ever needed.

TOTP Key Resource

A TOTP key resource is a web service endpoint that serves a shared TOTP secret in
different formats suitable for enrollment with a compatible device. URIs to key resources
are discovered via a Maconomy-OTP response header (see the required directive).

A TOTP key resource only supports the HTTP verb GET and no authentication is
required. Furthermore, an Accept request header holding one of the following values is
required:

Value Explanatory text

image/*, image/png A PNG image of a QR code encoding the shared TOTP secret
as a key URI is returned. The code is suitable for scanning
with a range of compatible smartphone apps.

application/json A JSON object containing the key URI in plain text is
returned.

A JSON object returned from a TOTP key resource contains the following fields:

©Deltek Inc., All Rights Reserved 23

https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format

CHAPTER 2. GENERAL

Field Explanatory text

totp-key-uri A key URI encoding the shared TOTP secret.

URIs to TOTP key resources encode sensitive information, and thus client programs
must take measures to ensure that these URIs are not stored in browser histories or
elsewhere where an adversary could get access to them.

2FA Example

To exemplify the concepts of 2FA described above, let us imagine an ExpenseSheets
container filter request (see Filtering) towards the Containers Web Service in a 2FA
enabled Maconomy system (shortname macoprod):

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 401 Unauthorized
Maconomy-OTP: required;enroll=<http://SERVER/maconomy-api/auth/macoprod/ ←↩

totp/keyURI?account=Administrator&secret=FY5lYCVs8xIbqx8YDENI70nupSs%3 ←↩
D>

WWW-Authenticate: Basic realm="Maconomy"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Mandatory two-factor authentication must be configured ←↩

.\nPlease scan the QR code using a supported smartphone app.",
"errorFamily": "service",
"errorSeverity": "error"

}

Here, the Maconomy-OTP header on the response indicates that the user has not yet
enrolled a security token device and that the following TOTP key URI should be followed
in order to do so:

http://SERVER/maconomy-api/auth/macoprod/totp/keyURI?account=Administrator ←↩
&secret=FY5lYCVs8xIbqx8YDENI70nupSs%3D

Using a compatible smartphone app, the user is supposed to scan the QR code in the
PNG image available at this URI and finish off the configuration of a security token app.

©Deltek Inc., All Rights Reserved 24

https://github.com/google/google-authenticator/wiki/Key-Uri-Format

CHAPTER 2. GENERAL

When accomplished, the user is able to generate an OTP, say 980461, and repeat the
request with a Maconomy-OTP header carrying this OTP:

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-OTP: authenticate;otp=980461'
-H 'Maconomy-Authentication: X-Reconnect'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 200 OK
Maconomy-Reconnect: MDVkMmZkOT...JMTAJMTYwODAyMTk3Ng==
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{ ... }

Because a Maconomy-Authentication header with the reconnect directive X-Reconnect
was also included on the request, the response includes a Maconomy-Reconnect header
with a reconnect token. This reconnect token enables OTP free authentication on a
subsequent request (see Maconomy Reconnect Authentication):

$ curl -i
-H 'Authentication: X-Reconnect MDVkMmZkOT...JMTAJMTYwODAyMTk3Ng=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 200 OK
Maconomy-Reconnect: MDVkMmZkOT...JMTAJMTYwODAyMTk3Ng==
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{ ... }

With a security token device enrolled for the user, a TOTP key URI is no longer included
as an enroll parameter to the required directive in the Maconomy-OTP header set on
the response to a request carrying neither an OTP nor a reconnect token:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'

©Deltek Inc., All Rights Reserved 25

CHAPTER 2. GENERAL

'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩
filter'

HTTP/1.1 401 Unauthorized
Maconomy-OTP: required
WWW-Authenticate: Basic realm="Maconomy"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Two-factor authentication required.",
"errorFamily": "service",
"errorSeverity": "error"

}

Also, if the user at some point no longer wishes to (or is able to) use the enrolled security
token device, a reset procedure can be initiated by submitting an authenticated request
with a Maconomy-OTP header holding the reset directive:

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-OTP: reset'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 401 Unauthorized
Maconomy-OTP: required
WWW-Authenticate: Basic realm="Maconomy"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Enter Token [15d7e2d749f92a3340e61d336ea]",
"errorFamily": "service",
"errorSeverity": "error"

}

As part of such a reset procedure, a reset token would normally be sent to the user via
email (the default trusted channel). However, in our example here, the reset procedure
initiated is a simplified procedure for demonstration purposes and therefore a reset token
has been included directly in the response body.

The user is now able to finalize the reset procedure by including the received reset
token 15d7e2d749f92a3340e61d336ea as a token parameter to the reset directive in a
Maconomy-OTP header (note the double quotes around the token) on an authenticated
request:

©Deltek Inc., All Rights Reserved 26

CHAPTER 2. GENERAL

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-OTP: reset;token="15d7e2d749f92a3340e61d336ea"'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 401 Unauthorized
Maconomy-OTP: required;enroll=<http://SERVER/maconomy-api/auth/macoprod/ ←↩

totp/keyURI?account=Administrator&secret=PhImtxfDQI9l7RTMJ50ONBLJFgY%3 ←↩
D>

WWW-Authenticate: Basic realm="Maconomy"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Mandatory two-factor authentication must be configured ←↩

.\nPlease scan the QR code using a supported smartphone app.",
"errorFamily": "service",
"errorSeverity": "error"

}

The user is now back where this example began.

Note that in any real world example, the reset token should never be sent directly back
to the user. By doing so, an attacker in possession of the user name and the password
would be able to remove the OTP-generating token and enroll the attacker’s own token.
The security of using OTPs would be completely undermined.

2.9 Request Identification in APM Logs
All requests originating from the Maconomy RESTful web services are assigned a request
id. This request id can be supplied by the client program via a Maconomy-RequestId
header on the request:

Maconomy-RequestId: REQUEST_ID

If no such Maconomy-RequestId header is included, the server supplies a request id. In
both cases, the assigned request id is communicated back in a Maconomy-RequestId
header on the response.

Note that request ids supplied be the server are unique across all requests, and that any
request id supplied by the client program should be one previously received from the
server.

The purpose of request ids is to ease debugging. All log entries within the Maconomy

©Deltek Inc., All Rights Reserved 27

CHAPTER 2. GENERAL

Application Performance Monitoring (APM) framework refer to a request id, and by
giving the client program control over which id is assigned to a request, it becomes
possible to have log entries relating to the same user interaction refer to the same request
id. Request ids carefully assigned in this way allow the APM to make timing and statistics
based on user interactions rather than single requests.

For example, to associate an instance creation with a subsequent data entry load request
for the ExpenseSheets container using the Containers Web Service:

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-Authentication: X-Reconnect'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Content-Type: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-d '{}'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances'

HTTP/1.1 200 OK
Maconomy-Reconnect: Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ==
Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009e93
Maconomy-RequestId: 58d646d7-f2e5-4837-a1de-c3ef6fab9fe5
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "1701829c-7a34-464c-a7d4-e7f1d9a44537"

},
"links": {

...,
"data:any-key": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/1701829c-7a34-464c-a7d4-e7f1d9a44537/data;any ←↩
",

"rel": "data:any-key"
},
...

}
}

Here, no Maconomy-RequestId request header was included by the client program and
thus the server generated a new unique id for the request. This id appears in the
Maconomy-RequestId header on the response and can now be included on a subsequent

©Deltek Inc., All Rights Reserved 28

CHAPTER 2. GENERAL

data entry load request:

$ curl -i
-H 'Authorization: X-Reconnect Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009 ←↩

e93'
-H 'Maconomy-RequestId: 58d646d7-f2e5-4837-a1de-c3ef6fab9fe5'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/1701829c-7a34-464c-a7d4-e7f1d9a44537/data;any'

HTTP/1.1 200 OK
Maconomy-Reconnect: YTg1ZGY3Ym...wCTEwCTE2MDYyMzE3Mzg=
Maconomy-Concurrency-Control: 8db720b5-015d-4cfe-926a-3edf96f3e724
Maconomy-RequestId: 58d646d7-f2e5-4837-a1de-c3ef6fab9fe5
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{ ... }

As expected, the request id received in the Maconomy-RequestId header on the response
matches the request id passed in the Maconomy-RequestId request header. In this case,
the server did not assign a new id to the request, but simply used the one passed by the
client program.

2.10 Client Identification in APM Logs
All requests originating from the Maconomy RESTful web services are assigned a client
name whose value can be controlled by the client program via a Maconomy-Client header
included on the request:

Maconomy-Client: CLIENT_NAME

The value of this header is included in the Client field on all log entries generated for the
request within the Maconomy Application Performance Monitoring (APM) framework. If
no Maconomy-Client header is included, the Client fields are populated with the value
Web.

2.11 Status Codes and Errors
Each response from a Maconomy RESTful web service contains an HTTP status code
telling whether the request was successful or not. If the request was unsuccessful, the

©Deltek Inc., All Rights Reserved 29

CHAPTER 2. GENERAL

status code indicates what kind of failure occurred and can be used by the client program
to decide on how to proceed.

Most people have encountered the 404 Not Found status while browsing the web. The
three-digit integer status code 404 is the significant part used by the client program to
categorize the error. The status text Not Found is called the reason phrase and is there
to help humans understand the error. The numeric status code is standardized and has
a particular meaning, while the reason phrase may differ between web server software,
may be localized, and so on.

Status codes are categorized into status families by their first digit:

Status Codes Status Family Explanatory text

1xx Informational Request received, continuing process. This family
is not used in the Maconomy RESTful web service
interface.

2xx Success The action was successfully received, understood
and accepted.

3xx Redirect Further action must be taken to complete the
request.

4xx Client Error The request contains bad syntax or cannot be
fulfilled.

5xx Server Error The server failed to fulfill an apparently valid
request.

The following is a list of the status codes that are used by the Maconomy RESTful web
services:

Status Code Reason phrase Explanatory text

200 OK The request has succeeded. If the
request is a GET request, the response
is a representation of the requested
resource. If the request is a POST or
DELETE request, the response may be
the representation of the resource
that was affected by the request.

204 No Content The request has succeeded but the
response contains no content.

©Deltek Inc., All Rights Reserved 30

CHAPTER 2. GENERAL

Status Code Reason phrase Explanatory text

400 Bad Request The request body or headers
contained malformed or incomplete
information. This usually indicates a
programming error in the client
program.

401 Unauthorized The request requires user
authentication and thus the client
program must retry the request with
valid credentials. See Authentication.

403 Forbidden The requested resource or action is
not permitted with the supplied
credentials.

404 Not Found The requested resource was not found.
It may or may not have existed at an
earlier point in time and was
subsequently deleted by another user.

405 Method Not Allowed The HTTP verb applied by the client
program is not allowed for the
resource. For example, a resource
may not support either the GET, the
POST, or the DELETE verb.

406 Not Acceptable The resource cannot be represented in
the media type specified in the
Accept request header.

408 Request Timeout The client did not produce a request
within the time that the server was
prepared to wait. The client may
retry the request.

409 Conflict The request could not be completed
because of a conflict with the current
state of the resource. This may
indicate that the resource was
updated by another user and the
client may thus refresh its current
state of the resource and retry the
request.

©Deltek Inc., All Rights Reserved 31

CHAPTER 2. GENERAL

Status Code Reason phrase Explanatory text

413 Request Entity Too Large The request body was larger than the
maximum size supported by the
server.

414 Request-URI Too Long The request URI/URL was larger
than the maximum length supported
by the server.

415 Unsupported Media Type The server does not support the
media type specified in the
Content-Type request header.

422 Unprocessable Entity The request could not be completed
because of violated application
business logic.

500 Internal Server Error A catch-all status code for unexpected
errors.

Fielding et al. [7] contains a detailed specification of the semantics of each of the status
codes, except for 422 Unprocessable Entity which is adopted from Dusseault [6].

Note that when the Maconomy RESTful web services are deployed behind an HTTP
reverse proxy, the proxy server may use additional status codes. The status code 503
Service Unavailable may, for example, be used to indicate that the Maconomy system
is unreachable.

2.11.1 Error Responses

When an error occurs, the HTTP status code is typically used by client programs to
dispatch to the error handling appropriate for that particular type of error. What is
appropriate depends on the nature of the client program, but in many cases it makes
sense to log or display an error message. The body of the response to an unsuccessful
request contains a descriptive message along with other metadata that can be useful in
signalling the error.

The standard properties found in a JSON object enclosed in an error response are
these:

Property Explanatory text

errorFamily Name of the error family to which the error belongs. Find the
possible values below.

©Deltek Inc., All Rights Reserved 32

CHAPTER 2. GENERAL

Property Explanatory text

errorMessage Error message appropriate for displaying in a user interface or for
reporting in some other way.

errorSeverity Indicates the severity of the error. Find the possible values below.

errorId Currently only present for errors belonging to the application
error family and then holds an id uniquely identifying the error. It
makes sense for the client program to recognize the error using the
error id instead of using the error message. The latter can vary
between Maconomy versions and can be localized, whereas the error
id is guaranteed to be stable.

The possible values of the errorFamily property are:

Error family Explanatory text

application An application error indicates that the request was unsuccessful
because it violated business logic in the Maconomy system.

service A service error indicates a technical problem or some other condition
not caused by the business logic. Interacting with a time sheet that
has been changed or deleted by someone else would for example
trigger a service error.

internal An internal error is an unexpected error that may indicate a problem
in the system setup or a bug in the web service. The server log files
usually contain messages indicating the underlying cause. An example
of this could be that the database is not running.

The possible values of the errorSeverity property are:

Error severity Explanatory text

fatal The fatal severity indicates an unexpected error where an invariant
was violated.

error The error severity indicates a regular error condition, for example, a
business constraint was violated.

warning The warning severity indicates a warning to the user about a
potential problem.

©Deltek Inc., All Rights Reserved 33

CHAPTER 2. GENERAL

For example, if a client program tried to register 30 hours on a Monday in a time sheet
using the Containers Web Service, it would get back a 422 Unprocessable Entity
response with something like this in the body:

{
"errorFamily": "application",
"errorMessage": "The employee's maximum hours are exceeded Monday",
"errorSeverity": "error",
"errorId": "A-9e047846",
"focus": {

"fieldName": "numberday1",
"paneName": "table",
"rowNumber": 0

}
}

The focus property is special for the Containers Web Service and is present because the
error relates to a particular record field. The idea is to allow the client program to put
focus in the problematic field and thereby help the user identify the cause of the error.
The problematic field can be identified by the information held in paneName, rowNumber,
and fieldName.

©Deltek Inc., All Rights Reserved 34

Chapter 3

Root Web Service

The Maconomy RESTful Root Web Service is where it all begins. Starting from its root
resource available at path /BASEPATH (BASEPATH being the information passed by the
reverse proxy in a Maconomy-Forwarded-Base-Path header, see Proxy Requirements), a
client program should be able to discover all parts of the enabled Maconomy RESTful web
services by following hyperlinks. As described further in below sections, the Root Web
Service also exposes useful information like available languages and enabled authentication
schemes.

Now, this is the custom media type covering the JSON representations within the
encompassed version of the Root Web Service (see Media Types):

application/vnd.deltek.maconomy.root+json; charset-utf-8; version=2.0

Starting at the root resource, these are the possible properties of an acquired JSON
representation:

Property Explanatory text

timeInfo Information about the current point in time according to the server.

versions Version information regarding the installed system. This
information can be disabled (see Version Information).

languages Languages available in the system. See Language.

installations Information about the databases installed in the system. The
shortname of each installation can replace the {shortname}
placeholder in the template URL of the installation hyperlink
mentioned in the links property.
The information regarding installations can be disabled (see
Shortnames).

35

CHAPTER 3. ROOT WEB SERVICE

Property Explanatory text

links Hyperlinks available from the root resource. Find the list of link
relations below.

The purposes of the hyperlinks available through the links property listed above are
explained here:

Link relation Explanatory text

handshake1 Reference to the handshake resource version 1. See Handshake.

installation Reference to the root resource of some installation. See Installation.

self Reference to the root resource itself.

For example, for the base path /maconomy-api:

$ curl -i
-H 'Accept: application/vnd.deltek.maconomy.root+json; charset=utf ←↩

-8; version=2.0'
'http://SERVER/maconomy-api'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.root+json; charset=utf-8; ←↩

version=2.0

{
"timeInfo": {

"time": "2020-10-20T12:43:28.462Z[UTC]",
"zone": {

"id": "UTC",
"offset": {

"id": "Z",
"totalSeconds": 0

}
}

},
"versions": {

"apu": {
"major": "21",
"sp": "102",
"hotfix": "0",
"build": "99999999"

},
"tpu": {

©Deltek Inc., All Rights Reserved 36

CHAPTER 3. ROOT WEB SERVICE

"major": "21",
"sp": "102",
"hotfix": "0",
"build": "99999999"

}
},
"languages": [

{
"title": "Dansk (Danmark)",
"locale": "da_DK",
"tag": "da-DK"

},
{

"title": "English (United States)",
"locale": "en_US",
"tag": "en-US"

}
],
"installations": [

{
"shortname": "macoprod",
"company": "Foo"

}
],
"links": {

"handshake1": {
"href": "http://SERVER/maconomy-api/handshake/1",
"rel": "handshake1"

},
"installation": {

"template": "http://SERVER/maconomy-api/installations/{shortname}",
"rel": "installation"

},
"self": {

"href": "http://SERVER/maconomy-api",
"rel": "self"

}
}

}

In this case the root resource JSON reveals that only one database installation is
available in the system, and only the languages Danish and US English are currently
supported.

The handshake1 and the installation resource reachable from the root resource are
described in the next two sections respectively.

©Deltek Inc., All Rights Reserved 37

CHAPTER 3. ROOT WEB SERVICE

3.1 Handshake
The Workspace Client is able to discover information about how to connect to the
Maconomy server by following the hyperlink with link relation handshake1:

{
"href": "http://SERVER/BASEPATH/handshake/1",
"rel": "handshake1"

}

This is only for internal use by the Workspace Client and is not described in any further
detail in this document. Please note that the information exposed by the handshake
service is subject to change without further notice.

3.2 Installation
To discover the authentication schemes and RESTful web services available for some
installation among the ones listed in the installations property of the root resource
representation described above, one should follow the available hyperlink with link relation
installation, substituting an appropriate installation shortname into the {shortname}
placeholder:

{
"template": "http://SERVER/BASEPATH/installations/{shortname}",
"rel": "installation"

}

These are the possible properties of a JSON object representing an installation re-
source:

Property Explanatory text

authentication Information about enabled authentication schemes. See
Authentication.

links Hyperlinks available from the installation resource. Find the list
of link relations below.

These are the purposes of the hyperlinks available from an installation resource:

Link relation Explanatory text

containers Reference to the root resource of the Containers Web Service.

popups Reference to the root resource of the Popup Types Web Service.

©Deltek Inc., All Rights Reserved 38

CHAPTER 3. ROOT WEB SERVICE

Link relation Explanatory text

filedrop Reference to the root resource of the File Drop Web Service.

logging Reference to the root resource of the Logging Web Service.

configurations Reference to the root resource of the Configurations Web Service.

environment Reference to the root resource of the Environment Web Service.

usersettings Reference to the root resource of the User Settings Web Service.

authentication Reference to the root resource of the Authentication Web Service.

analyzer Reference to the root resource of the Analyzer Web Service.

self Reference to the installation resource itself.

Note that the Popup Types, Configurations, Environment, Authentication, and Analyzer
Web Services are not described in this document and their functionality may change in
the future.

For example:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.root+json; charset=utf ←↩

-8; version=2.0'
'http://SERVER/maconomy-api/installations/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.root+json; charset=utf-8; ←↩

version=2.0

{
"authentication": {

"useDomainCredentialsForBasicAuthentication": true,
"kerberos": {

"kdc": "PSO-DC.PSO.COM",
"realm": "PSO.COM",
"realms": {

"PSO.COM": {
"kdc": "PSO-DC.PSO.COM",
"name": "PSO.COM"

}
},
"serviceName": "MACONOMYSSO/PSO.COM"

},
"schemes": {

©Deltek Inc., All Rights Reserved 39

CHAPTER 3. ROOT WEB SERVICE

"basic": {
"name": "basic"

},
"x-changepassword": {

"name": "x-changepassword"
},
"x-reconnect": {

"name": "x-reconnect"
},
"x-cookie": {

"name": "x-cookie"
}

}
},
"links": {

"containers": {
"href": "http://SERVER/maconomy-api/containers/macoprod",
"rel": "containers"

},
"popups": {

"href": "http://SERVER/maconomy-api/popups/macoprod",
"rel": "popups"

},
"filedrop": {

"href": "http://SERVER/maconomy-api/filedrop/macoprod",
"rel": "filedrop"

},
"logging": {

"href": "http://SERVER/maconomy-api/logging/macoprod",
"rel": "logging"

},
"configurations": {

"href": "http://SERVER/maconomy-api/configurations/macoprod",
"rel": "configurations"

},
"environment": {

"href": "http://SERVER/maconomy-api/environment/macoprod",
"rel": "environment"

},
"usersettings": {

"href": "http://SERVER/maconomy-api/usersettings/macoprod",
"rel": "usersettings"

},
"authentication": {

"href": "http://SERVER/maconomy-api/auth/macoprod",
"rel": "authentication"

},
"analyzer": {

"href": "http://SERVER/maconomy-api/analyzer/macoprod",

©Deltek Inc., All Rights Reserved 40

CHAPTER 3. ROOT WEB SERVICE

"rel": "analyzer"
},
"self": {

"href": "http://SERVER/maconomy-api/installations/macoprod",
"rel": "self"

}
}

}

In the system of this example, all the Maconomy RESTful web services have been enabled,
and hyperlinks allowing the client program to discover these services are available in the
links property.

