

Deltek Maconomy 2.3 GA
Maconomy Printing Language (MPL)

December 2, 2016

Maconomy Printing Language (MPL) ii

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published December 2016.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result in
severe civil or criminal penalties.

All trademarks are the property of their respective owners.

Maconomy Printing Language (MPL) iii

Contents

Introduction .. 1

Prerequisites ... 1

Version History .. 2

Changes in MPL Version 2 .. 2

Changes in MPL Version 3 .. 2

Changes in MPL Version 4 (as of TPU 16 SP0) .. 3

Changes in MPL Version 4 (as of TPU 16 SP2) .. 4

Central Concepts ... 5

Example .. 5

Print Content In More Detail .. 8

MPL Language Basics .. 9

Original Structure Layout .. 12

Structure of an MPL Layout ... 13

Visible Elements .. 15

Predefined Data From the Print Environment ... 15

User defined data .. 17

Example MPL Layout .. 20

Getting Started... 20

Basic Tags ... 23

Stacking Tags .. 23

Repetitions, Conditions, and While .. 26

Horizontal Lines and Spaces .. 32

Arrays .. 33

Printout Example: Time Sheets .. 47

Getting Started... 47

Create the New Layout.. 47

The Paper Content .. 50

Basic Tags Continued ... 53

Headers and Footers ... 53

Canvas .. 57

Custom Calculations ... 59

Database Queries .. 61

Queries, Cursors, and Repeating Blocks .. 61

Tags for Database Queries ... 70

Print Structure .. 72

Maconomy Printing Language (MPL) iv

Structure .. 72

Trees ... 72

Script Structure .. 73

Stackless Structures (MPL 1 and 2) .. 75

Repeating Structure (MPL 4) .. 76

Advanced MPL .. 78

Additional Tags .. 78

Length Constants ... 94

Inheritance of attribute values ... 99

Block Attributes ... 102

Standard Printouts in the Maconomy Clients for Windows and Java 103

RGL ... 104

Universe Reports and the Analyzer .. 104

Filling in Forms ... 105

A Giro Form ... 105

Tips and Tricks ... 107

Overlapping Fields ... 107

Paper Format Independence ... 107

Alignment of Headers and Footers .. 108

Empty Stretchable Columns .. 109

Island Lengths ... 110

Fixed Frames and Watermarks ... 110

Using stop and goto ... 112

Grammar .. 113

Backus-Naur Form (BNF) .. 113

Syntax ... 113

Attribute List ... 124

MPL for Universe Reports.. 129

Links .. 130

Tables .. 132

Charts .. 139

Frames .. 141

Calculating MPL Attribute Values Using M-Script .. 145

Attributes and Return Value Types ... 145

Returning Null from an M-Script Function ... 146

Standard MPL vs. Reporting MPL .. 148

MPL Version 3.. 149

Maconomy Printing Language (MPL) v

New Features .. 149

Converting MPL 2 to MPL 3 .. 156

MPL Version 2 and MPL Version 3 Interoperability .. 156

MPL Version 4 ... 157

New Features .. 157

Errors and Warnings .. 164

Basic Errors ... 164

Lexical Errors ... 165

Structure .. 166

Definitions .. 166

Incorrect Use of Tags .. 168

Fields, Variables, Cursors, and Expressions ... 170

Warnings ... 172

Attributes ... 172

Sizes .. 177

MDL and MPL Preprocessor ... 179

Introduction .. 179

Preprocessor Options.. 179

Introduction

Maconomy Printing Language (MPL) 1

Introduction

This manual describes how printouts and Universe Reports are designed using the Maconomy
Print Language (MPL). It covers all versions of MPL up to version 4.

MPL is a language used for defining both the contents (that it, data to be displayed) and the
layout of printouts in Maconomy. It allows a developer to focus on specifying the logical structure
of a printout, that is to say, how the elements on the printout should relate to each other, for
example, that this column should stretch and those two elements should be aligned. This high-
level description in MPL, called a layout, is then executed by the MPL engine, rendering an actual
printout. The MPL engine makes sure that the physical layout of the rendered printout is best
fitted to the content of the print.

This manual focuses on the language MPL. See the Set-Up section of the Maconomy reference
manual for a description of the administration of MPL layouts after they have been created.

Prerequisites

This manual is both an introduction and a reference manual. For this reason, it sometimes seems
very technical. The “Central Concepts” chapters give a good overview of the language. When reading
the manual for the first time, it is recommended to browse through the technical sections quickly, as
the most important concepts are later demonstrated through examples.

To be able to use this manual, you need basic knowledge of Maconomy. Furthermore, you need to
be able to use an editor (such as TextPad, EditPad, or Notepad) and use the “Print Layout”
windows in Maconomy as described in the Maconomy Reference Manual.

Version History

Maconomy Printing Language (MPL) 2

Version History

This section documents the history of changes to MPL. Because customers can use different
versions of Maconomy, and hence, different MPL engine versions, this section gives a good
overview of in which MPL version a particular feature has been introduced, as well as answer
most backward-compatibility questions.

Changes in MPL Version 2

New Functionality

MPL 2 came out with the following new features:

 Print color (color attribute)

 Graphics/images in printouts (image tag)

 Move cursor to specific vertical position (goto tag)

 Style inheritance

 New attributes for blocks

 Extensions for Universe Reports

Changes in MPL Version 3

MPL version 3 is a major new version of MPL that breaks backward compatibility in some ways, but
also provides a number of new features. The changes are described in details in “MPL Version 3,”
while an overview is provided here.

MPL 2 and MPL 3 are currently both supported by the current Maconomy server, and it is up to the
MPL layout writer to decide which MPL version to use. The Maconomy server, when compiling or
executing an MPL layout, invokes either the old compiler and print engine (if the version tag states

<mpl 1> or <mpl 2>), or the new compiler and print engine (if the version tag states <mpl 3>).

While MPL 3 is compatible with the great majority of existing MPL layouts, there are some things
related to integration with existing client and server technologies to consider:

MPL 3 is only supported when using the Java client or the Portal. The MS Windows client does
not support printing MPL 3 layouts (although it can be used to import them).

The MPL 3 print engine does not support adding RGL to the print through Active Scripting.

MPL 3 and MPL 2 cannot be mixed in situations where a number of layouts are used to generate
one large print.

Also, you cannot mix MPL2 and MPL3 if there is a print layout selection rule that chooses
between them. In practice that means that unless you always manually pick layouts when you
print, either all layouts for a window must be MPL3, or none.

Deltek recommends having all print layouts for a dialog in a single format.

MPL 3 is intended to replace MPL 2 in the future, but until a new Maconomy server platform has
been released, the two versions will coexist.

Version History

Maconomy Printing Language (MPL) 3

New Functionality

 These are the most import additions in MPL 3:

 Multiline text (wrap attribute on <text>, <var>, and <data> tags and the new <concat>

tag)

 Ability to switch page orientation with <newpage>

 Conditionals can be negated and used with strings and database fields

 Supports PostScript (pfm, afm), OpenType (otf) and TrueType (ttf) fonts

Changed Functionality

The following list of changes in functionality is not a complete list, but it contains the most important
ones:

 <goto> is no longer supported in headers or footers

 Conditionals no longer leave blank space when skipping content

 <newpage> in a row is no longer supported

 The scope of <define>, <redefine>, <ruler>, and <subruler> declarations and

<default> has changed. They may now be specified anywhere in a parenthetical tag, not just

at the beginning.

Changes in MPL Version 4 (as of TPU 16 SP0)

MPL 4 is a direct successor to and replacement of MPL 3 as of TPU 16 SP 0. Therefore,
everything that applies to MPL 3 applies to MPL 4 as well, unless otherwise stated in this section.