The following chapters address the RESTful web services possibly discoverable from an
installation resource.

©Deltek Inc., All Rights Reserved 41

Chapter 4

Containers Web Service

The Maconomy RESTful Containers Web Service exposes data and functionality through
so-called containers which are an abstraction giving a uniform interface to all functionality
within the Maconomy system. Each container is made up of a number of panes where
the following three types of panes are available:

Card panes which contain a single record. Examples in Maconomy include the Jobs
container and the expense sheet header part of the ExpenseSheets container.

Table panes which contain zero or more records. A table pane where the ordering of the
records is based on assigned line numbers is said to have line number control. When
the records of such a table pane are hierarchically organized, the pane is called a
tree table pane. In Maconomy, the expense sheet lines part of the ExpenseSheets
container is an examples of a line number-controlled table pane, and the job budget
lines part of the JobBudgets container is an example of a tree table pane.

Filter panes which, like tables, contain zero or more records. Filter panes present
available data entries and allow the client program to select subsets of the potential
content by applying certain restrictions. See Filtering.

The containers currently supported by the Containers Web Service are the ones whose
panes structure fulfils the following conditions:

• At least one pane must be defined.

• At most one pane of each type must be defined.

• If a table pane is defined, then a card pane must also be defined.

That is, a container having, for example, a filter and a table pane but no card pane
defined will not be accessible through the Containers Web Service.

The following complementary terms are used throughout this document:

42

CHAPTER 4. CONTAINERS WEB SERVICE

Data container denotes any container for which a card and possibly a table pane are
defined. Most data containers also have a filter pane defined.

Popup container denotes any container for which only a filter pane is defined and
where the records of this filter pane are the values of some enum type.

Search container denotes any container for which only a filter pane is defined and
which is used for searching in Maconomy (see Foreign Keys).

Now, to begin the survey of the functionality of the Containers Web Service, this is the
custom media type covering the JSON representations within the encompassed version
of the service (see Media Types):

application/vnd.deltek.maconomy.containers+json; charset=utf-8; version ←↩
=4.0

Earlier versions of the service are not addressed in any further detail in this docu-
ment.

As mentioned in the previous chapter (see Installation), the root resource of the Containers
Web Service can be accessed by following the hyperlink with link relation containers
available from an installation resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME",
"rel": "containers"

}

These are the properties that are present in an acquired JSON representation of such
root resource:

Property Explanatory text

containerNames Names of the containers accessible through the Containers Web
Service. Each of these names can replace the {container}
placeholder in the template URL of the container hyperlink
mentioned in the links property.

links Hyperlinks available from the root resource of the Containers Web
Service. Find the list of link relations below.

The purposes of the hyperlinks available through the links property listed above are
these:

©Deltek Inc., All Rights Reserved 43

CHAPTER 4. CONTAINERS WEB SERVICE

Link relation Explanatory text

container Reference to a specific container resource. Find a description of this
below.

self Reference to the root resource of the Containers Web Service itself.

For example, acquiring a representation of the macoprod system’s Containers Web Service
root resource:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"containerNames": [

...,
"employees",
...,
"expensesheets",
...,
"jobs",
...

],
"links": {

"container": {
"template": "http://SERVER/maconomy-api/containers/macoprod/{ ←↩

container}",
"rel": "container"

},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod",
"rel": "self"

}
}

}

Here, Employees, ExpenseSheets, and Jobs are a few examples of Maconomy containers
accessible through the Containers Web Service in the system approached.

To interact with a specific container among the ones listed in the containerNames

©Deltek Inc., All Rights Reserved 44

CHAPTER 4. CONTAINERS WEB SERVICE

property, one should follow the hyperlink with link relation container, substituting the
name of the chosen container into the {container} placeholder:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/{container}",
"rel": "container"

}

These are the properties of a JSON object representing a container resource:

Property Explanatory text

meta containerName: Name of the container.

links Hyperlinks available from the container resource. Find the list of link
relations below.

The purposes of the hyperlinks available through the links property listed above are
these:

Link relation Explanatory text

specification Reference to the specification resource of the container. See
Specification.

data:filter Reference to the filter resource of the container. See Filtering.

instance:create Reference to the action of creating an instance of the container.
See Container Instances.

self Reference to the container resource itself.

For example, for the ExpenseSheets container:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

©Deltek Inc., All Rights Reserved 45

CHAPTER 4. CONTAINERS WEB SERVICE

"containerName": "expensesheets"
},
"links": {

"specification": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/specification",
"rel": "specification"

},
"data:filter": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/filter",

"rel": "data:filter"
},
"instance:create": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances",

"rel": "instance:create"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets",

"rel": "self"
}

}
}

The following three sections each relates to one of the hyperlinks available from a container
resource, namely to the specification, the data:filter, and the instance:create
hyperlink respectively.

4.1 Specification
Every container accessible through the Containers Web Service interface has a specification
resource.

The specification resource can be used to programmatically determine the following:

• Names, titles, and entities of the panes in the container.

• Whether a table pane is a tree table pane with hierarchically organized records.

• Whether the records of a line number-controlled table pane can be moved around
only inside its current context or across the entire table pane.

• Names and titles of the actions supported by each pane.

• Names, titles, and data types of the fields comprising the records in each pane.

• Foreign keys of each pane relating their records to other records.

©Deltek Inc., All Rights Reserved 46

CHAPTER 4. CONTAINERS WEB SERVICE

• Relevant hyperlinks for other containers somehow related to the container.

For example, to correctly interpret and manipulate records in the panes of a container,
a client program must read the specification resource to gain the necessary knowledge
about the data types of the record fields.

A representation of the specification resource for a container is acquired by following
the hyperlink with link relation specification available from the container’s root
resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

specification",
"rel": "specification"

}

The client program must apply the HTTP verb GET. No authentication is required.

The response to a specification request is called a specification response, and the
JSON object held in its body has the following properties:

Property Explanatory text

meta containerName: Name of the container.

panes Specification of the panes defined for the container. The
properties of the object held for each pane are described in the
table below.

relatedContainers References to other containers that are considered related to
the container. See Related Containers.

links self: Hyperlink referring to the container specification
resource itself.

The possible properties of the value of the panes property are card, table, and filter,
representing a card, a table and a filter pane respectively. Their values are objects
describing a pane of the given type:

Property Explanatory text

paneName Name of the pane.

title Title of the pane. A human-readable text appropriate for displaying
in a user interface.

©Deltek Inc., All Rights Reserved 47

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

entity Name of the entity containing the data of the pane. This information
about which entity the pane is based on is relevant when doing
foreign key look-ups and searches, see Foreign Keys.

isTreeView Only present for table panes and then indicates whether the pane is
a tree table pane with hierarchically organized records.

moveMode Only present for table panes for which the move action is defined and
then carries one of two values:

• insideContext: Indicates that it is only allowed to move a
record of the table pane to a position inside its current context,
that is, to a position leaving its parental relation unchanged.

• full: Indicates that it is allowed to move a record of the table
pane both to a position inside and outside its current context.

The move action is identified by action:move and as for any other
action defined, a specification of the move action can be found in the
actions property.

actions Specification of the actions defined for the pane. See Actions.

fields Specification of the fields comprising the data records of the pane.
See Fields.

foreignKeys Specification of the foreign keys defined for the pane. See Foreign
Keys.

For example, for the ExpenseSheets container:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

specification'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "expensesheets"
},
"panes": {

"filter": {
"paneName": "filter",

©Deltek Inc., All Rights Reserved 48

CHAPTER 4. CONTAINERS WEB SERVICE

"title": "List of Expense Sheets",
"entity": "expensesheetheader",
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
"card": {

"paneName": "card",
"title": "Expense Sheets",
"entity": "expensesheetheader",
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
"table": {

"paneName": "table",
"title": "Expense Sheet Lines",
"entity": "expensesheetline",
"isTreeView": false,
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
},
"relatedContainers": { ... },
"links" : {

"self": {
"href": "http://SERVER/containers/macoprod/expensesheets/ ←↩

specification",
"rel": "self"

}
}

}

This JSON tells us that the ExpenseSheets container has all three types of panes: a filter,
a card, and a table pane. Obviously, only the high-level structure of the specification
response has been shown here. The full response is substantially larger and some of
the omitted parts are revealed during the elaboration taking place in the following
sections.

4.1.1 Actions

Specifying a card or a table pane (does not apply to filter panes) includes specifying the
gross list of actions available for that pane. Whether a specific action among these actions
can actually be invoked during interaction with a particular data entry is determined by
examining if a hyperlink with a matching link relation is available from the current state
of that resource. More specifically, enabled pane actions can be discovered in the links

©Deltek Inc., All Rights Reserved 49

CHAPTER 4. CONTAINERS WEB SERVICE

property held in the JSON objects representing pane data within a full data response, see
Data Resource. Such action discovery is a good example of the principles of HATEOAS
put into practice.

Specifications of actions supported by a given container data pane can be found in the
actions property of the JSON object representing that pane’s specification. For any but
the actions action:init-row, action:init-create-row, and action:move, these are
the properties of an action specification JSON object:

Property Explanatory text

title Human-readable text describing the action. This text is appropriate for
displaying in a user interface.

rel Uniquely identifies the action within the container and specifies the link
relation associated with any hyperlink representing the action.

The properties of a JSON object representing the specification of one of the actions
action:init-row, action:init-create-row, or action:move that may be defined for
a line number-controlled table pane are slightly different:

For the actions action:init-row and action:init-create-row, these are the proper-
ties of a JSON object representing their specification:

Property Explanatory text

insertTitle Human-readable text describing the action of adding a record at an
existing position in the line number-controlled table pane.

appendTitle Human-readable text describing the action of adding a record to the
end of the line number-controlled table pane.

rel Either the value action:init-row or action:init-create-row,
specifying the link relation associated with any hyperlink
representing the action.

For the action action:move, these are the properties of a JSON object representing its
specification:

Property Explanatory text

upTitle Human-readable text describing the action of moving a record
upwards in the line number-controlled table pane.

©Deltek Inc., All Rights Reserved 50

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

downTitle Human-readable text describing the action of moving a record
downwards in the line number-controlled table pane.

indentTitle Human-readable text describing the action of indenting a record in
the line number-controlled table pane. This property is only present
when a full mode move action is defined, see the moveMode
property described above.

outdentTitle Human-readable text describing the action of outdenting a record in
the line number-controlled table pane. This property is only present
when a full mode move action is defined, see the moveMode
property described above.

rel The value action:move, specifying the link relation associated with
any hyperlink representing the action.

Defined actions which can be discovered through a container’s specification resource each
falls into one of the following two groups of actions:

Standard actions are a collection of predefined actions that seem natural for data
organized in panes of records:

Link relation Explanatory text

action:init Initializing a record in a data pane without line number
control. See Creating a Data Entry and Adding a Table
Record.

action:init-create Initializing and creating a record in a data pane without
line number control. See Creating a Data Entry and
Adding a Table Record.

action:init-row Initializing a record in a table pane with line number
control. See Adding a Table Record.

action:init-create-row Initializing and creating a record in a table pane with
line number control. See Adding a Table Record.

action:create Creating an already initialized data pane record. See
Creating a Data Entry and Adding a Table Record.

action:update Updating a data pane record. See Updating a Record.

action:delete Deleting a data pane record. See Deleting a Record.

action:move Moving a record in a table pane with line number
control to another position. See Moving a Table Record.

©Deltek Inc., All Rights Reserved 51

CHAPTER 4. CONTAINERS WEB SERVICE

Link relation Explanatory text

action:print Printing a data pane record. See Printing.

Application actions relate to the specific business logic implemented by the container
to which the data pane belongs. The value of their rel property can be any
action:xxx where the xxx does not cause any overlap with the standard actions.
See Applying an Application Action for more details on the usage of application
actions.

Here is a fuller version of the table pane’s actions property which was omitted from
the ExpenseSheets specification JSON above:

"actions": {
"action:init-row": {

"insertTitle": "Insert Expense Sheet Line",
"appendTitle": "Add Expense Sheet Line",
"rel": "action:init-row"

},
"action:init-create-row": {

"insertTitle": "Insert Expense Sheet Line",
"appendTitle": "Add Expense Sheet Line",
"rel": "action:init-create-row"

},
"action:create": {

"title": "Save Expense Sheet Line",
"rel": "action:create"

},
"action:update": {

"title": "Save Expense Sheet Line",
"rel": "action:update"

},
"action:delete": {

"title": "Delete Expense Sheet Line",
"rel": "action:delete"

},
"action:move": {

"title": "Move Expense Sheet Line",
"rel": "action:move"

},
"action:print": {

"title": "Print Expense Sheet Line",
"rel": "action:print"

},
"action:createjobfavorite": {

"title": "Create favorite",
"rel": "action:createjobfavorite"

},

©Deltek Inc., All Rights Reserved 52

CHAPTER 4. CONTAINERS WEB SERVICE

...
}

Due to the table pane of the ExpenseSheets container being subject to line number
control, the action:init-row and action:init-create-row actions are here present
instead of the action:init and action:init-create actions. Also notice how the JSON
objects for these two actions hold the two properties insertTitle and appendTitle
instead of just a title property. The specified action:createjobfavorite action is an
example of one of the application actions specifically related to expense sheets.

4.1.2 Fields

Another important part of specifying a container pane is specifying the fields comprising
the records of that pane. The specification of the record’s fields is held in the fields
property of the JSON object representing the pane’s specification and these are the
possible properties of the JSON object holding a field specification:

Property Explanatory text

name Identifier used to reference the field in representations. This is
intended for use by software and is normally not displayed in a
user interface.

title Human-readable name of the field. The title is an appropriate
label for the field in a user interface.

key Indicates whether the field is a key field. The key fields of a
record uniquely identifies it.

type Data type of the field. This is important information as it tells
the client program how to interpret and represent values of the
field when interacting with records. The data type is one of
these: integer, real, amount, boolean, string, date, time,
enum, timeduration, or autotimestamp. The specifics of each
format are detailed in the Data Types section.

enumType Only present for fields having the enum data type and then
contains the name of the enum type. The value may, for
example, be used when client programs need to construct
expressions used in filter restrictions.

subtypeContainer Only present for fields having the enum data type and then
contains the name of the container supplying the possible
values for the enum type. To find hyperlinks relevant for the
subtype container, client programs should go through the
relatedContainers property, see Related Containers.

©Deltek Inc., All Rights Reserved 53

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

maxLength Only present for string fields and then specifies the maximum
length of the field value.

multiLine Indicates whether a string field can contain newline characters
(\u000a), thus spanning multiple lines.

create Indicates whether the field is editable at the time a record is
created. If false, a client program is not permitted to change
the value of the field in the template record obtained from the
initialization operation.

update Indicates whether the field can be modified by the client
program after the record has been created.

autoSubmit Indicates to the client program whether it should automatically
update the resource when a user finishes editing the field.

mandatory Indicates whether the field is mandatory and must be filled
out. If mandatory, string, date, and time fields cannot be
blank and numeric fields must be non-zero.

secret Indicates whether the contents of the field must not be
displayed unmasked in a user interface. This could be the case
for a password field, for example.

unfilterable Indicates whether the field cannot act as part of a filter
restriction.

suggestions Indicates how the client should present inline searches from the
field in a user interface. These are the possible values:

• onDemand: Inline search on demand.
• automatic: A search-as-you-type style inline search.
• none: No inline search.
• standard: The client program should apply its own

preferred default and use the behavior of either
onDemand, automatic, or none.

references Lists which foreign keys the field participates in. See Foreign
Keys.

Here, for example, are some of the JSON objects specifying record fields of the table
pane in the ExpenseSheets container:

"fields": {
...,
"activitynumber": {

©Deltek Inc., All Rights Reserved 54

CHAPTER 4. CONTAINERS WEB SERVICE

"title": "Activity No.",
"name": "activitynumber",
"type": "string",
"key": false,
"create": true,
"autoSubmit": false,
"mandatory": false,
"maxLength": 255,
"multiLine": false,
"secret": false,
"suggestions": "onDemand",
"update": true,
"unfilterable": false,
"references": [

"activitynumber_expensemileageactivity",
"activitynumber_activity"

]
},
"text": {

"title": "Description",
"name": "text",
"type": "string",
"key": false,
"create": true,
"autoSubmit": false,
"mandatory": false,
"maxLength": 255,
"multiLine": false,
"secret": false,
"suggestions": "none",
"update": true,
"unfilterable": false,
"references": []

},
"currency": {

"title": "Currency",
"name": "currency",
"type": "enum",
"key": false,
"subtypeContainer": "popup_currencytype",
"create": true,
"autoSubmit": false,
"mandatory": true,
"multiLine": false,
"secret": false,
"suggestions": "none",
"update": true,
"unfilterable": false,
"enumType": "CurrencyType",

©Deltek Inc., All Rights Reserved 55

CHAPTER 4. CONTAINERS WEB SERVICE

"references": []
},
...

}

The fields activitynumber and text are both string fields, whereas the field currency
is a field of enum type having the container popup_currencytype as the source of its
values.

4.1.3 Foreign Keys

Foreign keys describe associations between data in the system and can be used to navigate
to related resources and/or to provide suggestions for values for one or more record fields
through so-called foreign key searching.

As opposed to a simple filter search (see Filtering) where the client program is interacting
with just a single filter pane, two container panes are in play when doing a foreign key
search:

1. The host pane from where the search is launched.

2. The search pane providing the search result.

The role of the host pane is to provide the server with a restriction based on the
uncommitted value of the record from where the search was launched. For example, when
searching for a task on an expense sheet line, then only tasks related to the job currently
selected on that expense sheet line should be included in the search result.

For each pane of a given container, the foreignKeys property of that pane’s specification
JSON holds the specifications of the foreign keys defined. These are the possible properties
of a foreign key JSON object:

Property Explanatory text

name Name of the foreign key.

title Title of the foreign key. A text appropriate for displaying in a
user interface.

incomplete Indicates whether the foreign key is incomplete. Incomplete
foreign keys can be used for searching only and cannot be
navigated like complete foreign keys can. Find further
explanation below.

searchContainer Only present for searchable foreign keys and then holds the
name of the container providing the search results.
Note that a self foreign key will never have this property. Find
further explanation of self foreign keys below.

©Deltek Inc., All Rights Reserved 56

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

searchPane Only present for searchable foreign keys and then holds the
name of the pane within the search container providing the
search results. The search pane will always be the filter pane
and its name is included here for convenience only.
Note that a self foreign key will never have this property. Find
further explanation of self foreign keys below.

fieldReferences List of JSON objects specifying the field references comprising
the foreign key relationship. Find the properties of a field
reference JSON object below.

switchField Only present for conditional foreign keys and then holds the
name of the enum type field whose value determines whether the
foreign key is enabled. Find further explanation of conditional
foreign keys below.

switchValue Only present for conditional foreign keys and then holds the
enum literal value that must be assigned to the switch field in
order for the foreign key to be enabled. Find further explanation
of conditional foreign keys below.

links Hyperlinks available for the foreign key. Find the list of link
relations below.

A field reference JSON object listed in the above mentioned fieldReferences property
contains the following properties:

Property Explanatory text

field Name of the field in the container pane that maps to a field in a
foreign container pane.

foreignField Name of the field in a foreign container pane being referred.

supplement Indicates if the field reference is only a supplement and thus not
really participating in the foreign key relationship. Find further
description of a supplement field reference below.

These are the purposes of the hyperlinks possibly available from a foreign key JSON
object:

©Deltek Inc., All Rights Reserved 57

CHAPTER 4. CONTAINERS WEB SERVICE

Link relation Explanatory text

data:search Reference to the action of performing a foreign key search. Find
further description below.

data:key Reference to the action of navigating a complete foreign key. Find
further description below.

For example, the following JSON object specifying the activitynumber_activity foreign
key for the table pane was left out from the ExpenseSheets specification JSON presented
earlier:

{
"name": "activitynumber_activity",
"title": "Activity",
"incomplete": false,
"searchContainer": "find_activity",
"searchPane": "filter",
"fieldReferences": [

{
"field": "activitynumber",
"foreignField": "activitynumber",
"supplement": false

},
{

"field": "activitytextvar",
"foreignField": "activitytext",
"supplement": true

}
],
"links": {

"data:search": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/search/table;foreignkey=activitynumber_activity",
"rel": "data:search"

},
"data:key": {

"template": "http://SERVER/maconomy-api/containers/macoprod/{ ←↩
container}/instances/{instance}/data;activitynumber={0}",

"fields": [
"activitynumber"

],
"rel": "data:key"

}
}

}

©Deltek Inc., All Rights Reserved 58

CHAPTER 4. CONTAINERS WEB SERVICE

Here, the first of the two field references specified in the fieldReferences property shows
that the activitynumber field on expense sheet lines references the activitynumber
field found on activities. For the second field reference, you can see that this, with the
boolean value true in its supplement property, is marked as a supplement. A supplement
field reference is not directly participating in the foreign key relationship, but is included
only as a signal to the client program to assign the value back during a foreign key
search. In this particular case, whenever the user has chosen an activity among some
activitynumber_activity foreign key search result, the client program must assign the
value of this activity’s activitytext field back to the activitytextvar field on the
expense sheet line.

That the searchContainer property for the activitynumber_activity foreign key
holds the container name find_activity indicates that the foreign key can be used
for searching and that these searches are performed by use of the filter pane within
the find_activity container. Being a search container, the find_activity container
is among the containers mentioned in the table pane’s relatedContainers property,
and there a hyperlink leading to its specification can be found (see Related Containers).
Besides being useful in discovering the entity to which the foreign fields of the field
references refer, the search container’s specification is also important for the client
program’s ability to interpret foreign key search results.

In order to actually perform a foreign key search from a record within some pane, the
client program must follow the data:search hyperlink available from the links property
of the foreign key’s JSON object:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/search/ ←↩

PANE;foreignkey=FOREIGN_KEY",
"rel": "data:search"

}

The client program must authenticate (see Authentication) and apply the HTTP verb
POST with the uncommitted value of the record from where the search was initiated in
the request body. Like with a filter request, the client program can have any Paging,
Sorting, Fields Selection, and Restrictions applied to the search.

The response to a successful data:search request is called a search response and except
from a missing self hyperlink its structure is similar to that of a search container filter
response, see Filtering.

For the activitynumber_activity foreign key, for example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'

©Deltek Inc., All Rights Reserved 59

CHAPTER 4. CONTAINERS WEB SERVICE

-H 'Content-Type: application/vnd.deltek.maconomy.containers+json; ←↩
charset=utf-8; version=4.0'

-d '{
"data": {

"expensesheetnumber": "10760001",
"description": "",
"employeenumber": "11",
...

}
}'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

search/table;foreignkey=activitynumber_activity'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "find_activity"
},
"panes": {

"filter": {
"meta": {

"paneName": "filter",
"rowCount": 25,
"rowOffset": 0

},
"records": [

{
"data": {

"activitynumber": "101",
...,
"activitytext": "Consulting",
...

},
"links": {

"data:same-key-some-container": {
"template": "http://SERVER/maconomy-api/containers/macoprod ←↩

/{container}/instances/{instance}/data;activitynumber=101",
"rel": "data:same-key-some-container"

}
}

},
{

"data": {
"activitynumber": "102",
...,
"activitytext": "Preparation",

©Deltek Inc., All Rights Reserved 60

CHAPTER 4. CONTAINERS WEB SERVICE

...
},
"links": {

"data:same-key-some-container": {
"template": "http://SERVER/maconomy-api/containers/macoprod ←↩

/{container}/instances/{instance}/data;activitynumber=102",
"rel": "data:same-key-some-container"

}
}

},
...

]
}

}
}

As described in Filtering, the links property of each record represented in this search
response mentions a data:same-key-some-container hyperlink. These hyperlinks are
referencing the action of loading the given container data entry and their usage is further
described in Loading a Data Entry.

A foreign key is said to be complete whenever the composition of the field values partici-
pating in its references (supplement fields excluded) uniquely identifies a foreign resource.
With the number being a unique identifier of an activity, the activitynumber_activity
foreign key is an example of such complete foreign key, and this is indicated by the
boolean value false in its incomplete property.

Not surprisingly, a complete foreign key can be used for navigating from one resource
to another, and this is done by following the data:key hyperlink available from its
specification:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/{container}/ ←↩

instances/{instance}/data;KEY_FIELD_NAME_1={0};KEY_FIELD_NAME_2 ←↩
={1};...",

"fields": [
"KEY_FIELD_NAME_1",
"KEY_FIELD_NAME_2",
....

],
"rel": "data:key"

}

The client program must replace the {container} placeholder in the template URL by
the name of the container it wishes to navigate to (this container must of course be based
on the same entity as referred to by the foreign fields of the field references). Also, the
{instance} placeholder must be replaced by the id of an instance of the container chosen

©Deltek Inc., All Rights Reserved 61

CHAPTER 4. CONTAINERS WEB SERVICE

(see Container Instances). Finally, the field values making up the foreign key reference
(excluding supplement fields) must be substituted into the template URL. The indices of
the field names in the array held in the fields property of the hyperlink object indicate
which of the numbered placeholders each field value should replace.

As with any of the hyperlinks described in Loading a Data Entry, the client pro-
gram must authenticate using a reconnect token (see Maconomy Reconnect Authenti-
cation) valid for the container instance and apply the HTTP verb POST with a valid
Maconomy-Concurrency-Control header enclosed (see Concurrency Tags).

The response to a successful data:key request is a full data response (see Data Re-
source).

For example, for the activitynumber_activity foreign key, the data:key hyperlink for
navigating to the activity referenced by an expense sheet line looks like this:

{
"template": "http://SERVER/maconomy-api/containers/macoprod/{container}/ ←↩

instances/{instance}/data;activitynumber={0}",
"fields": [

"activitynumber"
],
"rel": "data:key"

}

Choosing Activities as the target container, the substituted data:key template URL
could look something like this:

http://SERVER/maconomy-api/containers/macoprod/activities/instances/ ←↩
c953cdd8-2806-4e61-b3cd-3022ab8aea50/data;activitynumber=102

As opposed to the foreign key activitynumber_activity discussed above, the foreign
key taskname_expensemileagetasklistline is an example of an incomplete foreign
key defined for the table pane of the ExpenseSheets container:

"taskname_expensemileagetasklistline": {
"name": "taskname_expensemileagetasklistline",
"title": "Task",
"incomplete": true,
"searchContainer": "find_tasklistline",
"searchPane": "filter",
"fieldReferences": [

{
"field": "taskname",
"foreignField": "taskname",
"supplement": false

},
{

"field": "tasknamevar",

©Deltek Inc., All Rights Reserved 62

CHAPTER 4. CONTAINERS WEB SERVICE

"foreignField": "description",
"supplement": true

}
],
"links": {

"data:search": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/search/table;foreignkey= ←↩
taskname_expensemileagetasklistline",

"rel": "data:search"
}

}
}

The incompleteness of the taskname_expensemileagetasklistline foreign key reflects
the fact that an expense sheet line relates to a task which cannot be identified solely from
information stored directly on the expense sheet line. Aside from the name of the task,
the identification takes the name of the list to which it belongs, and the latter is only
indirectly available via the job pointed to by the expense sheet line’s jobnumber field.
Such incomplete foreign keys can only be used for searching and therefore the links
property does not mention any data:key hyperlink.

This is the self foreign key also defined for the table pane of the ExpenseSheets
container:

"self": {
"name": "self",
"title": "Expense Sheet",
"incomplete": false,
"fieldReferences": [

{
"field": "instancekey",
"foreignField": "instancekey",
"supplement": false

}
],
"links": {

"data:key": {
"template": "http://SERVER/maconomy-api/containers/macoprod/{ ←↩

container}/instances/{instance}/data;instancekey={0}",
"fields": [

"instancekey"
],
"rel": "data:key"

}
}

}

©Deltek Inc., All Rights Reserved 63

CHAPTER 4. CONTAINERS WEB SERVICE

As it occurs from this JSON, the self foreign key cannot be used for searching. A self
foreign key expresses the fact that the key of any entity can be seen as a foreign key to
that entity itself, and its purpose is to enable the client program to relate a given record
of the hosting container pane with the exact same record in the card pane of some other
container. Obviously, the foreign card pane must be based on the same entity as the
hosting container pane. A self foreign key can be particularly useful when working with
multiple containers whose card panes are based on the same entity.

Conditional Foreign Keys

Any foreign key whose JSON object includes the two properties switchField and
switchValue is called a conditional foreign key. This because the validity of these foreign
keys is conditional on whether the value of the record field mentioned in the switchField
property equals the literal value mentioned in the switchValue property.

As the ExpenseSheets container is not able to deliver any conditional foreign keys, we
instead turn our eyes towards the GeneralJournal container to find examples. Now,
in the GeneralJournal container, one of the fields defined for the table pane is the
accountnumber field:

{
"name": "accountnumber",
"title": "Account No.",
"key": false,
"type": "string",
"maxLength": 255,
"multiLine": false,
"create": true,
"update": true,
"autoSubmit": false,
"mandatory": false,
"secret": false,
"unfilterable": false,
"suggestions": "automatic",
"references": [

"accountnumber_account",
"accountnumber_customer",
"companycustomer",
"accountnumber_vendor",
"companyvendor"

]
}

Here all five of the referenced foreign keys are conditional foreign keys whose validity
depends on the value of the record’s typeofentry field. In this example, take a look at
the specification for the accountnumber_account foreign key:

©Deltek Inc., All Rights Reserved 64

CHAPTER 4. CONTAINERS WEB SERVICE

{
"name": "accountnumber_account",
"title": "Account",
"incomplete": false,
"searchContainer": "find_account",
"searchPane": "filter",
"fieldReferences": [

{
"field": "accountnumber",
"foreignField": "accountnumber",
"supplement": false

}
],
"switchField": "typeofentry",
"switchValue": "g",
"links": {

"data:search": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

generaljournal/search/table;foreignkey=accountnumber_account",
"rel": "data:search"

},
"data:key": {

"template": "http://SERVER/maconomy-api/containers/macoprod/{ ←↩
container}/instances/{instance}/data;accountnumber={0}",

"fields": [
"accountnumber"

],
"rel": "data:key"

}
}

From this it appears that the accountnumber_account foreign key is only applicable
in cases where a record holds the literal value g in its typeofentry field. If a different
value is filled into that field, the accountnumber_account foreign key is no longer valid.
Similarly, the foreign keys accountnumber_customer and companycustomer have the
switch value r, and the foreign keys accountnumber_vendor and companyvendor the
switch value p.

When searching from the accountnumber field, the client program must in turn consider
the conditional foreign keys involving the accountnumber field and apply the first (if
any) foreign key for which the switch value matches the (uncommitted) value of the
record’s typeofentry field.

4.1.4 Related Containers

The purpose of the relatedContainers property in a data container’s specification is
to provide the client program with some handy references for each container considered

©Deltek Inc., All Rights Reserved 65

CHAPTER 4. CONTAINERS WEB SERVICE

related to the container. Container c is considered related if it matches at least one of
two descriptions:

1. c is a popup container supplying values for an enum type and is mentioned in
the subtypeContainer property of some field specification within the container
specification.

2. Some foreign key searches are performed through c as it is mentioned in the
searchContainer property of some foreign key specification within the container
specification.

A related container JSON object held in a relatedContainers property has the following
two properties:

Property Explanatory text

meta containerName: Name of the related container.

links Hyperlinks available for the related container. Find the list of link
relations below.

These are the purposes of the hyperlinks available from a related container JSON
object:

Link relation Explanatory text

specification Reference to the specification resource of the related container,
see Specification.

data:enumvalues Only available for subtype containers in which case it is a
reference to be followed in order to gain knowledge on the
possible enum values. Find further details below.

For the ExpenseSheets container, for example, this is some of the contents of the table
pane’s relatedContainers property earlier omitted:
"relatedContainers": {

...,
"popup_currencytype": {

"meta": {
"containerName": "popup_currencytype"

},
"links": {

"specification": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

popup_currencytype/specification",

©Deltek Inc., All Rights Reserved 66

CHAPTER 4. CONTAINERS WEB SERVICE

"rel": "specification"
},
"data:enumvalues": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
popup_currencytype/filter",

"rel": "data:enumvalues"
}

}
},
...,
"find_activity": {

"meta": {
"containerName": "find_activity"

},
"links": {

"specification": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

find_activity/specification",
"rel": "specification"

}
}

},
...

}

As expected, both a specification and a data:enumvalues hyperlink are available
for popup_currencytype since this refers to the subtype container of the table pane’s
currency field. For find_activity which the foreign key activitynumber_activity
specifies as the name of its search container, only a specification hyperlink is avail-
able.

To get the list of possible values for some field of a given enum type, the data:enumvalues
hyperlink available from the subtype container’s entry within the relatedContainers
property can be followed:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/POPUP_CONTAINER/ ←↩

filter",
"rel": "data:enumvalues"

}

In order to access a data:enumvalues resource, the client program must authenticate
(see Authentication) and apply the HTTP verb GET.

The response to a successful data:enumvalues request for some subtype container is in
fact similar to the filter response to a successful data:filter request for that container.
As also described in Filtering, the record JSON objects listed in such a response do not

©Deltek Inc., All Rights Reserved 67

CHAPTER 4. CONTAINERS WEB SERVICE

have any links property and they all carry a JSON object with the following three enum
value properties in their data property:

Property Explanatory text

value The value of the enum value represented by the filter pane record.

title The title of the enum value represented by the filter pane record.

ordinal The integer ordinal of the enum value represented by the filter pane
record.

For example, for the popup_currencytype subtype container:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/popup_currencytype/ ←↩

filter'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "popup_currencytype"
},
"panes": {

"filter": {
"meta": {

"paneName": "filter",
"rowCount": 28,
"rowOffset": 0

},
"records": [

{
"data": {

"value": "nil",
"title": "",
"ordinal": -1

}
},
{

"data": {
"value": "dkk",

©Deltek Inc., All Rights Reserved 68

CHAPTER 4. CONTAINERS WEB SERVICE

"title": "DKK",
"ordinal": 0

}
},
{

"data": {
"value": "eur",
"title": "EUR",
"ordinal": 1

}
},
...

]
}

},
"links": {

"self": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

popup_currencytype/filter",
"rel": "self"

}
}

}

A nil value like the one listed here is defined for all enum types in order to allow for
the cases where no value has been chosen for an enum field. In user interfaces, it makes
sense to display possible enum values as a dropdown.

4.2 Filtering
For a data container, the purpose of defining a filter pane is to allow for client programs
to search for data entries within the container itself.

For a popup container, each record of its filter pane provides a value, a title, and an
ordinal value comprising an enum value. None of these entries form a basis for further
interaction.

For a search container, its filter pane allows for client programs to search for data
entries within other data containers whose card pane is based on the same entity.
Interactions with any of these data entries have to happen against some instance of a
data container.

Now, a client program interacts with the filter pane of a container by following the
hyperlink with link relation data:filter available from the container’s resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/filter",
"rel": "data:filter"

©Deltek Inc., All Rights Reserved 69

CHAPTER 4. CONTAINERS WEB SERVICE

}

The client program must authenticate (see Authentication) in order to access a filter
resource, and the HTTP verb to apply is either GET or POST.

The response to a data:filter request is called a filter response, and the JSON object
held in its body has the following properties:

Property Explanatory text

meta containerName: The name of the container.

panes filter: JSON object representing filter pane contents. Find its properties
below.

links self: Hyperlink referring to the filter resource itself.

These are the properties of the JSON object within a filter response representing filter
pane contents:

Property Explanatory text

meta paneName: The name of the filter pane.
rowCount: The number of filter pane records returned (see Paging).
rowOffset: The offset of the returned filter pane records (see Paging).

records List of filter pane record JSON objects each exposing a container data
entry. Find the possible properties of these objects below.

The properties of the filter pane record JSON objects listed in the records property,
each exposing a container data entry, are these:

Property Explanatory text

data A selection of field values appropriate for displaying in the user interface
from where the filter request was initiated. For search and data
containers, the selection will mention only key fields plus any extra fields
explicitly specified in a fields parameter on the request (see Fields
Selection). For popup containers, the JSON object will contain a value,
a title, and an ordinal property comprising an enum value.

©Deltek Inc., All Rights Reserved 70

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

links Only present for search and data containers, at which point it presents a
hyperlink referencing the action of loading the container data entry. For
search containers, this is a data:same-key-some-container hyperlink,
and for data containers, a data:same-key-some-instance hyperlink.
See Loading a Data Entry for further details on how to use these two
kinds of hyperlinks.

For the ExpenseSheets container, for example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "expensesheets"
},
"panes": {

"filter": {
"meta": {

"paneName": "filter",
"rowCount": 25,
"rowOffset": 0

},
"records": [

{
"data": {

"expensesheetnumber": "10760001"
},
"links": {

"data:same-key-some-instance": {
"template": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/{instance}/data;expensesheetnumber=10760001",
"rel": "data:same-key-some-instance"

}
}

},

©Deltek Inc., All Rights Reserved 71

CHAPTER 4. CONTAINERS WEB SERVICE

...
]

}
},
"links": {

"self": {
"href": "http://SHORTNAME/containers/macoprod/expensesheets/filter",
"rel": "self"

}
}

}

Here we see information about expense sheet number 10760001 accompanied by the
data:same-key-some-instance hyperlink for the client program to follow in order to
interact with that particular expense sheet (see Loading a Data Entry).

When searching for data entries using the filter pane of either a search or a data container,
the following features are supported:

• Paging

• Sorting

• Fields selection

• Restrictions

For popup containers, only the paging feature is supported.

4.2.1 Paging

You may have noticed that your client program receives exactly 25 records in every filter
response even though the system being polled contains more than 25 data entries. This
is because the filter resource splits the results into pages. The paging can be controlled
by the following two parameters which can be supplied either as query parameters or as
properties in a JSON object in the POST request body:

Query parameter/Property Explanatory text

limit If n > 0, the amount of records included in the filter
response will not exceed n. If 0, all records will be
included in the response. Default value is 25 for data
and search containers and 0 for popup containers.

offset If n ≥ 0, the first n records will be skipped. Default
value is 0.

©Deltek Inc., All Rights Reserved 72

CHAPTER 4. CONTAINERS WEB SERVICE

Here are a few query parameter examples:

.../expensesheets/filter?limit=11&offset=8 Filter response will contain up to 11
records, starting from record number 8 when counting from 0.

.../expensesheets/filter?limit=0&offset=20 Filter response will contain any amount
of records, starting from record number 20 when counting from 0.

4.2.2 Sorting

The filter resource allows the client program to control the sorting of the records in the
filter response through the query parameter orderBy. By supplying a comma-separated
list of field names, the client program indicates which fields should participate in a
multi-column sorting of the records. The sorting order to be applied within each field is
specified by prefixing the field names by either + or - making a reference to ascending or
descending order respectively. The default sorting order is ascending order.

Here are a few examples:

.../expensesheets/filter?orderBy=DateSubmitted The records in the filter response
are sorted by their value in the field DateSubmitted in ascending order.

.../expensesheets/filter?orderBy=+DateSubmitted Same result as in the previous
example.

.../expensesheets/filter?orderBy=-DateSubmitted The records in the filter re-
sponse are sorted by their value in the field DateSubmitted in descending order.

.../expensesheets/filter?orderBy=-DateSubmitted,EmployeeName The records in
the filter response are sorted by their value in the field DateSubmitted in descending
order. Records having the same DateSubmitted value are sorted by their value in
the field EmployeeName in ascending order.

.../expensesheets/filter?orderBy=-DateSubmitted,-EmployeeName The records in
the filter response are sorted by their value in the field DateSubmitted in descend-
ing order. Records having the same DateSubmitted value are sorted by their value
in the field EmployeeName in descending order.

When the HTTP method applied is POST, a preferred sorting may as well be passed via
an orderBy property in a JSON object in the request body. The value passed in this
way can either be of the format described above for the orderBy query parameter or else
a list of JSON objects with the following properties:

Property Explanatory text

field Name of field that should participate in a multi-column sorting of the
records.

©Deltek Inc., All Rights Reserved 73

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

ascending If true, the sorting order applied for the field of the given name will be
ascending, otherwise, if false, it will be descending. If left out, the
ascending order will be applied.

For example, -DateSubmitted,EmployeeName corresponds to the following JSON list:

[
{ "field": "DateSubmitted", "ascending": false },
{ "field": "EmployeeName" }

]

4.2.3 Fields Selection

The filter resource also allows the client program to control which fields are included in the
filter response. A key field is always part of the response, but otherwise a field is included
only if it is mentioned among the comma-separated field names supplied through the
query parameter fields. Performance benefits can be achieved by limiting the amount
of fields included to the ones that are actually relevant to the client program.

Here is an example:

.../expensesheets/filter?fields=EmployeeName,Description The record objects
returned contain the properties description and employeename, but also the
property expensesheetnumber representing the key field ExpenseSheetNumber:

[
...,
{

"data": {
"description": "Meals, working weekend",
"employeename": "J\u00f8rgen Jansen",
"expensesheetnumber": 10760001

},
"links": { ... }

},
{

"data": {
"description": "Conference",
"employeename": "J\u00f8rgen Jansen",
"expensesheetnumber": 10760012

},
"links": { ... }

},
...