This section provides an overview of the new features in MPL 4, as well as the changes that were
introduced in this new version. For a detailed description of these matters, see “MPL Version 4.”

New Functionality

Version 4 allows for fetching custom data and performing custom calculations directly in an MPL
layout. This new functionality is enabled through embedding in MPL 4 the Expression Language
and MQL—two technologies that might already be familiar to a Maconomy consultant. The
Expression Language is also used in other Maconomy layout languages like MDML and MWSL.
MQL, on the other hand, is a statically typed database query language that is used for Universe
Reporting and in MScript as well.

With these two new powerful tools at your disposal, you can now customize an MPL layout with
any additional information that you might wish to include and that has not been included in the
predefined print environment.

In particular, using the MQL support in MPL 4 you can now:

 Define reusable, parameterized database queries with the <query> tag. The queries are

executed against the Maconomy universes, which feature database joins.

 Supply the query with the actual values of parameters it declares and instantiate it to a cursor by

means of the <cursor> tag.

 Use the newly defined cursor as any other predefined cursor in a <repeating> tag.

Moreover, by using the Expression Language support in MPL 4, you can now:

 Perform arbitrarily complex calculations using expressions and standard functions.

Version History

Maconomy Printing Language (MPL) 4

 Bind the calculated values to mutable variables (<var>) and immutable constants (<val>).

 Assign new values to variables using the <assign> tag.

 Use expressions as conditions in the conditional tag as well as a path to the image in the
<image> tag.

Changed Functionality

The following changes were introduced with respect to MPL 3:

 Field reference tag <field> has been desupported.

 Variable reference tag <var> has been desupported, and instead.

 The <var> tag means variable definition in MPL 4.

 When defining a tag, it is now disallowed to have white spaces in between the opening angle

bracket “<” and the following tag name.

 Print structure check has been loosened up. For more information, see “Repeating Structure
(MPL 4).“

Changes in MPL Version 4 (as of TPU 16 SP2)

The 2.1.1 release of Maconomy, which was delivered as TPU 16 SP2, came out with a couple of new
features. Since this version of MPL is entirely backward-compatible with the previous version 4, the
version number has not been changed.

New Functionality

As of this release, you can:

 Keep executing a block of MPL code while a certain condition is true by using the new

<while> tag.

 Include static PDF documents in your MPL layouts by means of the new <includepdf> tag.

 Generate barcodes (14 different types) and QR codes using the new <barcode> tag.

 Manually control page numbering using the new <nextpagenumber> tag.

 Control whether headers and footers should be skipped when the enclosing

<while>/<repeating> tag is empty (that is, no iteration took place) by using the new

skipHeaderFooterIfEmpty attribute on the <while> and <repeating> tags.

Central Concepts

Maconomy Printing Language (MPL) 5

Central Concepts

This section introduces the terminology and concepts necessary for understanding this manual and
for using MPL. It starts off with an example of a simple layout and based on that, it explains the
most fundamental concepts in MPL.

Example

MPL is a language for defining print layouts in Maconomy, usually for reporting purposes. When
designing a print layout, you must address at least two kinds of concerns:

1. The contents of the print — Which data is this layout supposed to present?

2. The layout of the print (the presentation layer) — How to best present the data on this
print so that it looks visually compelling?

This section examines a very simple layout that lists all of the employees in the Maconomy
database, specifying their names, employee numbers, and the location of companies they work
for. In other words, based on the data in the Maconomy system, we want to generate a simple
table like the following.