©Deltek Inc., All Rights Reserved 74

CHAPTER 4. CONTAINERS WEB SERVICE

]

When the HTTP method applied is POST, the fields wanted in the response may as well
be indicated via a fields property in a JSON object in the request body. The value
passed in this way can either be of the format described above for the fields query
parameter or else a list of field names.

For example, EmployeeName,Description corresponds to the following list:

[
"EmployeeName",
"Description"

]

4.2.4 Restrictions

Finally, the filter resource allows the client program to supply an expression restricting
the filter records returned in a way similar to how a WHERE clause works in SQL. The
syntax used for these expressions is the Expression Language also used in MDML and
other XML specification languages in Maconomy (see the MDML Language Reference
[5] for a full description of the Expression Language). A restricting expression is passed
either as a restriction query parameter or as a restriction property in a JSON
object in the POST request body.

Here are a few examples of expressions applicable for expense sheets:

CreateDate > date(2014,7,1) Only records of expense sheets that were created after
July 1, 2014 are included in the filter response.

Submitted Only records of expense sheets that have been submitted for approval are
included in the filter response.

Submitted and EmployeeName like "Bob*" Only records of expense sheets that have
been submitted for approval and are related to employees whose name begins with
“Bob” are included in the filter response.

When supplied as a query parameter, the restricting expression must be URL-escaped
(sometimes called percent encoded). For example, for the last example expression, the
filter request URL would looking something like this:

.../expensesheets/filter?restriction=Submitted%20and%20EmployeeName%20like ←↩
%20%22Bob*%22

URL-escaping of query parameters is normally done automatically by the HTTP library
code, but when using the command-line, one might need to perform the escaping
manually.

©Deltek Inc., All Rights Reserved 75

CHAPTER 4. CONTAINERS WEB SERVICE

4.3 Container Instances
To interact with the data entries within some data container, the client program must
first create an instance of that container. A container instance is a resource holding the
state of a container (variable values, whether the different actions are currently enabled
or disabled, and so on), and by letting the client program carry out its data interactions
against such an instance, the server does not have to spend time on expensive state
recalculations on each request (this is in fact the main difference between the version of
the Containers Web Service described in this document and the previous version of the
web service).

A new container instance is created by following the hyperlink with link relation
instance:create available from the container resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

",
"rel": "instance:create"

}

Container instance creation requires authentication, and since an instance only lives
within the scope of a login session, the client program is required to authenticate using
Maconomy Reconnect Authentication in order to obtain a reconnect token that can be used
for authentication on subsequent requests towards the created container instance.

Also, the client program must apply the HTTP verb POST with a Fields Slicing JSON
object in the request body (possibly just {}) when creating a new container instance.

The body contained in the response to a container instance creation request representing
the created instance is a JSON object with the following properties:

Property Explanatory text

meta containerName: Name of the container.
containerInstanceId: The identifier of the container instance.

links Hyperlinks available from the container instance resource. Find the list of
link relations below.

These are the purposes of the hyperlinks available from a container instance JSON
object:

Link relation Explanatory text

action:init Reference to the action of initializing a card pane
record, see Creating a Data Entry.

©Deltek Inc., All Rights Reserved 76

CHAPTER 4. CONTAINERS WEB SERVICE

Link relation Explanatory text

action:init-create Reference to the action of initializing and creating a
card pane record, see Creating a Data Entry.

data:any-key Reference to the action of loading an unspecified (yet
deterministic) container data entry, see Loading a Data
Entry.

instance:data Reference to the container data entry currently loaded,
see Data Resource.

instance:data-refresh Reference to the action of re-loading the already loaded
container data entry, see Data Resource.

instance:fields Reference to the fields slicing currently applied to the
container instance, see Fields Slicing.

instance:fields-update Reference to the action of updating the fields slicing
applied to the container instance, see Fields Slicing.

instance:delete Reference to the action of deleting the container
instance, see Deleting an Instance.

self Reference to the container instance resource itself.

For example, for the ExpenseSheets container:

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-Authentication: X-Reconnect'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Content-Type: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-d '{}'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances'

HTTP/1.1 200 OK
Maconomy-Reconnect: Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ==
Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009e93
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620"

©Deltek Inc., All Rights Reserved 77

CHAPTER 4. CONTAINERS WEB SERVICE

},
"links": {

"action:init": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card/inits",

"rel": "action:init"
},
"action:init-create": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card",

"rel": "action:init-create"
},
"data:any-key": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data;any ←↩
",

"rel": "data:any-key"
},
"instance:data": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data",

"rel": "instance:data"
},
"instance:data-refresh": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
refresh",

"rel": "instance:data-refresh"
},
"instance:fields": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/fields",

"rel": "instance:fields"
},
"instance:fields-update": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/fields",

"rel": "instance:fields-update"
},
"instance:delete": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620",

"rel": "instance:delete"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620",

©Deltek Inc., All Rights Reserved 78

CHAPTER 4. CONTAINERS WEB SERVICE

"rel": "self"
}

}
}

Here the reconnect token Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ== (dots denoting that
only an abbreviation of the token has been included here) held in the response header
Maconomy-Reconnect-Token is what needs to be used for Maconomy Reconnect Authen-
tication on a later request towards the created container instance, as mentioned above.
The concurrency tag d2a39243-a63f-4bd5-8eab-676952009e93 held in the response
header Maconomy-Concurrency-Control will be explained next, whereas the sections
covering the topics of the hyperlinks in the links property can be found in the table
above.

4.3.1 Concurrency Tags

The Maconomy system has a concurrency control mechanism that prior to each update
to the database compares the values known to the client program with the values stored
in the database. If the values differ, the update is rejected and the client program is told
that data has been changed by someone else. This is known as the DataChanged check
and is meant to protect against unintended overwrites of updates made by others and to
ensure that update decisions are never based on outdated information.

Now, how does this DataChanged check suffice in preventing undesirable database updates
in the Containers Web Service setup where updates are performed towards container
instances and not directly towards the database? Entailing a comparison of the state of
the container instance with that of the database, the DataChanged check seems sufficient
as long as client programs are in sync with their container instances.

It may happen that a client program comes out of sync with a container instance though.
This either as a consequence of the container instance accidentally being shared between
different interaction flows (for example, in two different browser tabs) or because the
client program has missed some relevant update information communicated back in an
earlier response.

To ensure that a client program and a server agree on the state of a container in-
stance, concurrency tags are being exchanged through Maconomy-Concurrency-Control
HTTP headers. The response to each request involving a container instance con-
tains a Maconomy-Concurrency-Control header carrying the concurrency tag uniquely
identifying the container instance state that resulted from the request. Similarly,
each possibly state modifying request towards a container instance must include a
Maconomy-Concurrency-Control header, passing the most recently received concur-
rency tag. The request will proceed only if the actual state of the container instance on
the server matches the concurrency tag received from the client program.

In those cases where a client program provides an invalid concurrency tag when a

©Deltek Inc., All Rights Reserved 79

CHAPTER 4. CONTAINERS WEB SERVICE

Maconomy-Concurrency-Control header is required or where the DataChanged check
fails, the request is rejected by the server and a 409 Conflict response is returned.

Hyperlinks mentioning one of the following link relations are all referencing some action
for which a valid concurrency tag must be supplied in a Maconomy-Concurrency-Control
header on the request:

data:any-key

data:key

data:same-key

data:same-key-some-instance

data:same-key-some-container

instance:data-refresh

action:xxx

The Maconomy-Concurrency-Control header is not allowed with any other requests. If
applied anyway, the server will respond with a 400 Bad Request response.

4.3.2 Data Resource

A main component of a container instance is its data resource where all information
related to the data entry currently in focus is gathered.

How a data entry gets loaded into the data resource of a container instance is covered
in Creating a Data Entry and Loading a Data Entry. In the sections Adding a Table
Record, Updating a Record, Deleting a Record, Moving a Table Record, Printing, and
Applying an Application Action you can find descriptions on how to perform different
actions on a data entry once loaded.

The current state of the data resource of a container instance can be acquired by following
the hyperlink with link relation instance:data available from a JSON object representing
the container instance:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data",
"rel": "instance:data"

}

Such a request requires authentication and, as explained in the beginning of Container
Instances, a reconnect token valid for the container instance in question must be used for
this (see Maconomy Reconnect Authentication).

©Deltek Inc., All Rights Reserved 80

CHAPTER 4. CONTAINERS WEB SERVICE

If no data entry is currently held in the data resource, the response to an instance:data
request is a 204 No Content. Otherwise, the client program receives a so-called data
response with a data entry JSON representation in the body holding the following
properties:

Property Explanatory text

meta containerName: The name of the container.
containerInstanceId: The identifier of the container instance.

panes Representation of the data entry’s card and table pane contents. Find
the properties of a JSON object representing pane contents below.

links Hyperlinks available from the data resource. Find the list of link relations
below.

These are the properties of a JSON object within a data response representing pane
contents:

Property Explanatory text

meta paneName: The name of the card or table pane.
rowCount: The number of data pane records returned (this is always 1 for
card panes).
rowOffset: The offset of the data pane records returned (currently this
will always be 0).

records List of JSON objects each representing a record within the data pane.
Each JSON object has a data property holding a name/value entry for
every record field included (see Fields Slicing).
For tree table panes with hierarchically organized records, each JSON
object in the list may also hold a records property with the same
characteristics as this outermost records property.
Since a card pane always carries exactly one record, the list contains
exactly one JSON object in case of a card pane.
Note that the records property often is replaced by a recordsPatch
property in Partial Data Responses.

links Hyperlinks available for the data pane. Each of these hyperlinks is a
reference to one of the actions described in Actions.
Note that the links property often is replaced by a linksPatch in
Partial Data Responses.

The purposes of the hyperlinks available from the outermost links property of a data

©Deltek Inc., All Rights Reserved 81

CHAPTER 4. CONTAINERS WEB SERVICE

response are these:

Link relation Explanatory text

data:same-key Reference to the action of loading the data entry exposed in the
data response into the data resource, see Loading a Data Entry.

data:restore Reference to the action of loading the data entry exposed in the
data response into the data resource of some other container
instance, see Loading a Data Entry. This may be relevant in cases
where an auto log-out forces restoration.

self Hyperlink referring to the data resource itself.

To refresh the data entry currently held in the data resource of a container instance,
the client program must follow the hyperlink with link relation instance:data-refresh
also available from the JSON object representing the container instance:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/refresh",
"rel": "instance:data-refresh"

}

Again, the client program must authenticate using a reconnect token valid for the
container instance in use (see Maconomy Reconnect Authentication), and since an
instance:data-refresh request may cause a change in the state of that container
instance, the client program must provide a valid concurrency tag (see Concurrency
Tags). The client program must apply the HTTP verb POST and the request body must
be kept empty.

If no data entry has been loaded, the response to an instance:data-refresh request is
a 204 No Content one. Otherwise, a data response reflecting the refreshed state of the
loaded data entry is returned. If contracted as described in Partial Data Responses, this
may be a partial data response.

4.3.3 Fields Slicing

For a lot of data containers the amount of fields defined for their data panes is huge, and
since in many cases only a smaller subset of these fields are of actual interest to the client
program, a lot of unnecessary data is potentially being transmitted.

Therefore, when requesting a new instance of some data container, the client program has
been given the power of picking out the fields within each of the container’s data panes
that will be of interest to the client program during subsequent requests towards the
created instance. Key fields are special in this matter, though, and are always considered

©Deltek Inc., All Rights Reserved 82

CHAPTER 4. CONTAINERS WEB SERVICE

of interest, no matter if they have specifically been picked out by the client program or
not.

The JSON object allowed in the body of an instance:create request is one of the
following form:

{
"panes" : {

"card" : {
"fields" : CARD_FIELD_NAMES

},
"table" : {

"fields" : TABLE_FIELD_NAMES
}

}
}

Here, CARD_FIELD_NAMES and TABLE_FIELD_NAMES denote a list of field names for the
card and table pane respectively and indicate the fields of interest in each pane. By
leaving out a field names list completely, the client program signals that all fields of the
corresponding data pane are of potential interest, whereas an empty list means that only
key fields are of interest.

Except for key fields, fields that are not mentioned by the client program in the body
of an instance:create request cannot be mentioned in later update requests (see
Updating a Record) and they are all left out of any data response (see Data Resource).
The fields thus excluded are said to be victims of fields slicing.

If necessary, the client program can see which fields among the ones defined for the
container’s data panes are available during subsequent interactions by following the
instance:fields hyperlink available from the container instance resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/fields",
"rel": "instance:fields"

}

As explained earlier, such a request requires the client program to authenticate using a
reconnect token valid for the container instance (see Maconomy Reconnect Authentica-
tion). Since the request does not cause any changes to the container instance state, no
concurrency tag is required nor allowed (see Concurrency Tags).

The response to an instance:fields request is called a fields response and the JSON
object held in its body has the following properties:

©Deltek Inc., All Rights Reserved 83

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

meta containerName: Name of the container.
containerInstanceId: The identifier of the container instance.

panes JSON object with a card property holding a JSON object whose fields
property lists the names of fields selected for the card pane. For containers
for which also a table pane is defined a similar table property is present.

links Hyperlinks available from the fields response. Find the list of link relations
below.

These are the purposes of the hyperlinks available from a fields response:

Link relation Explanatory text

instance:fields-update Reference to the action of updating the fields slicing
applied to the container instance. Find further
explanation below.

self Reference to the instance fields resource itself.

In order to update the fields slicing applied to a given container instance, the client
program must follow the instance:fields-update hyperlink available from either the
container instance resource or some fields response:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/fields",
"rel": "instance:fields-update"

}

As always with container instance requests, the client program must authenticate us-
ing a valid reconnect token (see Maconomy Reconnect Authentication), and since an
instance:fields-update request may cause a change to the state of the container
instance, a valid concurrency tag must also be provided (see Concurrency Tags). The
client program must apply the HTTP verb POST, and a JSON object of the same form
as the one allowed during container instance creation (but now reflecting the new fields
slicing of course) must be included in the request body.

The response to an instance:fields-update request is a fields response reflecting the
updated fields slicing.

For example, if the client program was in fact only interested in the description field
of expense sheets and the text field of their lines, the following JSON object could

©Deltek Inc., All Rights Reserved 84

CHAPTER 4. CONTAINERS WEB SERVICE

have been included in the body of the instance:create request for the ExpenseSheets
container we saw above:

{
"panes" : {

"card" : {
"fields" : ["description"]

},
"table" : {

"fields" : ["text"]
}

}
}

In that case a succeeding instance:fields request would unfold something like this:

$ curl -i
-H 'Authorization: X-Reconnect Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/fields'

HTTP/1.1 200 OK
Maconomy-Reconnect: YTNkNTAzN2...JMTAJMTYwNjgyNjUxNg==
Maconomy-Concurrency-Control: 9d497fb1-3533-4927-963b-ee204aa837be
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620"

},
"panes": {

"card": {
"fields": [

"description",
"expensesheetnumber"

]
},
"table": {

"fields": [
"instancekey",
"text"

]
}

},

©Deltek Inc., All Rights Reserved 85

CHAPTER 4. CONTAINERS WEB SERVICE

"links": {
"instance:fields-update": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/fields",

"rel": "instance:fields-update"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/fields",

"rel": "self"
}

}
}

Besides the field description mentioned during creation of the container instance, the
card pane’s fields list mentions the key field expensesheetnumber. Similarly, the key
field instancekey appears together with text in the table pane’s fields list.

4.3.4 Deleting an Instance

In order to avoid occupying unnecessary space on the server, it is very important that
client programs delete their container instances as soon as these are no longer needed.
Even though there will be arrangements in place on the server attending the task of
cleaning out container instances that have been lying around untouched for too long, it is
of course much preferred if client programs have the matters taken care of instantly.

A container instance can be deleted by following the hyperlink with link relation
instance:delete available from the container instance resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE",
"rel": "instance:delete"

}

Such a request requires authentication using a reconnect token appropriate for the
container instance (see Maconomy Reconnect Authentication), but no concurrency tag is
needed. The HTTP verb to apply is DELETE.

The response to an instance:delete request is a 204 No Content response.

4.4 Working with Data
This section covers all the different kinds of interactions a client program can do with
data within data containers reachable through the Containers Web Service. Common for
these interactions is that they all go via a container instance, as explained in Container
Instances.

©Deltek Inc., All Rights Reserved 86

CHAPTER 4. CONTAINERS WEB SERVICE

4.4.1 Record Positions

In order to be able to update (see Updating a Record), delete (see Deleting a Record),
move (see Moving a Table Record), print (see Printing) or otherwise process (see Applying
an Application Action) a record within a data container pane, a way of pointing out
existing records is needed. Furthermore, in case of a line number-controlled table pane,
the client program also needs a way of specifying the target position of a record that is
about to be either added (see Adding a Table Record) or moved (see Moving a Table
Record).

Position of an Existing Record

Regardless of whether the records of some pane are hierarchically organized or not (a
card pane’s single record is never hierarchically organized, but the records within a tree
table pane always are), the position of an existing record is pointed out by a so-called
dot index:

Letting ir denote an existing record r’s flat index among its sibling records, then in the
cases where r is residing at the outermost level, r’s dot index Ir is simply given by ir. If
instead r is a child of some other record r′, then Ir is given by the following:

Ir′ .ir

For example, having a records structure like the following, the dot indices of the records
will be as noted on the right:

A 0
B 0.0
C 0.1

D 0.1.0
E 0.2

F 1
G 2

Dot indices that only differ in their last index are called sibling dot indices, and for two
sibling dot indices Ia and Ib with last index ia and ib respectively, Ia is said to be less
than Ib, if ia < ib. Similarly, Ia is said to be greater than Ib, if ia > ib. For example, 0.1
and 0.4 are sibling dot indices where the first is less than the second and the second is
greater than the first.

Dot index incrementation is the operation where the last index of the dot index is
incremented by one. For dot indices whose last index is greater than zero, decrementation
refers to the operation where the last index of the dot index is decremented by one. For
example, incrementing the dot index 0.1 results in the dot index 0.2, and decrementing
0.2 results in 0.1.

©Deltek Inc., All Rights Reserved 87

CHAPTER 4. CONTAINERS WEB SERVICE

A Target Position

Target positions are also pointed out by dot indices. Aside from dot indices pointing
out positions where other records are already residing, the following are also valid target
position dot indices:

• In case of an empty pane, the dot index 0.

• Any dot index pointing out the position just after some last record r.

A dot index pointing out a position where no record resides is called an end dot index,
and the client program is allowed to replace its last index by the token end. For example,
the position as the above record E’s first child can be targeted by supplying either the
end dot index 0.2.0 or the end dot index 0.2.end.

Notice that in cases of move operations (see Moving a Table Record), the target position
relates to the records structure as it looks prior to any changes. For example, if record C
in the above records structure is requested to be moved to 0.2.end, it will actually end
up at the position with dot index 0.1.0:

A 0
B 0.0
E 0.1

C 0.1.0
D 0.1.0.0

F 1
G 2

4.4.2 Creating a Data Entry

Creating a new data entry in a data container corresponds to creating a new card pane
record.

Creating a new card pane record comprises the following two steps:

1. Submit an initialization request and obtain a record template holding default field
values.

2. Submit a creation request supplying the possibly adjusted version of the record
template.

In order to allow the client program to do an initialization request without proceeding
with a creation request (one could, for example, imagine a user never reaching the point
of hitting the save button in a client interface), the initialization state triggered by the
initialization request will not affect the state of the container instance. Instead the
initialization state is stored in a separate temporary resource which is then presented to
the client program for further interaction.

©Deltek Inc., All Rights Reserved 88

CHAPTER 4. CONTAINERS WEB SERVICE

The hyperlink to follow in order to acquire a new temporary initialization resource for a
card pane record is the one with link relation action:init available from the container
instance resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/inits",
"rel": "action:init"

}

As always when working with a container instance, the client program must authenticate
using a valid reconnect token (see Maconomy Reconnect Authentication), and since an
action:init request may rely on the state of the container instance, the client program
must also supply a valid concurrency tag (see Concurrency Tags). The client program
must apply the HTTP verb POST and the body of the request must be kept empty.

The response to an action:init request has a JSON object in the body representing
the created temporary initialization resource. These are the properties of such a JSON
object:

Property Explanatory text

meta containerName: Name of the container.
containerInstanceId: Identifier of the container instance.
paneName: Name of the container pane.

data JSON object holding a name/default value entry for each field of a record
within the container pane.

links Hyperlinks available from the record initialization resource. Find the list
of link relations below.

The purposes of the hyperlinks available from a card pane record initialization resource
are these:

Link relation Explanatory text

action:create Reference to the action of creating the record just initialized. Find
further details about this below.

self Hyperlink referring to the record initialization resource itself.

For example, to initialize a new expense sheet:

$ curl -i

©Deltek Inc., All Rights Reserved 89

CHAPTER 4. CONTAINERS WEB SERVICE

-H 'Authorization: X-Reconnect Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009 ←↩

e93'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/inits'

HTTP/1.1 200 OK
Maconomy-Reconnect: MmYxZGUyNz...JMTAJMTYwNjE3MTM5Mw==
Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009e93
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620",
"paneName": "card"

},
"data": {

"expensesheetnumber": "",
"description": "",
"employeenumber": "11",
"companynumber": "",
"createdby": "",
"createddate": "",
...

},
"links": {

"action:create": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card/inits/0cf5c664-0fdd-4720-8505-8e15a3b6c8e9",

"rel": "action:create"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card/inits/0cf5c664-0fdd-4720-8505-8e15a3b6c8e9",

"rel": "self"
}

}
}

Here the concurrency tag d2a39243-a63f-4bd5-8eab-676952009e93 supplied by the

©Deltek Inc., All Rights Reserved 90

CHAPTER 4. CONTAINERS WEB SERVICE

client program being the same as the one received from the server witnesses that the
expense sheet initialization has not changed the state of the container instance, but just
triggered the creation of a new initialization resource.

Once the record template received as part of the initialization resource representation has
been adjusted to reflect the characteristics of the new card pane record, the actual record
creation can be accomplished by making the client program follow the action:create
hyperlink available from the initialization resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/inits/INIT",
"rel": "action:create"

}

Besides authenticating using a valid reconnect token (see Maconomy Reconnect Authen-
tication), the client program must apply the HTTP verb POST with the updated card
pane record template in the body and the valid Maconomy-Concurrency-Control header
enclosed (see Concurrency Tags).

The response to a successful action:create request is a data response (see Data Resource)
and subsequently the newly created data entry is the one referenced by the data resource
of the container instance.

Note that any temporary initialization resource vanishes as soon as the state of the
container instance changes (like if the record creation is completed, for example) or if the
client program is instructed to perform another record initialization.

Accomplishing the creation of the expense sheet initialized above:

$ curl -i
-H 'Authorization: X-Reconnect MmYxZGUyNz...JMTAJMTYwNjE3MTM5Mw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009 ←↩

e93'
-H 'Content-Type: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-d '{

"data": {
"expensesheetnumber": "",
"description": "Yet another expense sheet",
"employeenumber": "11",
"companynumber": "",
"createdby": "",
"createddate": "",
...

}

©Deltek Inc., All Rights Reserved 91

CHAPTER 4. CONTAINERS WEB SERVICE

}'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/inits/0 ←↩
cf5c664-0fdd-4720-8505-8e15a3b6c8e9'

HTTP/1.1 200 OK
Maconomy-Reconnect: NDZhZmNiNG...JMTAJMTYwNjE3NTAxMw==
Maconomy-Concurrency-Control: 8a610472-b72a-4369-a124-6c1057c32f0c
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620"

},
"panes": {

"card": {
"meta": {

"paneName": "card",
"rowCount": 1,
"rowOffset": 0

},
"records": [

{
"data": {

"expensesheetnumber": "10760004",
"description": "Yet another expense sheet",
"employeenumber": "11",
"companynumber": "1",
"createdby": "Administrator",
"createddate": "2020-11-24",
...

}
}

],
"links": {

"action:init": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card/inits",

"rel": "action:init"
},
"action:init-create": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card",

"rel": "action:init-create"
},

©Deltek Inc., All Rights Reserved 92

CHAPTER 4. CONTAINERS WEB SERVICE

...
}

},
"table": {

"meta": {
"paneName": "table",
"rowCount": 0,
"rowOffset": 0

},
"records": [],
"links": {

"action:init-row": {
"template": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/table/inits?row={row}",

"rel": "action:init-row"
},
"action:init-create-row": {

"template": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/table?row={row}",

"rel": "action:init-create-row"
}

}
}

},
"links": { ... }

}

As you can see, the new expense sheet has been assigned the number 10760004 and the
updated concurrency tag witnesses the fact that the new sheet is now the one in focus
within the container instance.

Since expense sheet 10760004 does not yet have any expense sheet lines, the records
property of the table pane’s JSON object holds an empty list. Both hyperlinks available
from the links property there relate to expense sheet line creation and is further described
in Adding a Table Record.

The action:init and the action:init-create hyperlink available from the links
property of the card pane’s JSON object are similar to the ones available from the
container instance resource. The appearance of these hyperlinks in both places is a
general thing and nothing particular for expense sheets.

In situations without any great need of a card pane record template, initialization and
creation can be combined into a single request by following the action:init-create
hyperlink available from the container instance resource:

{

©Deltek Inc., All Rights Reserved 93

CHAPTER 4. CONTAINERS WEB SERVICE

"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩
/INSTANCE/data/panes/card",

"rel": "action:init-create"
}

The usage of the action:init-create hyperlink is similar to what was just described
for the action:create hyperlink and hence the client program must include appropriate
field name/values for the new card pane record in the request body.

4.4.3 Loading a Data Entry

A client program is able to interact with a data entry within a data container only if
that entry is the one currently being referenced by the data resource of a container
instance.

In Creating a Data Entry it was described how new data entries go into focus once
created, and in this section it is disclosed where hyperlinks to follow in order to load an
already existing data entry can be discovered.

If the client program follows the hyperlink with link relation data:any-key available
from a container instance resource, an unspecified (yet deterministic) data entry is loaded
into the data resource of the container instance:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data;any",
"rel": "data:any-key"

}

The client program must authenticate using a valid reconnect token (see Maconomy
Reconnect Authentication), and since a data:any-key request affects the state of the
container instance, the client program must also supply a valid concurrency tag (see
Concurrency Tags). The client program must apply the HTTP verb POST and the body
of the request must be kept empty.

The response to a data:any-key request is a data response holding the JSON represen-
tation of the current state of the data entry put into focus (see Data Resource).

For example, doing a data:any-key request against the ExpenseSheets container in-
stance we acquired in Container Instances:

$ curl -i
-H 'Authorization: X-Reconnect NDZhZmNiNG...JMTAJMTYwNjE3NTAxMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Concurrency-Control: 8a610472-b72a-4369-a124-6 ←↩

c1057c32f0c'

©Deltek Inc., All Rights Reserved 94

CHAPTER 4. CONTAINERS WEB SERVICE

-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data;any'

HTTP/1.1 200 OK
Maconomy-Reconnect: YTg1ZGY3Ym...wCTEwCTE2MDYyMzE3Mzg=
Maconomy-Concurrency-Control: 8db720b5-015d-4cfe-926a-3edf96f3e724
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620"

},
"panes": {

"card": {
"meta": {

"paneName": "card",
"rowCount": 1,
"rowOffset": 0

},
"records": [

{
"data": {

"expensesheetnumber": "10760001",
"description": "Expenses, expenses, expenses...",
"employeenumber": "11",
"companynumber": "1",
...

}
}

],
"links": {

...,
"action:submitexpensesheet": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf5862/data/panes ←↩
/card/0/action;name=submitexpensesheet",

"rel": "action:submitexpensesheet"
},
...

}
},
"table": {

"meta": {
"paneName": "table",
"rowCount": 32,
"rowOffset": 0

©Deltek Inc., All Rights Reserved 95

CHAPTER 4. CONTAINERS WEB SERVICE

},
"records": [...],
"links": { ... }

}
},
"links": {

"data:same-key": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data; ←↩
expensesheetnumber=10760001",

"rel": "data:same-key"
},
"data:restore": {

"template": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/{instance}/data;expensesheetnumber=10760001",

"rel": "data:restore"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data",

"rel": "self"
}

}
}

Besides an updated concurrency tag, here are examples of the data:same-key and the
data:restore hyperlink always available from a full data response.

The data:same-key hyperlink is meant for the client program to follow if it at some
point becomes relevant to load the data entry represented in the data response into the
data resource of the container instance again:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data;KEY",
"rel": "data:same-key"

}

The data:restore hyperlink, however, is useful if the container instance gets lost for
some reason (for example, if the user gets logged out due to inactivity) and the client
program needs to restore its state using a new container instance:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/{instance}/data;KEY",
"rel": "data:restore"

}

©Deltek Inc., All Rights Reserved 96

CHAPTER 4. CONTAINERS WEB SERVICE

Once the {instance} placeholder in the data:restore template URL has been re-
placed by the id of some new container instance, the usage of the data:same-key
and data:restore hyperlinks is similar to what was described for the data:any-key
hyperlink above.

Unless the container contains exactly one entry, a data:any-key hyperlink is normally
not very useful, as the client program typically wants to interact with a specific data
entry and not just some unspecified (yet deterministic) entry. It is described in Filtering
how filter panes allow the client program to discover hyperlinks referencing specific data
entries.

For data containers where the records of a filter pane can be thought of as thumbnails
describing the container’s data entries, a data:same-key-some-instance hyperlink is
available from each record presented in a filter response:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/{instance}/data;KEY",
"rel": "data:same-key-some-instance"

}

Just like with the data:restore hyperlink described above, a container instance id must
be substituted into the {instance} placeholder, but besides from that, the usage of
a data:same-key-some-instance hyperlink is similar to what was described for the
data:any-key hyperlink above.

Since no search container ever hosts any actual data (remember that a search con-
tainer is a container with only a filter pane defined), Filtering describes how the hy-
perlink available from each record presented in a search container filter response is
not a data:same-key-some-instance but instead a data:same-key-some-container
hyperlink:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/{container}/ ←↩

instances/{instance}/data;KEY",
"rel": "data:same-key-some-container"

}

Here, the {container} placeholder must be replaced by the name of a data container
whose card pane is based on the same entity as the search container, and the {instance}
placeholder must be replaced by an id of an instance of that data container. Aside from
this, the usage of a data:same-key-some-container hyperlink is similar to what was
described for the data:any-key hyperlink above.

As mentioned in Foreign Keys, the data entry navigation hyperlinks available from any
search response are data:same-key-some-container hyperlinks as well. You can also

©Deltek Inc., All Rights Reserved 97

CHAPTER 4. CONTAINERS WEB SERVICE

see how a client program can navigate to data entries by use of the data:key hyperlink
available for any complete foreign key.

4.4.4 Adding a Table Record

Similar to Creating a Data Entry, adding a new record to a table pane of the data entry
currently in focus comprises a step of initialization and a step of actual creation.

For table panes without line number control, the link relation of the hyperlink to follow
in order to perform a record initialization is action:init, just like for card panes:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/table/inits",
"rel": "action:init"

}

This action:init hyperlink is available from the table pane’s JSON object within a full
data response (see Data Resource) and its usage is entirely as described in Creating a
Data Entry. The same goes for the action:init-create hyperlink to be followed in
order to perform a merged action of table pane record initialization and creation:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/table",
"rel": "action:init-create"

}

Obviously, the client program has no influence on where a new record ends up in a table
pane without line number control.

For a table pane with line number control, however, specifically specifying where
in the pane the new record shall appear is part of the game. In such line num-
ber control cases, the table pane’s JSON object within a full data response con-
tains an action:init-row and an action:init-create-row hyperlink instead of an
action:init and an action:init-create hyperlink respectively:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/inits?row={row}",
"rel": "action:init-row"

}

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table?row={row}",
"rel": "action:init-create-row"

}

©Deltek Inc., All Rights Reserved 98

CHAPTER 4. CONTAINERS WEB SERVICE

Both of these hyperlinks carry a template URL containing a {row} placeholder that needs
to be replaced by the preferred position for the new record. In accordance with what is
described in Record Positions, this target position must be one of the following:

• A dot index pointing out an already existing record r.

• A valid end dot index.

In the first case, the record r and all its sibling records positioned at larger dot indices
are shifted one down (their dot index is incremented by one), and then the new record is
inserted where record r used to reside. In the second case, the new record is appended at
the position pointed out by the given end dot index.

For example, the substituted action:init-create-row template URL to be used in
order to insert a new first line into the non-empty expense sheet currently selected should
be:

http://SERVER/maconomy-api/containers/w21ora/expensesheets/instances/7 ←↩
dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/table?row=0

Once the {row} placeholder has been replaced, the usage of the action:init-row and
the action:init-create-row hyperlink is similar to that of the action:init and the
action:init-create hyperlink described above. Just like for action:init, the response
to an action:init-row request presents an action:create hyperlink, that the client
program needs to follow in order to actually create the new record.

If an invalid position is substituted into the {row} placeholder, the server responds with
a 400 Bad Request response. If the request is successfully processed, a data response
is returned, and, if contracted as described in Partial Data Responses, this may be a
partial one.

4.4.5 Updating a Record

A common need when working with a data container is to be able to update certain field
values within some record belonging to either a card or a table pane.

The hyperlink to follow in order to update the card pane record within the data entry
currently in focus is the action:update hyperlink available from the card pane’s JSON
object within a full data response (see Data Resource):

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/0",
"rel": "action:update"

}

Besides authenticating using a reconnect token valid for the container instance in use
(see Maconomy Reconnect Authentication), the client program must apply the HTTP

©Deltek Inc., All Rights Reserved 99

CHAPTER 4. CONTAINERS WEB SERVICE

verb POST with a description of the field values to be updated in the body and a valid
Maconomy-Concurrency-Control header enclosed (see Concurrency Tags).

The response to a successful update request on a card pane record is a data response, and,
if contracted as described in Partial Data Responses, this may be a partial one.

Here is an example of updating the description of expense sheet number 10760001
currently in focus:

$ curl -i
-H 'Authorization: X-Reconnect N2U1NWY4YT...JMTAJMTYwNzYwMDk5MA=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Concurrency-Control: 915ed0db-8fc5-450b-93c7- ←↩

f03b1b91345c'
-d $'{

"data": {
"description": "Expenses, expenses, expenses, expenses..."

}
}'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0'

HTTP/1.1 200 OK
Maconomy-Reconnect: ODI2NjJhNz...JMTAJMTYwNzYwNDk4OQ==
Maconomy-Concurrency-Control: 386508e9-0f1b-4d7d-8fb4-927b76de1303
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": { ... },
"panes": {

"card": {
"meta": { ... },
"records": [

{
"data": {

"expensesheetnumber": "10760001",
"description": "Expenses, expenses, expenses, expenses...",
...

}
}

],
"links": { ... }

},
"table": { ... }

},
"links": { ... }

}

©Deltek Inc., All Rights Reserved 100

CHAPTER 4. CONTAINERS WEB SERVICE

Now, for a record belonging to a table pane of the data entry currently in focus, the
hyperlink to follow in order to update some of its field values is the action:update
hyperlink available from the table pane’s JSON object within a full data response:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}",
"rel": "action:update"

}

Once the {row} placeholder has been replaced by the dot index pointing out the table
pane record to be updated (see Record Positions), the usage is similar to what was
described for the card pane record above.

If an invalid dot index is substituted into the {row} placeholder of the action:update
template URL, the server responds with a 400 Bad Request response. Otherwise, the
response is similar to the one received on a card pane record update request.

4.4.6 Deleting a Record

Deleting the record from the card pane of the data entry currently in focus corresponds
to deleting the entire data entry (for example, if you delete an expense sheet, all of its
lines are also deleted), and the hyperlink to follow in order to do so is the one with link
relation action:delete available from the card pane’s JSON object within a full data
response (see Data Resource):

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/0",
"rel": "action:delete"

}

Besides authenticating using a reconnect token valid for the container instance in use
(see Maconomy Reconnect Authentication), the client program must apply the HTTP
verb DELETE and include a valid concurrency tag in a Maconomy-Concurrency-Control
header (see Concurrency Tags).

The response to a successful delete request for a card pane record is a 204 No Content
response. Subsequently, until a new data entry has been loaded, this is also the response
when acquiring the data resource of the container instance (see Data Resource).

To have a record deleted from a table pane of the data entry currently in focus, the client
program must follow the action:delete hyperlink available from the table pane’s JSON
object within a full data response:

©Deltek Inc., All Rights Reserved 101

CHAPTER 4. CONTAINERS WEB SERVICE

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}",
"rel": "action:delete"

}

Once the {row} placeholder has been replaced by the dot index pointing out the table
pane record to be deleted (see Record Positions), the usage is similar to what was
described for the card pane record above.

If an invalid dot index is substituted into the {row} placeholder of the action:delete
template URL, the server responds with a 400 Bad Request response. Otherwise, the
response to a successful delete request for a table pane record is a data response. If
contracted as described in Partial Data Responses, this data response may be a partial
one.

4.4.7 Moving a Table Record

Sometimes it makes sense to have a record within a line number-controlled table pane
moved to a different position. The hyperlink to follow in order to move a table pane
record around within the data entry currently in focus has the link relation action:move
and is available from the table pane’s JSON object within a full data response (see Data
Resource):

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}/move?row={moveToRow}",
"rel": "action:move"

}

Letting r denote the record to be moved, the {row} placeholder within the template
URL mentioned here must be replaced by the dot index currently pointing out record r
(see Record Positions), and the {moveToRow} placeholder must be replaced by the new
preferred position for record r. In accordance with what is described in Record Positions,
this target position must be one of the following:

• A dot index pointing out a record r′ different from record r and any of r’s descendant
records.

• A valid end dot index.

In the first case, record r (with all its descendant records) is moved to the position just
above record r′. In the second case, record r (again with all its descendant records) is
moved to the position pointed out by the given end dot index. Record indices are then
adjusted in the way naturally closing the gap left by r.

©Deltek Inc., All Rights Reserved 102

CHAPTER 4. CONTAINERS WEB SERVICE

Note that if record r is moved to a target position corresponding to an outdent, then
for some tree table panes (the one defined for the JobBudgets container, for example),
records that used to be siblings of r and positioned at larger dot indices will be moved,
one by one, to the end position among r’s child records.

Note that for other tree table panes (the one defined for the PeriodicSumJobBudgets
container, for example), the target dot index supplied with the move request must point
to a position within record r’s current context. That is, for some tree table panes, a
record cannot be moved to a position changing its parental relation. Whether the move
action is restricted in such ways can be discovered by inspection of the property moveMode
found in the pane’s specification, see Specification.

Besides authenticating using a reconnect token valid for the container instance in use (see
Maconomy Reconnect Authentication), the client program must apply the HTTP verb
POST and include a valid concurrency tag in a Maconomy-Concurrency-Control header
(see Concurrency Tags). The request body must be kept empty.

If an invalid position is substituted into either the {row} or the {moveToRow} placeholder
of the action:move template URL, the server responds with a 400 Bad Request response.
Otherwise, the response to a successful move request is a data response, and, if contracted
as described in Partial Data Responses, this may be a partial one.

For example, the substituted action:move template URL to be used in order to convert
the second line of the expense sheet currently in focus into the last:

http://SERVER/maconomy-api/containers/w21ora/expensesheets/instances/7 ←↩
dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/table/1/move?row=end

4.4.8 Printing

Printing is one of the standard actions (see Actions) and is available from both card and
table pane records (in most cases, printing from any table pane record is equivalent to
printing from the card pane record). When a printing request is received on the server,
it triggers the generation of a PDF file with contents appropriate for the pane record in
focus. This generated PDF file can be retrieved by following the URL which is shared
with the client program via a Link header on the response.

The hyperlink to follow in order to initiate printing from the card pane record of the data
entry currently in focus is the action:print hyperlink available from the card pane’s
JSON object within a full data response (see Data Resource):

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/0/print",
"rel": "action:print"

}

©Deltek Inc., All Rights Reserved 103

CHAPTER 4. CONTAINERS WEB SERVICE

Besides authenticating using a reconnect token valid for the container instance in use (see
Maconomy Reconnect Authentication), the client program must apply the HTTP verb
POST and include a valid concurrency tag in a Maconomy-Concurrency-Control header
(see Concurrency Tags). The request body must be kept empty.

The response to a successful action:print request from the card pane record is a
data response carrying a Link header with a URL as described above. If contracted as
described in Partial Data Responses, this data response may be a partial one.

This example shows how to acquire the expense sheet currently in focus as a PDF file by
submitting a printing request from its header:
$ curl -i

-H 'Authorization: X-Reconnect OTg1MDE1MD...JMTAJMTYwNzYyNjY1NA=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Concurrency-Control: 8fd63a4a-c8e3-485b-b330- ←↩

dc599e729daa'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0/print ←↩
'

HTTP/1.1 200 OK
Maconomy-Reconnect: MzA0NjI2Nz...JMTAJMTYwNzYyODc0NQ==
Maconomy-Concurrency-Control: eb6c18e7-bcfb-4144-baa4-e2ab5f763a98
Link: <http://SERVER/maconomy-api/filedrop/macoprod/download ←↩

/5125049317486823446>;rel=file;type=application/pdf
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": { ... },
"panes": {

"card": { ... },
"table": { ... }

},
"links": { ... }

}

According to the value of the Link header displayed here, the expense sheet as a PDF
file can be downloaded using the following URL:
http://SERVER/maconomy-api/filedrop/macoprod/download/5125049317486823446

Now, to initiate printing from a table pane record instead, the client program must follow
the action:print hyperlink available from the table pane’s JSON object within a full
data response:

©Deltek Inc., All Rights Reserved 104

CHAPTER 4. CONTAINERS WEB SERVICE

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}/print",
"rel": "action:print"

}

Once the {row} placeholder has been replaced by the dot index pointing out the table
pane record from which the printing should be initiated (see Record Positions), the usage
is similar to what was described for the card pane record above.