To generate such a printout using MPL, you define the following MPL layout:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22

<mpl 4>
<layout title="All Employees"
 print="P Employee"
 originallayout="Standard">
<page "A4">
<paper>
 <ruler name=employeesRuler [[85pt]|[65pt]|[80pt]]>

 <repeating cursor=Employee script="L_Employee">
 <header atStart=true>
 <array ruler=employeesRuler justification=center fontsize=10>
 "NAME" "EMPLOYEE N0" "COMPANY BASED IN";
 <hline>;
 <end array>
 <end header>

 <array ruler=employeesRuler justification=right>
 .Name1:justification=left Employee.EmployeeNumber CompanyNameVar;
 <end array>
 <end repeating>
<end paper>

We will now go through this layout step by step and explain the central concepts in it.

Central Concepts

Maconomy Printing Language (MPL) 6

It is hard not to notice that MPL is a markup language—it consists of tags that can have

attributes, very much like XML. Some tags like paper or repeating are parenthetical tags; they

have an opening and closing tag, in between which reside their children tags. Other tags, like

ruler or page are simple tags—they do not have any children, and therefore do not have a

closing tag.

MPL Header

Lines 1–5 specify what is known as the MPL header. Apart from the MPL version number (line 1)
and the paper format (line 5), we specify what the title of this layout is (line 2), which standard
Maconomy layout this layout is based on (line 4), and what the print environment of this layout
(line 3) is.

Print Environment

A print environment gathers all of the data that is available to be used in the layouts based on this
environment. This data can be either in the form of database cursors, which are collections of
database records, or single variables that store the results of calculations that are performed on
the data stored in the Maconomy database. Every MPL layout must be based on a predefined
print environment in Maconomy.

Accessing Data from the Print Environment

The data in the print environment comes in very handy—cursors and variables are initiated with
the right values and are ready to be used in your layout.

Because a cursor is a collection of database records, the best way to access the data that a
cursor holds is to iterate over these records one by one. In MPL this is achieved by using the

repeating tag, like in line 9 of our example, where we iterate over all of the records in the

Employee cursor. For each iteration of the cursor, we can reference fields in the current record

by name prepended with a dot. For example, to reference the field EmployeeNumber in the

cursor Employee (line 18), we can just say Employee.EmployeeNumber. We are not required

to mention the cursor name, though, because it can be implicitly resolved by the MPL engine, so

we can just as well say .EmployeeNumber or, as shown in the example, .Name1, to reference

the field Name1.

To print out the value of a variable, similarly, you only have to reference its name (this time
without a preceding dot); for example in line 18 we print out the value of the variable

CompanyNameVar, which holds the first part of the company name that the employee works for—

in this case it is the location in which the company is based.

You might be wondering why the variable CompanyNameVar updates its value for every iteration

of the Employee cursor. It must be recalculated for each Employee. This is exactly what

happens; to be more precise, all of these calculations and updates take place in scripts that are

executed for every cursor iteration, before any of the repeating’s children is executed. In our

example this task is carried out by the script L_Employee referenced in line 9.

Scripts

Scripts are typically used to update the values of variables that are available in the print
environment. However, they can also have database side effects, for example when reprinting

invoices the script P_JobInvoice is called, which results in incrementing the VersionNumber

field on the Invoice relation in question.

Central Concepts

Maconomy Printing Language (MPL) 7

Defining a Print Layout

When we know how to print out the data that we want to present in the layout, it is time to think of
how this data should be presented. In other words, we want to define the layout of our print.

In our simple example, we want to display the employee name, number, and company in a table.
The table should have a header, so that when a page break occurs, the header is also printed on
the next page, followed by the continuation of the table content.

To define how many columns the table should have, as well as what shape these columns should

be (for example, width, justification, stretching, and so on), we can use the ruler tag. In line 7

we define a ruler that is a column specification for arrays that are used in MPL to represent
tables. Our ruler definition consists of three columns having the width of 85, 65, and 80 points
respectively (1pt = 1 point = 1/72 inch). In between the first and the second column, as well as the
second and the third, there is a vertical line, specified in the ruler as the “|” character.

Having defined the ruler, we can now use it in the array definition. Lines 11-14 define an array

inside a header, which will be the header of our table. The ruler attribute of the array is set to

the employeesRuler ruler that we have just defined. Similarly, the main array printing the

employee data (lines 17 - 19) points to employeesRuler as well.

Inside an array we specify semicolon-separated rows, each of them complying with the ruler

definition. Since our employeesRuler specifies three columns, the rows inside the array should

have three elements in each row.

Short Versions for Tags and Attributes

Some tags and attributes are used quite often. To avoid unnecessary typing, these tags and
attributes can have short forms. For example, instead of enclosing an array definition in between

the opening <array ruler=employeesRuler ..> and closing <end array> tags, we can

also use the short form of the array tag and just type {:employeesRuler..}. Similarly,

sometimes we can skip an attribute name and just specify its value, for example, instead of

writing <repeating cursor=Employee>, we can just write <repeating Employee>. The

“MPL Language Basics” section explains the short versions of attributes and tags in more detail.
Our example would look somewhat like this when written using short forms for tags and
attributes:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22

<mpl 4>
<layout title="All Employees"
 print="P Employee"
 originallayout="Standard">
<page "A4">
<paper>
 <ruler employeesRuler [[85pt]|[65pt]|[80pt]]>

 <repeating Employee script="L_Employee">
 <header atstart+>
 {:employeesRuler:justification=center:fontsize=10
 "NAME" "EMPLOYEE N0" "COMPANY BASED IN";
 <hline>;
 }
 <end header>

 {:employeesRuler:justification=right
 .Name1:left Employee.EmployeeNumber CompanyNameVar;
 }
 <end repeating>
<end paper>

Central Concepts

Maconomy Printing Language (MPL) 8

Importing and Executing a Layout in Maconomy

After we have defined an MPL layout, we want to import into Maconomy. To this end, we can use
any Maconomy client that supports the “Print Layout” window—we just execute the “Import
Layout” action in there and select our layout.

Upon importing, the layout is compiled by the MPL compiler. This means that the compiler tries to
turn a given MPL text file into an internal MPL representation of this MPL layout. If the given text
file represents a valid MPL layout, it gets imported and can be used when printing. Otherwise,
error messages that point out which parts of the layout contain errors are reported.

Print Content In More Detail

In this section we describe more formally and in more detail the different kinds of data that are
available in a print environment, that is, database cursors and variables. Moreover, as of version
4 of MPL you can fetch custom data from the Maconomy database (the data that has not been
included in the print environment) using MQL queries and carry out custom calculations using the
Expression Language.

Database Fields and Variables

 Relations — Relations are collections of data in the Maconomy database. In this context, a
relation can be perceived as a table of data. Such a table consists of a fixed number of
columns and a varying number of rows. Each row’s cells contain data, and each column has a
unique name, for example, “Customer Number” or “Name1,” signifying the contents of each
column.

 Fields and Records — In SQL terminology columns are called fields and rows are called
records. Thus a relation is a collection of records, each of which has a number of named fields
that contain data as shown in the following figure.

Maconomy is built on a number of different relations. For instance, one relation contains
customers, and another relation contains vendors.

A cursor points to a number of the records that are contained in a relation. Sometimes a
cursor points to all records, but often a cursor is subject to certain assigned conditions that
ensure that only specific records are included.

Central Concepts

Maconomy Printing Language (MPL) 9

When you use Maconomy, the system often displays values that are not contained in a
relation. These values are calculated from data in the relations. For example, the discount
amount on an item line is calculated from the discount percentage and the extended price.

 Variables — The result of these calculations is contained in a variable that can be included in
printouts exactly like database fields.

Scripts

A script is a program fragment that is used to carry out calculations. Typically, a script ensures that
a variable is calculated correctly, but it can also be used to make complicated calculations or

updates in the database. For example, the script S_Page in the printout “Print Posting Journal”

carries out updates in the database—the printout is actually responsible for the entire bookkeeping
process.