If an invalid dot index is substituted into the {row} placeholder of the action:print
template URL, the server responds with a 400 Bad Request response. Otherwise, the
response is similar to the one received when printing from a card pane record.

4.4.9 Applying an Application Action

As described in Actions, a varying amount of so-called application actions are defined
for the panes of a data container. These actions relate to the specific business logic
implemented by the container.

Some application actions may require one or several arguments (these requirements are
not discoverable through the Containers Web Service but must be known from out-of-
band means) that must be provided by the client program via query parameters of the
form argument:xxx=yyy where xxx is the argument name and yyy the argument value.
Each argument value must be expressed using the Expression Language also used for
filtering restrictions (see the MDML Language Reference [5] for a full description of the
Expression Language). For example, if an application action takes a date as argument
and the name of this argument is day, then the client program must append a query
string like argument:day=date(2020,12,31) to every request for that action.

Also, some application actions may consume one or several file resources. Such file
resources must be provided to the server through appropriate Maconomy-File-Callback
headers on the request using the following format:

Maconomy-File-Callback = "Maconomy-File-Callback" ":" 1#file-uri-value
file-uri-value = "<" URI-Reference ">"
URI-Reference = <URI-reference, see [RFC3986], Section 4.1>

In cases where multiple file resources are required, the client program has the choice of
either including one Maconomy-File-Callback header per resource or including all of the
URI references comma-separated within the same header (see section 4.2 in [7]).

For any application action that consumes one or more file resources, it is mandatory that
resources are first uploaded to file drops on the server using the File Drop Web Service and
then URLs pointing to these created file drops can be passed in Maconomy-File-Callback

©Deltek Inc., All Rights Reserved 105

CHAPTER 4. CONTAINERS WEB SERVICE

headers on the actual application action request. For example, imagine that a receipt
has been uploaded to a file drop identified by the following URL:

http://SERVER/maconomy-api/filedrop/macoprod/upload/3404797840542625411

Then, if needed, this receipt can be provided to the server by inclusion of the following
header on the request:

Maconomy-File-Callback: <http://SERVER/maconomy-api/filedrop/upload/ ←↩
macoprod/3404797840542625411>

Now, for the card pane record of the data entry currently in focus, the card pane’s JSON
object within a full data response will present an action:APP_ACTION hyperlink for each
application action enabled at that point (see Data Resource):

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/0/action;name=APP_ACTION",
"rel": "action:APP_ACTION"

}

Besides authenticating using a reconnect token valid for the container instance in use (see
Maconomy Reconnect Authentication), the client program must apply the HTTP verb
POST and include a valid concurrency tag in a Maconomy-Concurrency-Control header
(see Concurrency Tags). As described above, query parameters representing required
arguments must be appended and file resources to be consumed must be appropriately
described in Maconomy-File-Callback headers. The request body must always be kept
empty.

The response to a successful action:APP_ACTION request for the card pane record is a
data response that, if contracted as described in Partial Data Responses, may be a partial
one. Also, for those of the application actions producing one or several file resources, the
response will carry Link headers providing pointers to these resources.

For an example of an application action hyperlink, see the action:submitexpensesheet
hyperlink included in the card pane JSON object within the data:any-key response in
Loading a Data Entry:

{
"href": "http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0/ ←↩
action;name=submitexpensesheet",

"rel": "action:submitexpensesheet"
}

As the link relation indicates, this hyperlink must be followed in order to submit the
expense sheet currently in focus.

©Deltek Inc., All Rights Reserved 106

CHAPTER 4. CONTAINERS WEB SERVICE

Also for the table pane records of the data entry currently in focus, the table pane’s
JSON object within a full data response presents an action:APP_ACTION hyperlink for
each application action enabled at that point (see Data Resource):

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}/action;name=ACTION",
"rel": "action:APP_ACTION"

}

Once the {row} placeholder has been replaced by the dot index pointing out the table
pane record to which the application action should be applied (see Record Positions),
the usage is similar to what was described for the card pane record above.

If an invalid dot index is substituted into the {row} placeholder of the action:APP_ACTION
template URL, the server responds with a 400 Bad Request response. Otherwise, the
response is similar to one received on a card pane record application action request.

4.4.10 Partial Data Responses

Where Fields Slicing applies to data responses in general, the concept of partial data
responses helps economize the amount of data sent back in responses to requests potentially
modifying the state of the data entry currently loaded. A full data response carries
a representation of the current state of the data entry loaded, whereas a partial data
response only carries a representation of the state changes that were triggered by the
request. With a partial data response at hand, the client program should be able to
patch the changes into its locally maintained data entry state.

In order to indicate to the server that a partial data response is preferred, the client
program must include the following header on the request:

Maconomy-Response-Type: patch

If, in fact, the client program does not even care to receive a partial response, including
the following request header makes the server send back a 204 No Content in response
to a successful request:

Maconomy-Response-Type: none

This none option may be useful, for example, during imports where the client program is
often indifferent to actual state changes but interested in knowing whether each request
was successfully completed or not.

A full data response is always sent back by the server, if either the request includes
no Maconomy-Response-Type header or if the partial response requested by the client
program cannot be derived.

©Deltek Inc., All Rights Reserved 107

CHAPTER 4. CONTAINERS WEB SERVICE

A full and a partial data response differ in that the JSON object representing data
pane contents in the latter may have a recordsPatch property instead of the records
property and a linksPatch property instead of the links property.

The purpose of the properties recordsPatch and linksPatch is to feed the client program
with the patches needed to be carried out on the given data pane’s records and hyperlinks
respectively in order to bring the client program’s state up to date. Record patches must
always be applied in the order they are received, and it is important to understand that
each record patch modifies the client program’s state and that the subsequent patch must
be applied to the modified state. That is, given the record patches rp1, rp2, ..., and rpn

and the client state cs, then apply rp1 to cs and get cs1, apply rp2 to cs1 and get cs2,
..., and apply rpn to csn−1 and get csn.

The JSON objects listed in a recordsPatch property each represents a data pane record
patch and follows one of the four properties patterns described below.

A JSON object representing an update record patch has the following properties:

Property Explanatory text

operation The value update, specifying that the record found at the dot index
mentioned in row must have its fields updated according to the
changes described in record.

row Dot index of the record to be updated (see Record Positions).

record JSON object with a data property holding field name/value pairs
describing the record changes to be applied.

A JSON object representing a delete record patch has the following properties:

Property Explanatory text

operation The value delete, specifying that first the record found at the dot
index mentioned in row must be deleted, and then any sibling record
residing at a larger dot index must be shifted one up (its dot index is
decremented by one).

row Dot index of the record to be deleted (see Record Positions).

A JSON object representing an insert record patch has the following properties:

©Deltek Inc., All Rights Reserved 108

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

operation The value insert, specifying that first any record found at the dot
index mentioned in row or at any greater sibling dot index must be
shifted one down (its dot index is incremented by one), and then the
record for which a representation is found in record must be inserted
at the dot index mentioned in row.

row Dot index at which a record must be inserted (see Record Positions).

record JSON object representing the record to be inserted. The structure of
the JSON object is equal to the structure of the JSON objects held in
the records property of a full data response (see Data Resource).

A JSON object representing a move record patch has the following properties:

Property Explanatory text

operation The value move, specifying that the client program must apply what
corresponds to a delete record patch followed by an insert record patch.
First, the client program must apply what corresponds to a delete
record patch where the dot index mentioned in rowDelete specifies
which record to delete. Keeping the record just deleted, the client
program must then apply what corresponds to an insert record patch
where the record to insert is the one just deleted and the dot index
mentioned in rowInsert specifies where to insert the record.

rowDelete Dot index of the record to be deleted (see Record Positions).

rowInsert Dot index at which the record deleted must be inserted (see Record
Positions).

The JSON objects listed in a linksPatch property each represents a data pane hyperlink
patch and follows one of the two properties patterns described below.

A JSON object representing a delete hyperlink patch has the following properties:

Property Explanatory text

operation The value delete, specifying that the hyperlink with the link relation
mentioned in rel must be deleted.

rel Link relation to which the delete hyperlink patch relates.

©Deltek Inc., All Rights Reserved 109

CHAPTER 4. CONTAINERS WEB SERVICE

A JSON object representing an insert hyperlink patch has the following properties:

Property Explanatory text

operation The value insert, specifying that the hyperlink held in link must be
inserted under the link relation mentioned in rel.

rel Link relation to which the insert hyperlink patch relates.

link Hyperlink to be inserted.

Note that if the server wants the client program to replace all the records or hyperlinks
of a data pane, these new values are communicated via the usual data pane properties
records and links.

For example, deleting the top most line from the expense sheet currently in focus,
requesting a partial data response:

$ curl -i
-H 'Authorization: X-Reconnect M2E4YjcyMD...JMTAJMTYwNzQ3MDUxMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Response-Type: patch'
-H 'Maconomy-Concurrency-Control: bbb50752-b063-4a26-b01c-44 ←↩

fb728c4ea0'
-X DELETE
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/table/0'

HTTP/1.1 200 OK
Maconomy-Reconnect: M2E4YjcyMD...JMTAJMTYwNzQ3MTg5MA==
Maconomy-Concurrency-Control: 82391514-59b3-4e79-b66a-7b447a68c0e0
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=4.0

{
"meta": { ... },
"panes": {

"card": {
"meta": { ... },
"recordsPatch": [],
"linksPatch": []

},
"table": {

"meta": { ... },
"recordsPatch": [

{

©Deltek Inc., All Rights Reserved 110

CHAPTER 4. CONTAINERS WEB SERVICE

"operation": "delete",
"row": 0

},
{

"operation": "update",
"row": 0,
"record": {

"data": {
"linenumber": 1

}
}

},
{

"operation": "update",
"row": 1,
"record": {

"data": {
"linenumber": 2

}
}

},
{

"operation": "update",
"row": 2,
"record": {

"data": {
"linenumber": 3

}
}

},
...

],
"linksPatch": []

}
},
"links": { ... }

}

This partial response tells the client program to first delete the record at index 0, to then
update linenumber to 1 on the record now at index 0, to then update linenumber to
2 on the record now at index 1, to then update linenumber to 3 on the record now at
index 2, and so on.

4.5 Warnings and Notifications
The Maconomy server may raise warnings and notifications during execution.

Whereas any notification message is included as a Maconomy-Notification header on

©Deltek Inc., All Rights Reserved 111

CHAPTER 4. CONTAINERS WEB SERVICE

the response, there is a bit more to warnings.

A Maconomy warning is meant to allow the user to continue or abort an operation, and
in traditional Maconomy clients this has been implemented by a synchronous callback
where the server sits waiting for a signal to either continue or abort. Besides the potential
performance impact of possibly keeping entries locked in the database while waiting for
the user’s answer, such a protocol is just not naturally implemented in an HTTP-based
interface, and therefore a different successive warnings acceptance mechanism has been
implemented in the Containers Web Service.

By default, the Containers Web Service automatically accepts any warning from the Ma-
conomy server and includes the messages of the accepted warnings as Maconomy-Warning
headers on the response. This default behavior, where the operation is continued no
matter what warning occurs, is also the behavior obtained when the client program
includes the following request header:

Maconomy-Warning-Callback: accept

If it is desired that any application warning should cause the operation to abort, the
following header should be included:

Maconomy-Warning-Callback: reject

With this request header, the status 422 Unprocessable Entity is responded if a
warning is raised, and the message of the warning is included as a Maconomy-Warning
response header.

Now, in between the two ends of accept and reject, we have a successive warnings
acceptance variant triggered by the following request header:

Maconomy-Warning-Callback: reject-but

The reject-but variant’s function can be described by the following steps:

1. The client program submits a request holding zero or more Maconomy-Warning
headers.

2. The server starts/continues execution. One of the following two happens next:

a. The server reaches warning wi (i− 1 being the amount of warnings already
reached). If the value of the ith Maconomy-Warning header on the request turns
out to match the message of the observed warning, execution continues, taking
us back to 2. Otherwise, the server rolls back execution and returns a response
holding the messages of the warnings w1, ..., wi as Maconomy-Warning headers.
Depending on whether no or some conflicting ith Maconomy-Warning header
was found on the request, the response carries the status 422 Unprocessable
Entity or 409 Conflict respectively. If the client program afterwards adopts

©Deltek Inc., All Rights Reserved 112

CHAPTER 4. CONTAINERS WEB SERVICE

the responded Maconomy-Warning headers and resubmits the request, you are
taken back to 1.

b. Execution completes. Depending on whether there are zero or more unvisited
Maconomy-Warning headers on the request, the server returns a response car-
rying a Success status or the status 409 Conflict respectively. The response
includes Maconomy-Warning headers representing the warnings accepted dur-
ing execution. See 2a for further details on the warnings handling.

In essence, when the reject-but variant has been chosen, a 422 Unprocessable
Entity response signals that the next warning is ready for the user to accept, whereas
a 409 Conflict response signals that the client program has provided at least one
Maconomy-Warning header that is not in sync with how things actually work.

For example, a happy path of successive warnings acceptance deleting a job from the
Jobs container:

First request, including reject-but in a Maconomy-Warning-Callback header:

$ curl -i
-H 'Authorization: X-Reconnect YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Warning-Callback: reject-but'
-H 'Maconomy-Concurrency-Control: ad139f04-b298-43eb-a902-6 ←↩

dcc1164338b'
-X DELETE
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0'

HTTP/1.1 422 Unprocessable Entity
Maconomy-Reconnect: YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw==
Maconomy-Warning: "Budgets exist for this job. Delete it anyway?"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Budgets exist for this job. Delete it anyway?",
"errorFamily": "application",
"errorSeverity": "warning",
"focus": {

"fieldName": "jobnumber",
"paneName": "card"

}
}

Second request, accepting the first warning by including it in a Maconomy-Warning
header:

©Deltek Inc., All Rights Reserved 113

CHAPTER 4. CONTAINERS WEB SERVICE

$ curl -i
-H 'Authorization: X-Reconnect YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Warning-Callback: reject-but'
-H 'Maconomy-Warning: Budgets exist for this job. Delete it anyway?
-H 'Maconomy-Concurrency-Control: ad139f04-b298-43eb-a902-6 ←↩

dcc1164338b'
-X DELETE
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0'

HTTP/1.1 422 Unprocessable Entity
Maconomy-Reconnect: YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw==
Maconomy-Warning: "Budgets exist for this job. Delete it anyway?"
Maconomy-Warning: "The job is referenced from one or more other jobs. ←↩

These references will be blanked - proceed?"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "The job is referenced from one or more other jobs. ←↩

These references will be blanked - proceed?",
"errorFamily": "application",
"errorSeverity": "warning",
"focus": {

"fieldName": "jobnumber",
"paneName": "card"

}
}

Third and final request, also accepting the second warning by including it in another
Maconomy-Warning header:

$ curl -i
-H 'Authorization: X-Reconnect YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=4.0'
-H 'Maconomy-Warning-Callback: reject-but'
-H 'Maconomy-Warning: Budgets exist for this job. Delete it anyway?
-H 'Maconomy-Warning: The job is referenced from one or more other ←↩

jobs. These references will be blanked - proceed?
-H 'Maconomy-Concurrency-Control: ad139f04-b298-43eb-a902-6 ←↩

dcc1164338b'
-X DELETE
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0'

©Deltek Inc., All Rights Reserved 114

CHAPTER 4. CONTAINERS WEB SERVICE

HTTP/1.1 204 No Content
Maconomy-Reconnect: YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw==
Maconomy-Concurrency-Control: 13e6cb3f-0a62-4906-a1ff-fad2b2046a2a
Maconomy-Warning: "Budgets exist for this job. Delete it anyway?"
Maconomy-Warning: "The job is referenced from one or more other jobs. ←↩

These references will be blanked - proceed?"

As done in this example, Maconomy-Warning headers must be provided by the client pro-
gram in the exact same order as they were received in the response from the server.

4.5.1 HTML Entity Escaping

Before including a Maconomy warning or notification message in a Maconomy-Warning
or Maconomy-Notification response header respectively, the Containers Web Service
HTML entity escapes the message using the following rules:

Character Decimal value Escape entity

" 34 "

& 38 &

' 39 '

, 44 ,

< 60 <

> 62 >

c Below 32 or above 126 &#xx;, x being the hexadecimal value of c

c None of the above c

In order to be recognizable to the server, the Maconomy-Warning headers included in a
request by a client program should be identical to the ones received from the server.

The standards says that an HTTP header value should never contain any non-ASCII
characters, and with the HTML entity escaping just described, it is ensured that at
least Maconomy-Warning and Maconomy-Notification HTTP headers will live up to
this requirement.

4.6 Web Access Configuration
Just like any Maconomy client, the Containers Web Service is subject to the core access
control setup in Maconomy. However, since any of the additional data filtering provided

©Deltek Inc., All Rights Reserved 115

CHAPTER 4. CONTAINERS WEB SERVICE

by the screen layouts of other clients is lacking, some containers or record fields normally
not exposed may in fact be available through the Containers Web Service.

To address this issue, a REST API-specific access control mechanism has been introduced.
This mechanism is based on web access rules specified inside a webaccess.ini file
located in a Definitions folder in the Maconomy server’s custom search path (in order
for changes to the webaccess.ini to take effect, the Coupling Service needs to be
restarted):

/CustomizationDir/Custom.<shortname>/Definitions/
/CustomizationDir/Custom/Definitions/
/CustomizationDir/Solution/Definitions/

The web access rules specified are appropriately matched against containers and record
fields accessed through the Containers Web Service. Accessing a container for which
access cannot be granted according to the web access rules results in a 403 Forbidden
response. For the censored record fields, none of these appear in any of the responses
returned by the Containers Web Service.

The following two sections contain further details on how web access rules are specified
inside a webaccess.ini file.

4.6.1 Access Lists

Web access rules are specified inside a webaccess.ini file by use of so-called access lists.
These access lists come in pairs of an include and an exclude list and with the following
semantics:

• If only an include list is specified, access is granted only if the container/field
name matches one of the listed patterns.

• If only an exclude list is specified, access is granted only if the container/field does
not match any of the listed patterns.

• If both an include and an exclude list have been specified, access is granted only
if the container/field name either does not match any of the patterns listed in the
exclude list or matches one of the patterns in the include list. The patterns in
the include list are thus exemptions from the exclude list.

Now, an access list may contain zero or more patterns delimited by a whitespace, and it
may be distributed across multiple lines by putting a backslash (\) at the end of each
line except for the last, for example:

<access-list> = <pattern#1> <pattern#2> \
<pattern#3> \
<pattern#4> <pattern#5>

Each pattern in an access list is one of three kinds:

©Deltek Inc., All Rights Reserved 116

CHAPTER 4. CONTAINERS WEB SERVICE

• A literal pattern.

• A wildcard pattern consisting of literal string segments separated by wildcards in
the form of an asterisk (*).

• A regular expression pattern surrounded by forward slashes (/) and conforming to
the Java regex pattern syntax [2].

Note that all access list patterns are case-insensitive.

Since managing long lists of access list patterns can be a challenge, it is possible to create
named lists. The syntax of a named list is similar to that of access lists described above,
for example:

<list-name> = <pattern#1> <pattern#2>

The contents of a named list can be referenced from some access list by prefixing the
name of the list by $.

For example:

List declaration Explanatory text

my-list = <pattern#1> <pattern#2> Declares the named list my-list.

another-list = $my-list <pattern#3> Declares another named list
another-list which includes the
patterns of my-list.

data.exclude = $my-list Assigns the patterns of my-list to the
exclude list data.exclude.

filter.include = $another-list Assigns the patterns of another-list
to the include list filter.include.

Container Level

The patterns in container level access lists must match container names formatted as
this:

<namespace>:<container>

Here are a few examples of patterns that can be found in container level access lists:

Pattern Explanatory text

maconomy:jobs The literal pattern matching the Maconomy Jobs container.

©Deltek Inc., All Rights Reserved 117

CHAPTER 4. CONTAINERS WEB SERVICE

Pattern Explanatory text

maconomy:* The wildcard pattern matching all Maconomy containers.

/maconomy\:.*/ The regular expression pattern matching all Maconomy containers.

*:Jobs The wildcard pattern matching the Jobs container in any
namespace.

Field Level

The patterns of field level access lists must match field names formatted as this:

<namespace>:<container>/<pane>.<field>

Field level access rules can be specified either for a specific container or across all
containers.

Note that since a client program must have access to all key fields of a container, field
level access rules must grant access to these.

Here are a few examples of patterns that can be found in field level access lists:

Pattern Explanatory text

maconomy:jobs/filter.JobNumber The literal pattern matching the field
JobNumber in the filter pane of the Maconomy
Jobs container.

maconomy:jobs/* The wildcard pattern matching all fields in all
panes of the Maconomy Jobs container.

/.nameofuser The wildcard pattern matching the field
NameOfUser in any container pane.

4.6.2 Web Access Contract

The contract around the web access control mechanism is that the Containers Web Service
makes any container specification, filtering, or data request subject to the web access
rules derivable from the following pairs of container level access lists respectively:

• specification.include
• specification.exclude

©Deltek Inc., All Rights Reserved 118

CHAPTER 4. CONTAINERS WEB SERVICE

• filter.include
• filter.exclude

• data.include
• data.exclude

Also, record fields are censored according to the web access rules derivable from the
following pair of field level access lists:

• field.include
• field.exclude

For example, to disallow filtering access to all Find_ containers except from the Maconomy
Find_Activity container, the following filter access lists could be included:

filter.exclude = maconomy:find_*
filter.include = maconomy:find_activity

As another example, inclusion of the following will make the fields BankAccountNumber
and BasicSalary invisible for all containers:

field.exclude = */*.bankaccountnumber */*.basicsalary

4.6.3 Diagnostic Logging

In order to get diagnostic logging of which access rules are evaluated during Containers
Web Service requests, add the following logger to configuration/logback.xml on the
Coupling Service:

<logger name=" com.maconomy.webservices.common.access" additivity="false">
<level value="DEBUG" />
<appender-ref ref="FILE" />

</logger>

With the above logger, each access rule evaluation results in a line being written to
log/coupling/maconomy.log with the following structure:

DEBUG c.m.w.c.access.McAccessConfiguration {Data|Filter|Specification ←↩
|Field} access {granted|denied} to '{name}' by access rules: { ←↩
accessRules}

©Deltek Inc., All Rights Reserved 119

Chapter 5

Popup Types Web Service

The purpose of the Maconomy RESTful Popup Types Web Service is to allow client
programs to get hold of the name of the popup container providing the values available
for a given enum type (see Containers Web Service for a definition of a popup container).
As described in the Fields section, the subtypeContainer property of a specification
JSON object for an enum type field holds exactly this information, but the values of an
enum type may also come in handy in situations where no field of that type is at hand.
The Popup Types Web Service facilitates a uniform way of gaining knowledge of the
popup container corresponding to a given enum type. Once knowing the popup container
name, the enum values can be acquired by following the data:filter hyperlink available
from the popup container’s resource (see Filtering).

This is the custom media type covering the JSON representations within the encompassed
version of the Popup Types Web Service (see Media Types):

application/vnd.deltek.maconomy.popups+json; charset=utf-8; version=1.0

The root resource of the Popup Types Web Service can be accessed by following the
hyperlink with link relation popups available from an installation resource (see Installa-
tion):

{
"href": "http://SERVER/BASEPATH/popups/SHORTNAME",
"rel": "popups"

}

The client program must apply the HTTP verb GET. No authentication is required.

For example, for the macoprod system:

$ curl -i
-H 'Accept-Language: en-US'

120

CHAPTER 5. POPUP TYPES WEB SERVICE

-H 'Accept: application/vnd.deltek.maconomy.popups+json; charset= ←↩
utf-8; version=1.0'

'http://SERVER/maconomy-api/popups/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.popups+json; charset=utf-8; ←↩

version=1.0

{
"links": {

"popup": {
"template": "http://SERVER/maconomy-api/popups/macoprod/{popup}",
"rel": "popup"

},
"self": {

"href": "http://SERVER/maconomy-api/popups/macoprod",
"rel": "self"

}
}

}

The hyperlink with link relation popup available from the JSON object of a popups
response is the one to follow in order to acquire knowledge of some enum type:

{
"template": "http://SERVER/BASEPATH/popups/SHORTNAME/{popup}",
"rel": "popup"

}

Besides substituting the name of the enum type of interest into the {popup} placeholder of
the hyperlink’s template URL, the client program must authenticate (see Authentication)
and apply the HTTP verb GET.

If an invalid enum type name is substituted into the popup template URL, the server
responds with a 404 Not Found. Otherwise, the client program receives a 200 OK
response with a JSON object in the body holding the following properties:

Property Explanatory text

meta popupTypeName: Name of the enum type.
popupContainerName: Name of the popup container providing the values
available for the enum type.

links self: Hyperlink referring to the enum type resource itself.

For example, for the currencies enum type:

©Deltek Inc., All Rights Reserved 121

CHAPTER 5. POPUP TYPES WEB SERVICE

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.popups+json; charset= ←↩

utf-8; version=1.0'
'http://SERVER/maconomy-api/popups/macoprod/currencytype'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.popups+json; charset=utf-8; ←↩

version=1.0

{
"meta": {

"popupTypeName": "currencytype",
"popupContainerName": "popup_currencytype"

},
"links": {

"self": {
"href": "http://SERVER/maconomy-api/popups/macoprod/currencytype",
"rel": "self"

}
}

}

This response reveals that the Popup_CurrencyType container is the one providing values
in the system for the enum type CurrencyType.

©Deltek Inc., All Rights Reserved 122

Chapter 6

File Drop Web Service

The purpose of the Maconomy RESTful File Drop Web Service is to facilitate that a
client program can hand over files to the Maconomy server. This may, for example, be
relevant for some application actions in the Containers Web Service (see Applying an
Application Action).

The crux of the File Drop Web Service is the so-called file drops, each being a temporary
file store on the Maconomy server to which a single file can be uploaded.

The state space of a file drop has the following two options:

Unresolved which denotes the case where no file has yet been uploaded to the file drop.

Resolved which denotes the case where some file has been uploaded to the file drop.
Note that each file drop can only be resolved once and that a resolved file drop can
never go back to being unresolved.

Now, this is the custom media type covering the JSON representations within the
encompassed version of the File Drop Web Service (see Media Types):

application/vnd.deltek.maconomy.filedrop+json; charset=utf-8; version=1.0

The root resource of the File Drop Web Service can be accessed by following the hyperlink
with link relation filedrop available from an installation resource (see Installation):

{
"href": "http://SERVER/BASEPATH/filedrop/SHORTNAME",
"rel": "filedrop"

}

For example, for the macoprod system:

$ curl -i
-H 'Accept-Language: en-US'

123

CHAPTER 6. FILE DROP WEB SERVICE

-H 'Accept: application/vnd.deltek.maconomy.filedrop+json; charset= ←↩
utf-8; version=1.0'

'http://SERVER/maconomy-api/filedrop/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.filedrop+json; charset=utf ←↩

-8; version=1.0

{
"links": {

"new": {
"href": "http://SERVER/maconomy-api/filedrop/macoprod/new",
"rel": "new"

}
}

}

In general, the JSON representation of the root resource returned in response to a
filedrop request has a links property presenting a new hyperlink:

{
"href": "http://SERVER/BASEPATH/filedrop/SHORTNAME/new",
"rel": "new"

}

This new hyperlink is the one to follow in order to create a new file drop on the server.

File drop creation requires authentication (see Authentication) and the client program
must apply the HTTP verb POST. The request body must be kept empty.

For example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.filedrop+json; charset= ←↩

utf-8; version=1.0'
-X POST
'http://SERVER/maconomy-api/filedrop/macoprod/new'

HTTP/1.1 201 Created
Location: http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩

/3404797840542625411
Content-Type: application/vnd.deltek.maconomy.filedrop+json; charset=utf ←↩

-8; version=1.0

{
"location": "http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩

/3404797840542625411"

©Deltek Inc., All Rights Reserved 124

CHAPTER 6. FILE DROP WEB SERVICE

}

In general, the response to a successful file drop creation request has status 201 Created
and a JSON object in the body with the following structure:

{
"location": "http://SERVER/BASEPATH/filedrop/SHORTNAME/upload/FILEDROP"

}

Here, the location property holds a URL identifying the created file drop. This location
URL is also included in a Location header on the response, as seen in the example
above.

When a new file drop has been created, the client program can upload a file to it using
either a binary or a multipart/form-data data format. In both cases it takes submission
of an authenticated (see Authentication) POST request towards the file drop’s location
URL.

If the client program decides to POST the binary data comprising the contents of some
file towards a file drop’s location URL, the following two HTTP headers must also be
included on the request:

Content-Type: application/octet-stream

Content-Disposition: attachment; filename="FILENAME"

The first of these headers tells the server that the request body contains unstructured
binary data, whereas the second brings the client program’s suggestion for a file name to
be used by the server when storing the file. For example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Content-Type: application/octet-stream'
-H 'Content-Disposition: attachment; filename="receipt.jpg"'
--data-binary '@receipt.jpg'
'http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩

/3404797840542625411'

HTTP/1.1 204 No Content

The 204 No Content response means that the request was successful and that the file
drop is now resolved.

Note that if the client program tries to upload another file to a resolved file drop, then
the request fails with a 409 Conflict response. For example:

©Deltek Inc., All Rights Reserved 125

CHAPTER 6. FILE DROP WEB SERVICE

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Content-Type: application/octet-stream'
-H 'Content-Disposition: attachment; filename="receipt.jpg"'
--data-binary '@receipt.jpg'
'http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩

/3404797840542625411'

HTTP/1.1 409 Conflict
Content-Type: application/json; charset=utf-8

{
"errorFamily": "service",
"errorMessage": "Cannot upload file. A file has already been uploaded to ←↩

this file drop.",
"errorSeverity": "error"

}

Since the File Drop Web Service also supports the multipart/form-data media type,
the client program is able to upload a file to a file drop using a classical HTML form
[see 9, for technical details] as well. In that case, it is mandatory that the file part of
the form is named file. For the file drop from the example above, an HTML form for
uploading a file to it could have looked something like this:

<form action="http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩
/3404797840542625411"

method="post"
enctype="multipart/form-data">

<input type="file" name="file"><!-- name must be "file" -->
<input type="submit" value="Upload file">

</form>

©Deltek Inc., All Rights Reserved 126

Chapter 7

Logging Web Service

The Maconomy RESTful Logging Web Service provides the client program with the pos-
sibility of contributing additional log entries to the Application Performance Monitoring
(APM) framework. Such log entries can be used to provide additional insight into the
performance of the client program.

This is the custom media type covering the JSON representations within the encompassed
version of the Logging Web Service (see Media Types):

application/vnd.deltek.maconomy.logging+json; charset=utf-8; version=1.0

The root resource of the Logging Web Service can be accessed by following the hyperlink
with link relation logging available from an installation resource (see Installation):

{
"href": "http://SERVER/BASEPATH/logging/SHORTNAME",
"rel": "logging"

}

For example, for the macoprod system:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.logging+json; charset= ←↩

utf-8; version=1.0'
'http://SERVER/maconomy-api/logging/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.logging+json; charset=utf-8; ←↩

version=1.0

{
"enabled": true,

127

CHAPTER 7. LOGGING WEB SERVICE

"links": {
"entries": {

"href": "http://SERVER/maconomy-api/logging/macoprod/entries",
"rel": "entries"

}
}

}

In general, the JSON representation of the root resource returned in response to a
logging request has an enabled property indicating whether the APM framework is
enabled plus a links property presenting an entries hyperlink:

{
"href": "http://SERVER/BASEPATH/logging/SHORTNAME/entries",
"rel": "entries"

}

This entries hyperlink is the one to follow in order to contribute a log entry to the
APM framework.

Log entry contribution requires authentication (see Authentication) and the client program
must apply the HTTP verb POST. The body of the request must contain the log entry to
be contributed as a JSON object with the following properties:

Property Explanatory text

name Name of the log entry. If the name contains no colons (:), the
namespace WebService will be prepended.

level Log level of the log entry. Possible values are ERROR, WARNING, INFO,
DEBUG, or TRACE.

duration Duration of the log entry (in milliseconds). Mutually exclusive with
elapsed. Find an explanation of when duration is the correct choice
below.

elapsed Elapsed time of the log entry (in milliseconds). Mutually exclusive
with duration. Find an explanation of when elapsed is the correct
choice below.

start Optional. Start time of the log entry (in Unix Epoch milliseconds). If
not specified, a start time will be calculated from the start time of
any parent log entry and the duration of already logged sibling log
entries (see the children property below).

audit Optional. Set it to the boolean value true if the log entry should be
marked as an audit event, otherwise leave it out or set it to the
boolean value false.

©Deltek Inc., All Rights Reserved 128

CHAPTER 7. LOGGING WEB SERVICE

Property Explanatory text

entries JSON object with additional custom key-value pairs relevant for the
log entry.

children Optional. List of JSON objects with properties as described in this
table. Each object represents a so-called child log entry and will be
logged with a parent reference pointing to the log entry.

Here, if the time reported in a log entry was spent entirely within the client program (no
time was spent interacting with some Maconomy RESTful web service), then it should
be specified as a duration. Otherwise it should be specified as elapsed time.

Also, it is strongly recommended that the client program repeats the Maconomy-RequestId
header received on the response to the latest web service request to which the contributed
log entry relates:

Maconomy-RequestId: REQUEST_ID

This ensures that the log entry (and its children) is associated with the current interaction
flow (see Request Identification in APM Logs).

To control the client name stored with the log entry (and its children), a Maconomy-Client
request header should be included (see Client Identification in APM Logs):

Maconomy-Client: CLIENT_NAME

The response to a successful log entry contribution request is a 204 No Content re-
sponse.

For example:

$ curl -i
-H 'Maconomy-RequestId: 5fa7f168-5e89-4043-87cb-fe79883d0f57'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.logging+json; charset= ←↩

utf-8; version=1.0'
-H 'Content-Type: application/vnd.deltek.maconomy.logging+json; ←↩

charset=utf-8; version=1.0'
-d $'{

"name" : "Test",
"level" : "INFO",
"elapsed" : 1234,
"audit" : true,
"entries" : {

"Message" : "Something happened"
}

©Deltek Inc., All Rights Reserved 129

CHAPTER 7. LOGGING WEB SERVICE

}'
'http://SERVER/maconomy-api/logging/macoprod/entries'

HTTP/1.1 204 No Content

©Deltek Inc., All Rights Reserved 130

Chapter 8

User Settings Web Service

The Maconomy RESTful User Settings Web Service offers a simple mechanism for storing
user-specific settings on the server. Settings are stored as JSON documents identified by
document keys chosen freely by the client program. The server only accepts and produces
valid JSON, but the schema is otherwise unconstrained. A user settings document can
only be accessed by the Maconomy user who created it.

This is custom media type covering the JSON representations within the encompassed
version of the User Settings Web Service (see Media Types):

application/vnd.deltek.maconomy.usersettings+json; charset=utf-8; version ←↩
=1.0

The root resource of the User Settings Web Service can be accessed by following the
hyperlink with link relation usersettings available from an installation resource (see
Installation):

{
"href": "http://SERVER/BASEPATH/usersettings/SHORTNAME",
"rel": "usersettings"

}

As the root resource carries user-specific information, accessing it requires authentication
(see Authentication).

The JSON object contained in the response to a successful usersettings request has a
links property from where the following kinds of hyperlinks are available:

Link relation Explanatory text

user-settings:key-template Reference to the action of creating a new user
settings document. Find further details below.

131

CHAPTER 8. USER SETTINGS WEB SERVICE

Link relation Explanatory text

user-settings:key:DOCUMENT_KEY Reference to the user settings document
identified by the alphanumeric key
DOCUMENT_KEY. Depending on the amount of
settings documents created by the
authenticated user, the root resource state may
contain zero or more hyperlinks of this kind.
Find further details below.

For example, for the macoprod system:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.0'
'http://SERVER/maconomy-api/usersettings/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.usersettings+json; charset= ←↩

utf-8; version=1.0

{
"links": {

"user-settings:key-template": {
"template": "http://SERVER/maconomy-api/usersettings/macoprod/{ ←↩

document-key}",
"rel": "user-settings:key-template"

}
}

}

Since only a user-settings:key-template hyperlink is available from this response, ap-
parently, no settings documents have yet been created for the Administrator user.

In order to create a new user settings document, the client program must follow the
user-settings:key-template hyperlink available form the root resource:
{

"template": "http://SERVER/BASEPATH/usersettings/SHORTNAME/{document-key ←↩
}",

"rel": "user-settings:key-template"
}

Here, the {document-key} placeholder within the template URL must be replaced by
an alphanumeric key identifying the new settings document.

©Deltek Inc., All Rights Reserved 132

CHAPTER 8. USER SETTINGS WEB SERVICE

Besides authenticating (see Authentication), the client program must apply the HTTP
verb PUT and include a valid JSON representation of the new settings document in the
request body.

The response to a successful user-settings:key-template request is a 204 No Content
response. If the JSON representation in the request body is malformed, a 400 Bad
Request is returned.

For example, adding a helloworld settings document:

$ curl -i
-u 'Administrator:123456'

-H 'Accept: application/vnd.deltek.maconomy.usersettings+ ←↩
json; charset=utf-8; version=1.0'

-H 'Content-Type: application/vnd.deltek.maconomy.usersettings+json ←↩
; charset=utf-8; version=1.0'

-d $'{
"key": 42,
"hello": "world"

}'
-X PUT
'http://SERVER/maconomy-api/usersettings/macoprod/helloworld'

HTTP/1.1 204 No Content

With a helloworld settings document thus added, a hyperlink specifically referencing
this document is available from the root resource:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.0'
'http://SERVER/maconomy-api/usersettings/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.usersettings+json; charset= ←↩

utf-8; version=1.0

{
"links": {

"user-settings:key-template": {
"template": "http://SERVER/maconomy-api/usersettings/macoprod/{ ←↩

document-key}",
"rel": "user-settings:key-template"

},
"user-settings:key:helloworld": {

"template": "http://SERVER/maconomy-api/usersettings/macoprod/ ←↩
helloworld",

©Deltek Inc., All Rights Reserved 133

CHAPTER 8. USER SETTINGS WEB SERVICE

"rel": "user-settings:key:helloworld"
}

}
}

An existing user settings document can be acquired by submitting an authenticated (see
Authentication) GET request towards the URL provided with its hyperlink available from
the root resource:

{
"href": "http://SERVER/BASEPATH/usersettings/SHORTNAME/DOCUMENT_KEY",
"rel": "user-settings:key:DOCUMENT_KEY"

}

For example, retrieving our helloworld settings document:

$ curl -i
-u 'Administrator:123456'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.0'
'http://SERVER/maconomy-api/usersettings/macoprod/helloworld'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.usersettings+json; charset= ←↩

utf-8; version=1.0

{
"key": 42,
"hello": "world"

}

If instead the HTTP verb PUT is applied like described for the user-settings:key-template
hyperlink, the user settings document is replaced by the JSON object provided in the
request body.

If instead the HTTP verb DELETE is applied, the user settings document is deleted from
the system. For example, deleting our helloworld settings document:

$ curl -i
-u 'Administrator:123456'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.0'
-X DELETE
'http://SERVER/maconomy-api/usersettings/macoprod/helloworld'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.usersettings+json; ←↩
charset=utf-8; version=1.0

©Deltek Inc., All Rights Reserved 134

Chapter 9

Configuration

In this chapter, the server.ini settings relevant for each of the Maconomy RESTful
web services covered in this document are described.

An overall setting is the one used for specifying the port at which the web services are
exposed:

web.port

By default, the web services are exposed at port 8080.

Whether or not the web services accept secure requests (HTTPS protocol) only can be
controlled by setting the following to either true or false:

web.https-only

The HTTPS-only option is enabled by default only if proxy encryption has been en-
abled:

coupling.muxrmi.proxy.encryption

Consult the server.ini.Template file for further information.

9.1 Root Web Service Configuration
The Root Web Service is enabled by default. To disable it, the following setting must be
set to false:

web.services.maconomy-root.enabled

135

CHAPTER 9. CONFIGURATION

9.1.1 Version Information

By default, version information regarding the system installed is part of the representation
of the Root Web Service’s root resource. To exclude the version information, the following
setting must be set to false:

web.services.maconomy-root.versions.visible

9.1.2 Shortnames

By default, installation shortnames are part of a representation of the Root Web Service’s
root resource. In order to hide these shortnames, the following setting must be set to
false:

web.services.maconomy-root.installations.visible

9.2 Containers Web Service Configuration
The Containers Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.maconomy-containers.enabled

Whenever the Containers Web Service is enabled, the very first version as well as any
later version of the service (for example, the version 3 covered in this document) are
enabled by default.

The very first version of the Containers Web Service can be disabled by setting the
following setting to false:

web.services.maconomy-containers.v1.enabled

All later versions of the Containers Web Service can be disabled by setting the following
setting to false:

web.services.maconomy-containers.v2.enabled

9.2.1 Container Instances Cache Mode

Container Instances can be cached either in the database, in-memory, or in Redis.
This is controlled by assigning the value database, memory, or redis to the following
setting:

web.services.maconomy-containers.instances.cache.mode

©Deltek Inc., All Rights Reserved 136

CHAPTER 9. CONFIGURATION

The default cache mode is database and this should only be changed after advice from
Maconomy Development. Further details on the configuration of each of the three cache
modes can be found in the three sub-sections below.