Scripts cannot be changed using MPL. You must specify when predefined scripts are called, and
the MPL compiler ensures that the calls are executed in the same way as in the original printouts.

To ensure that variables, which can be updated by scripts, hold valid values, as well as that the
database side effects that scripts might have are executed in the right order, custom layouts must
conform to the script structure of their respective original layouts. In other words, the use of
scripts in a custom layout must be the same in its original layout—the scripts must be executed
the same number of times and in the same order. To ensure this, we must compare the tags that
have scripts attached, as well as all repeating and conditional blocks that the tags with scripts are
embedded in, because they may change the number of times that the scripts are executed. For
more details on script structure, see “Print Structure.”

Custom Data and Custom Calculations

As of version 4 of MPL you can fetch custom data into an MPL layout using MQL queries that are
run against Maconomy universes. MQL is a rich query language that is very similar to SQL, but
more powerful in some respects. It is a statically typed language, which means that queries can
be validated when you compile layouts. This validation step can capture a wide variety of errors,
and, on the other hand, prove the absence of a certain class of errors (for example, the number of
parameters that are passed to the query, their types, as well as incompatible field types of
returned records, and so on). MQL queries are reusable, which means that you can declare a
query once and instantiate its different incarnations with different values of parameters. Moreover,
they run against Maconomy Universes, which predefine a lot of very useful joins that are quite
hard to get right without knowing the Maconomy database schema intimately.

In addition to these custom data sources, MPL 4 also introduces a means to perform custom
calculations by embedding the Expression Language1 into MPL. You can define new values and
variables and populate them with the results of arbitrarily complicated calculations.

MPL Language Basics

This section describes the basic elements of an MPL definition. It describes how the logical
structure of a printout is defined using tags, and how the formatting of the individual tags can be
modified using attributes.

Simple Tags

Simple tags describe a print element. For instance, <text ...> is a simple tag that specifies a

text string.

1 The Expression Language is used in other Maconomy layout languages like MDML as well.

Central Concepts

Maconomy Printing Language (MPL) 10

Parenthetical Tags

Parenthetical tags occur in pairs that consist of a start tag and an end tag (corresponds to a start
parenthesis and an end parenthesis). The contents are enclosed in the two parenthetical tags, for

example, the description of an island is enclosed in the tags <island>.

... <end island> .

Attributes

Attributes can be assigned to all tags. Attributes contain additional information about the layout
element that describes the tag. Attributes are specified between the tag name and “>” and are

written as attribute name=attribute value.

Example

If you want the printout to contain the text string “Hello!,” you use the tag text. Furthermore, you

should specify that the text (the title) should be “Hello!” You do this by setting the attribute to
“Hello!” The complete code is:

<text title="Hello!">

Certain attributes are mandatory, whereas you can leave others out. An example of a mandatory

attribute is the fact that text tags should be assigned a title attribute, which specifies the text

that should be printed. The attribute that specifies the font of the text, however, is not mandatory,
but has a default value that is used if the attribute is not specified.

Attribute Values

All attributes have a type. When specifying an attribute, you can only specify attribute values of the
permitted type. Furthermore, the type is used for deriving the attribute used when a nameless
attribute is used (see “Nameless attributes”).

MPL recognizes the following attribute types:

 STRING — Strings are specified in quotes and are typically used in connection with text to be
shown on the printout, for example, “Hello!”

 ID — Identifiers are specified as is, that is, without quotes, for example, DateVar.

 INTEGER — Integers, for example, 3 or 19245. An INTEGER cannot be negative.

 LENGTH — Lengths are specified as an integer or decimal value followed by a unit of length.

The basic length units are pt (points, 1/72 inch), mm (millimeter), cm (centimeter), and in

(inch). Examples: 3pt, 0.14cm, and 12mm. You cannot specify a negative length.

You can also use pagewidth and pageheight, which are the width and height of the

printable part of the paper for which the printout is formatted. The length specification

pageheight can only be used for vertical height, and pagewidth can only be used for

horizontal width. Example: 0.5pagewidth specifies half the width of the paper less the

left and right margins.

You can define a length unit yourself, called grid (see “Grid” in “Advanced MPL”). If a grid
is defined, you can, for example, specify:

1grid.

Finally, you can specify lengths using constants. A number of constants are predefined by
the system; you can find these in “Predefined Lengths” in “Advanced MPL.” You can also
define your own constants; see “Length Constants” in “Advanced MPL.”

 BOOLEAN — Truth values. The only permitted values are true and false.

Central Concepts

Maconomy Printing Language (MPL) 11

 POS — Positions. These are specified as a pair of lengths, corresponding to horizontal and

vertical position, respectively. Example: (2cm,4pt).

 RULER — Specification of column layout; see “Rulers—Column Definitions” in “Arrays.”

 PARAMLIST — Specification of a list of parameters used for links in MPL for Universe
Reports. The parameter list contains a number of parameter/value pairs, separated by a
comma. The parameter is a simple text value. The value can be a field name, a variable, or a
text. Example with all three types of parameters:

[param1=.field1, param2=var1, param3="Text"]

For more information, see “MPL for Universe Reports.”

 EXPRESSION — Represents the type of compound calculations that yield a value, either to be
printed out, bound to a mutable variable (var) or an immutable value (val), or assigned to a tag
attribute of type EXPRESSION.

Expressions are always delimited by curly braces, that is, { and }. Valid values of
expressions are, for example, {123.4} and { x > 7}.

For more information, see “Expressions.”

Short Forms

Certain tags are used so often that it is convenient to write them using a short form. For instance,

you can abbreviate the tag <text title="Hello!"> to "Hello!" Short forms are different

from tag to tag. The short form of a given tag is therefore mentioned when the tag is described.

Short Attribute Forms

If a tag is written using a short form, you cannot specify attributes between the tag name and “>”.

Instead, you specify attributes immediately after the short form, separated by colons. Example: the
code

<text title="Hello!" fontname="Times" fontsize=12>

can be abbreviated to

"Hello!":fontname="Times":fontsize=12

You can also abbreviate the attribute value in logical attributes, that is, attributes that can be
assigned the values true and false. Instead of

"Hello!":italic=true

you can write

"Hello!":italic+

Also, instead of writing

"Hello!":bold=false

you can write

"Hello!":bold-

Nameless Attributes

Some attributes are used very often. Therefore sometimes you can exclude their names to limit
the amount of code to be written. Based on the type of attribute value, the MPL compiler
automatically identifies the attribute. Such attributes are called nameless attributes.

Central Concepts

Maconomy Printing Language (MPL) 12

Example

Instead of writing

<text title="Hello!">

you can write

<text "Hello!">

because the attribute title is nameless for the tag text. In its short form, the attribute

justification for the tag text is nameless. Thus, instead of writing

"Hello!":justification=center

you can write

"Hello!":center

The description of each tag lists the attributes that can be nameless for the tag in question.

Tags and Attributes

The following sections describe all of the tags that are used in MPL. The description of each tag also
lists the tag’s attributes. You can find a complete list of all tags and their attributes in “Attribute List”
in “Grammar.”

Comments

You specify comments by entering two hyphens. The MPL compiler ignores rest of the line after the
hyphens. Here is an example:

-- This is a comment

-- to a small layout with one text string

<mpl 2>

-- A layout called "Example"

<layout "Example" print="P Invoice"

originallayout="Standard">

<page "A4">

-- Top of page

<paper>

-- The printout contains the text: "Hello World":center

-- Bottom of page / end of layout

<end paper>

Original Structure Layout

If you are basically satisfied with a printout, but you want to change a few text strings and remove a
couple of elements, you should export the original layout so that you get an MPL layout that
corresponds to the chosen printout. This makes it easy to implement minor changes.