Whether the bytes representing a container instance are compressed before they are put
into the container instances cache can be controlled by the following setting:

web.services.maconomy-containers.instances.cache.compression.enabled

Compression is enabled by default and this should only be changed after advice from
Maconomy Development.

Database

If database is the cache mode selected, two cleaning settings become relevant. The
first of these must be set if another privileged user than the one used by the batch
framework should be used when cleaning out expired container instances from the
database cache:

web.services.maconomy-containers.instances.cache.database.cleaner.login. ←↩
name

The other setting must be set if the seconds between cleanings of the database instances
cache should be different from 60:

web.services.maconomy-containers.instances.cache.database.cleaner.interval ←↩
.secs

In-memory

If memory is the cache mode selected, container instances are cached in-memory, making
it very important that requests from a particular client always arrive at the same server
node. When multiple server nodes exist, a load balancer configured to use sticky sessions
is required.

For the in-memory container instances cache mode, the concurrency level of the underlying
in-memory cache implementation can be controlled by the following setting:

web.services.maconomy-containers.instances.cache.memory.concurrency-level

The default value none as well as any integer less than zero mean that the default value
of the underlying in-memory cache implementation is used. This setting should only be
changed after advice from Maconomy Development.

Also, for an in-memory container instances cache, the following eight metrics (six his-
tograms and two timers) are maintained:

©Deltek Inc., All Rights Reserved 137

CHAPTER 9. CONFIGURATION

Identifier Explanatory text

sessions-count A histogram describing the distribution of the
amount of user sessions.

instances-per-session-count A histogram describing the distribution of the
amount of container instances registered within
each user session in the cache.

instances-total-count A histogram describing the distribution of the total
amount of container instances in the cache.

bytes-per-instance-count A histogram describing the distribution of the
amount of bytes taken up by each container
instance in the cache.

bytes-per-session-count A histogram describing the distribution of the
amount of bytes taken up by each user session in
the cache.

bytes-total-count A histogram describing the distribution of the total
amount of bytes taken up by the cache.

instance-read-time A timer tracking how many seconds it took to read
some container instance from the cache.

instance-write-time A timer tracking how many seconds it took to
write some container instance to the cache.

The data for the metric with identifier xxx can be found on the server in a CSV file
named McMemoryInstancesCache.xxx.csv.

The more frequent the histograms are updated, the more accurate statistics they provide.
However, increasing the frequency of histogram updates also increases the base CPU
load. The amount of seconds between updates of the histograms can be controlled by
the following setting:

web.services.maconomy-containers.instances.cache.memory.metrics.interval. ←↩
secs

If you set the update interval to -1, no histogram updates are done at all. The default
update interval is 1 second.

Redis

If redis is the cache mode selected, container instances are cached in Redis [3]. The
Redis URI used will be redis://localhost:6379 unless another is stated using the
following setting:

©Deltek Inc., All Rights Reserved 138

CHAPTER 9. CONFIGURATION

web.services.maconomy-containers.instances.cache.redis.uri

9.2.2 Container Instance Expiry

By default, a container instance expires when it has lied untouched in the cache for more
than 10 minutes. If a different expiry is desired, the following setting must be set:

web.services.maconomy-containers.instances.cache.instance-expiry.minutes

9.2.3 Container Instances Limit

By default, 25 container instances are allowed per user session. If a different limit is
desired, the following setting must be set:

web.services.maconomy-containers.instances.cache.max-instances.per-session

Whenever the limit is exceeded, the least recently used container instance registered for
the given user session will be removed.

If the setting is set to none or some negative integer, there is no limit on the amount of
container instances per user session.

9.2.4 Auto Position Fields

By default, any auto position field which is not a key field is left out of table pane
specifications and table pane records. If no auto position fields should be left out, the
following setting must be set to false:

web.services.maconomy-containers.filter-out.auto-position-fields.enabled

This setting affects the efficiency of Partial Data Responses and should only be changed
after advice from Maconomy Development.

9.3 Popup Types Web Service Configuration
The Popup Types Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.maconomy-popups.enabled

©Deltek Inc., All Rights Reserved 139

CHAPTER 9. CONFIGURATION

9.4 File Drop Web Service Configuration
The File Drop Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.maconomy-filedrop.enabled

If the File Drop Web Service is not enabled, the client program will not be able to hand
over files to the Maconomy Server in connection with execution of application actions in
the Containers Web Service (see Applying an Application Action).

9.5 Logging Web Service Configuration
The Logging Web Service is disabled by default. To enable it, the following setting must
be set to true:

web.services.logging.enabled

9.6 User Settings Web Service Configuration
The User Settings Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.maconomy-user-settings.enabled

The backend used for user settings persistence is either Document API or Document
Archives and is controlled by assigning the value document-api or document-archives
to the following setting:

web.services.maconomy-user-settings.backend

The default value is document-api and should only be changed after advice from Ma-
conomy Development.

©Deltek Inc., All Rights Reserved 140

Chapter 10

Versions

For each Maconomy RESTful web service encompassed in this document, this chapter
contains a section providing short descriptions of the different service versions.

10.1 Root Web Service Versions

10.1.1 Root Web Service Version 1.0

The custom media type of Root Web Service version 1.0:

application/vnd.deltek.maconomy.root+json; charset=utf-8; version=1.0

Version 1.0 covers the first version of the Root Web Service which was introduced in
Maconomy 2.5.2.

10.1.2 Root Web Service Version 2.0

The custom media type of Root Web Service version 2.0:

application/vnd.deltek.maconomy.root+json; charset=utf-8; version=2.0

In version 2.0, the version information exposed as part of a root resource representation
has been made similar for APU and TPU and thus an application build number is also
included.

10.2 Containers Web Service Versions

10.2.1 Containers Web Service Version 1.0

The custom media type of Containers Web Service version 1.0:

141

CHAPTER 10. VERSIONS

application/vnd.deltek.maconomy.containers+json; charset=utf-8; version ←↩
=1.0

Version 1.0 covers the first version of the Containers Web Service which was introduced
in Maconomy 2.1.3 With the interaction model used in version 1.0, the server has to
do a large amount of recalculations for each interaction and hence later versions are
recommended.

Note that version 1.0 is deprecated from Maconomy 2.5.2 and will no longer be accessible
from Maconomy 2.7.

10.2.2 Containers Web Service Version 2.0

The custom media type of Containers Web Service version 2.0:

application/vnd.deltek.maconomy.containers+json; charset=utf-8; version ←↩
=2.0

In version 2.0, a completely different interaction model than the one used in version 1.0
has been introduced. Interaction with container data using version 2.0 is done through
so-called Container Instances holding important parts of the container’s state and this
eliminates the need for the large amount of recalculations necessary in version 1.0. Version
2.0 has a greatly improved performance over version 1.0 and in fact performs on par with
other APIs used by Maconomy clients. iAccess for Maconomy 2.5.2 uses version 2.0 and
sees significant performance improvements.

Note that version 2.0 is deprecated from Maconomy 2.5.3 and will no longer be accessible
from Maconomy 2.7.

10.2.3 Containers Web Service Version 3.0

The custom media type of Containers Web Service version 3.0:

application/vnd.deltek.maconomy.containers+json; charset=utf-8; version ←↩
=3.0

From version 3.0, data containers having tree table panes with hierarchically organized
records are fully supported. This means that JSON objects received as representations
of table pane records reflect any hierarchical structure and Record Positions are pointed
out by so-called dot indices. A move record patch now occurs in Partial Data Responses
returned for move requests.

10.2.4 Containers Web Service Version 4.0

The custom media type of Containers Web Service version 4.0:

©Deltek Inc., All Rights Reserved 142

CHAPTER 10. VERSIONS

application/vnd.deltek.maconomy.containers+json; charset=utf-8; version ←↩
=4.0

From version 4.0, Filtering parameters may be supplied as properties of a JSON object
in a POST request body instead of as query parameters. Also, when the client program
does not supply any fields parameter, only key fields (instead of all fields) are included
in the filter response.

Also from version 4.0, the moveMode property exposed as part of a table pane’s specification
allows a client program to discover in advance if records may only be moved around inside
their current context. Furthermore, the targeted title properties upTitle, downTitle,
indentTitle, and outdentTitle in action:move specifications facilitate more accurate
action descriptions in user interfaces.

10.3 Popup Types Web Service Versions

10.3.1 Popup Types Web Service Version 1.0

The custom media type of Popup Types Web Service version 1.0:

application/vnd.deltek.maconomy.popups+json; charset=utf-8; version=1.0

Version 1.0 covers the first version of the Popup Types Web Service which was introduced
in Maconomy 2.5.2.

10.4 File Drop Web Service Versions

10.4.1 File Drop Web Service Version 1.0

The custom media type of File Drop Web Service version 1.0:

application/vnd.deltek.maconomy.filedrop+json; charset=utf-8; version=1.0

Version 1.0 covers the first version of the File Drop Web Service which was introduced in
Maconomy 2.1.3.

10.5 Logging Web Service Versions

10.5.1 Logging Web Service Version 1.0

The custom media type of Logging Web Service version 1.0:

application/vnd.deltek.maconomy.logging+json; charset=utf-8; version=1.0

©Deltek Inc., All Rights Reserved 143

CHAPTER 10. VERSIONS

Version 1.0 covers the first version of the Logging Web Service which was introduced in
Maconomy 2.5.1.

10.6 User Settings Web Service Versions

10.6.1 User Settings Web Service Version 1.0

The custom media type of User Settings Web Service version 1.0:

application/vnd.deltek.maconomy.usersettings+json; charset=utf-8; version ←↩
=1.0

Version 1.0 covers the first version of the User Settings Web Service which was introduced
in Maconomy 2.1.3.

©Deltek Inc., All Rights Reserved 144

Bibliography

[1] JSON. URL http://www.json.org.

[2] Regular expressions in JDK 8. URL https://docs.oracle.com/javase/8/docs/
api/java/util/regex/Pattern.html.

[3] Redis. URL https://redis.io/.

[4] ECMA-404: The json data interchange format, October 2013. URL http://www.
ecma-international.org/publications/standards/Ecma-404.htm.

[5] CMdml. Deltek Maconomy—MDML Language Reference Guide. Deltek Inc.

[6] L. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV). RFC 4918 (Proposed Standard), June 2007. URL http://www.ietf.
org/rfc/rfc4918.txt.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June
1999. URL http://www.ietf.org/rfc/rfc2616.txt.

[8] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart. HTTP Authentication: Basic and Digest Access Authentication. RFC
2617 (Draft Standard), June 1999. URL http://www.ietf.org/rfc/rfc2617.txt.

[9] L. Masinter. Returning Values from Forms: multipart/form-data. RFC 2388
(Proposed Standard), August 1998. URL https://tools.ietf.org/rfc/rfc2388.
txt.

[10] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID
Connect Core 1.0 incorporating errata set 1, 2014. URL http://openid.net/
specs/openid-connect-core-1_0.html.

[11] Ed. T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 7159 (Proposed Standard), March 2014. URL http://www.ietf.org/rfc/
rfc7159.txt.

[12] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia
and Systems Architecture. O’Reilly Media, 2010.

145

http://www.json.org
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://redis.io/
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ietf.org/rfc/rfc4918.txt
http://www.ietf.org/rfc/rfc4918.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
https://tools.ietf.org/rfc/rfc2388.txt
https://tools.ietf.org/rfc/rfc2388.txt
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://www.ietf.org/rfc/rfc7159.txt
http://www.ietf.org/rfc/rfc7159.txt

Index

2FA, 21

Accept-Encoding (HTTP header), 10
Accept-Language (HTTP header), 10
access list (web access conf.), 116
access rule (web access conf.), 116
action, 49
action:APP_ACTION (link relation), 52,

80, 106, 107
action:create (link relation), 51, 80,

89, 91
action:delete (link relation), 51, 80,

101
action:init (link relation), 51, 76, 80,

89, 93, 98
action:init-create (link relation), 51,

77, 80, 93, 98
action:init-create-row (link relation),

50, 51, 80, 98
action:init-row (link relation), 50, 51,

80, 98
action:move (link relation), 50, 51, 80,

102
action:print (link relation), 52, 80, 103,

104
action:update (link relation), 51, 80,

99
amount (data type), 12
analyzer (link relation), 39
APM, 127
application action, 52, 105
Application Performance Monitoring (APM),

127
application/octet-stream (file drop),

125
argument (application action), 105
authentication, 14
authentication (link relation), 39
Authorization (HTTP header), 15–18,

20, 21
auto timestamp (data type), 14

Basic (HTTP header directive), 14
boolean (data type), 12

card (container pane), 42
client name, 29
complete (foreign key), 61
compression, 10
concurrency tag (container instance), 79
conditional foreign key, 64
configurations (link relation), 39
container, 42
container (link relation), 44, 45
container instance, 76
containers (link relation), 38, 43
Containers Web Service, 42, 136
Content-Disposition (HTTP header),

125
cURL, 3

data container, 43, 69
data resource (container instance), 80
data response, 81
data type, 11
data:any-key (link relation), 77, 80, 94
data:enumvalues (link relation), 66, 67
data:filter (link relation), 45, 67, 69,

120

146

INDEX

data:key (link relation), 58, 61, 80
data:restore (link relation), 82, 96
data:same-key (link relation), 80, 82,

96
data:same-key-some-container (link re-

lation), 61, 71, 80, 97
data:same-key-some-instance (link re-

lation), 71, 80, 97
data:search (link relation), 58, 59
DataChanged check, 79
date (data type), 13
DELETE (HTTP verb), 1
dot index, 87

end dot index, 88
entries (link relation), 128
enum (data type), 13
environment (link relation), 39
error, 32
error family, 33
error id, 33
error severity, 33

field, 53
field reference (foreign key), 57
fields response, 83
fields selection (filtering), 72, 74
fields slicing (container instance), 76, 83
file drop, 123
File Drop Web Service, 123, 140
filedrop (link relation), 39, 123
filter (container pane), 42, 69
filter response, 70
filtering, 69
foreign key, 56
foreign key search, 56, 59
format, 10

GET (HTTP verb), 1
gzip, 10

handshake1 (link relation), 36, 38
HATEOAS, 2, 50
HTTP Basic Authentication, 14
HTTP verbs, 1

hyperlink, 2
Hypermedia as the Engine of Application

State (HATEOAS), 2

incomplete (foreign key), 56, 62
initialization, 88
installation (link relation), 36, 38
instance (container instance), 76
instance:create (link relation), 45, 76,

83
instance:data (link relation), 77, 80
instance:data-refresh (link relation),

77, 80, 82
instance:delete (link relation), 77, 86
instance:fields (link relation), 77, 83
instance:fields-update (link relation),

77, 84
integer (data type), 12

JSON, 8

Kerberos, 18

language, 10
language tag, 10
line number control, 42, 98, 102
link relation, 2
literal pattern (web access conf.), 117
logging (link relation), 39, 127
Logging Web Service, 127, 140

Maconomy Reconnect Authentication, 17
Maconomy-Authentication (HTTP header),

15, 17–19
Maconomy-Client (HTTP header), 29
Maconomy-Concurrency-Control (HTTP

header), 79
Maconomy-Cookie (HTTP header), 17
Maconomy-File-Callback (HTTP header),

105
Maconomy-Format (HTTP header), 10
Maconomy-Forwarded-Base-Path (HTTP

header), 7
Maconomy-Notification (HTTP header),

111, 115

©Deltek Inc., All Rights Reserved 147

INDEX

Maconomy-OTP (HTTP header), 21
Maconomy-Reconnect (HTTP header), 17,

18
Maconomy-RequestId (HTTP header), 27,

129
Maconomy-Response-Type (HTTP header),

107
Maconomy-Warning (HTTP header), 112,

115
Maconomy-Warning-Callback (HTTP header),

112
media type, 8, 35, 43, 120, 123, 126, 127,

131, 141–144
multipart/form-data (file drop), 126

named list (web access conf.), 117
new (link relation), 124
nil (enum data type), 69
notification, 111

One-Time Password (OTP), 21
OpenID, 19
ordinal (enum data type), 68, 69
OTP, 21

paging (filtering), 72
pane (container pane), 42
partial data response, 107
popup (link relation), 121
popup container, 43, 69, 120
Popup Types Web Service, 120, 139
popups (link relation), 38, 120
POST (HTTP verb), 1
printing, 103
PUT (HTTP verb), 1

real (data type), 12
reconnect token, 17
record patch (partial data response), 108
regular expression pattern (web access

conf.), 117
related container, 65
representation, 1
Representational State Transfer (REST),

1

request id, 27
resolved (file drop), 123
resource, 1
REST, 1
RESTful, 1
restrictions (filtering), 72, 75
reverse proxy, 7
Root Web Service, 35, 135

search container, 43, 69
search container (foreign key), 56, 59
search pane (foreign key), 57
self foreign key, 63
server.ini, 135
Set-Cookie (HTTP header), 17
sibling dot indices, 87
Single Sign-On (SSO), 19
sorting (filtering), 72, 73
specification, 46
specification (link relation), 45, 47,

66
specification response, 47
SSO, 19
standard action, 51, 88, 98, 99, 101–103
status code, 29
status family, 30
string (data type), 12
supplement (foreign key), 59
switch field (foreign key), 57, 64
switch value (foreign key), 57, 64

table (container pane), 42
time (data type), 13
time duration (data type), 14
Time-based One-Time Password (TOTP),

21
TOTP, 21
tree table pane, 42
Two-Factor Authentication (2FA), 21

unresolved (file drop), 123
User Settings Web Service, 131, 140
user-settings:key-template (link re-

lation), 131, 132

©Deltek Inc., All Rights Reserved 148

INDEX

user-settings:key:DOCUMENT_KEY (link
relation), 132, 134

usersettings (link relation), 39, 131

warning, 111
web access configuration, 116
webaccess.ini (web access conf.), 116
wildcard pattern (web access conf.), 117
WWW-Authenticate (HTTP header), 14–

16

X-Basic (HTTP header directive), 15
X-ChangePassword (HTTP header direc-

tive), 16
X-Cookie (HTTP header directive), 17
X-Force-Maconomy-Credentials (HTTP

header directive), 19
X-Forwarded-Host (HTTP header), 7
X-Log-Out (HTTP header directive), 17,

18
X-OIDC-Code (HTTP header directive),

20
X-Reconnect (HTTP header directive),

18

©Deltek Inc., All Rights Reserved 149

	Introduction
	REST
	Resources
	Hyperlinks
	Other Styles of Web Services
	Further Reading

	cURL
	Version History
	Changes in Maconomy 2.5.2
	Changes in Maconomy 2.5.3
	Changes in Maconomy 2.5.4

	General
	Proxy Requirements
	JSON
	Media Types
	Accept Request Header
	Content-Type Request Header

	Compression
	Language
	Formats
	Data Types
	Integer
	Real
	Amount
	Boolean
	String
	Date
	Time
	Enum
	Time Duration
	Auto Timestamp

	Authentication
	HTTP Basic Authentication
	Maconomy Reconnect Authentication
	Kerberos
	OpenID Authentication
	Two-Factor Authentication

	Request Identification in APM Logs
	Client Identification in APM Logs
	Status Codes and Errors
	Error Responses

	Root Web Service
	Handshake
	Installation

	Containers Web Service
	Specification
	Actions
	Fields
	Foreign Keys
	Related Containers

	Filtering
	Paging
	Sorting
	Fields Selection
	Restrictions

	Container Instances
	Concurrency Tags
	Data Resource
	Fields Slicing
	Deleting an Instance

	Working with Data
	Record Positions
	Creating a Data Entry
	Loading a Data Entry
	Adding a Table Record
	Updating a Record
	Deleting a Record
	Moving a Table Record
	Printing
	Applying an Application Action
	Partial Data Responses

	Warnings and Notifications
	HTML Entity Escaping

	Web Access Configuration
	Access Lists
	Web Access Contract
	Diagnostic Logging

	Popup Types Web Service
	File Drop Web Service
	Logging Web Service
	User Settings Web Service
	Configuration
	Root Web Service Configuration
	Version Information
	Shortnames

	Containers Web Service Configuration
	Container Instances Cache Mode
	Container Instance Expiry
	Container Instances Limit
	Auto Position Fields

	Popup Types Web Service Configuration
	File Drop Web Service Configuration
	Logging Web Service Configuration
	User Settings Web Service Configuration

	Versions
	Root Web Service Versions
	Root Web Service Version 1.0
	Root Web Service Version 2.0

	Containers Web Service Versions
	Containers Web Service Version 1.0
	Containers Web Service Version 2.0
	Containers Web Service Version 3.0
	Containers Web Service Version 4.0

	Popup Types Web Service Versions
	Popup Types Web Service Version 1.0

	File Drop Web Service Versions
	File Drop Web Service Version 1.0

	Logging Web Service Versions
	Logging Web Service Version 1.0

	User Settings Web Service Versions
	User Settings Web Service Version 1.0

	Bibliography
	Index