If you want make extensive changes to the layout, it is often helpful to export the structure layout.
A structure layout is a viable template for a printout: The structure of an MPL layout. However,
printouts with this layout are empty. After you have exported the structure layout you can fill in the
contents and format the layout.

A structure layout can differ for various original layouts that have been assigned to the same
printout. The concept of structure layouts does not apply to MPL for Universe Reporting.

Central Concepts

Maconomy Printing Language (MPL) 13

Structure of an MPL Layout

This section describes the elements that are necessary in every MPL layout. Specifically, there must
always be a heading that specifies the general properties of the printout, followed by a specification
of the contents.

mpl

A layout description must always begin with

<mpl 2>

This tag specifies the version of the MPL language in which the layout is written (in this case,
version 2). The MPL compiler supports layouts that were written in previous versions of the
language. See “Enhancements in MPL Version 2” for a list of the new features in this version of
MPL.

layout

The tag layout names the layout and specifies its association with original layouts. The following

attributes are mandatory in standard MPL, but ignored in MPL for Universe Reports:

 title specifies the name of the layout. This name is used as the name of the layout in the

table part of the window Print Layout and in layout selection pop-up fields in print windows.

title has the type STRING and is both nameless and mandatory.

 print specifies the name of the printout. This is an existing name that can be found in the

window Print Layout. print has the type STRING and is mandatory.

 originallayout specifies the name of the layout that was used as a template for the layout.

For more information, see “Print Structure.” originallayout has the type STRING and is

mandatory.

Example

<layout "My first layout"

print="Print_Invoice"

originallayout="Standard" >

page

The tag page indicates which paper format should be used for the printout. The MPL layout

heading must contain a page declaration. Paper formats are specified in the Paper Formats
window in Maconomy.

If you, for example, specify an A4 paper format, no elements will be wider than the A4 paper
(minus margins), and page breaks will take place when the A4 paper has been filled up vertically.
When the MPL definition is compiled, no check is made as to whether the printout is actually
printed on the specified type of paper.

The following attributes exist for page:

 name specifies the paper format for which the layout should be formatted. You can specify

paper format names that are defined in the window Paper Formats. The attribute has the type
STRING and is both nameless and mandatory.

 orientation takes the values portrait (the paper is standing on the short edge) or

landscape (the paper is on the long edge). The attribute has the type ID and is nameless.

The default value (that is, if the attribute is not specified) is portrait.

Central Concepts

Maconomy Printing Language (MPL) 14

Example

If you want to format the printout for A4, type:

<page "A4">

If you want to format the printout for US Letter landscape, type:

<page "US Letter" landscape>

paper

The tag paper defines the printout as such. It is a parenthetical tag that surrounds all of the

elements that make up the printout (excluding the front page; see below). The paper tag takes

two attributes:

 cursor specifies a cursor name — One page is printed per record within the cursor.

The template layout determines whether a cursor should be assigned, and, if so, which
cursor. For more information, see “Print Structure.” The attribute has the type ID and is
nameless.

 script is used to specify the name of a script to be run for each item in the specified cursor.

As is the case with cursor, the template layout determines script. The attribute has the

type STRING and is nameless.

Example

<paper cursor=Journal script="S_Page"

...

<end paper>

frontpage

Printouts can have a front page. This page is printed before the rest of the printout, if the printout is
executed from a print window (a window with a “Print” button). These dialogs are usually displayed
when you select options in the submenu Reporting or use the function “Print...” in the File menu.
When you print using the function “Print This” in the File menu, the front page is not printed.

<frontpage>

...

<end frontpage>

The frontpage tag takes no attributes. As with other stacking tags (see “Stacking Tags”), front

pages consist of definitions followed by elements. You cannot use field tags, headers, footers,

repetitions, conditions, newpage, or border on front pages, and the content of the front page is

limited to one page. If the information cannot fit on one page, an error message is displayed.

Furthermore, you cannot use the stacking tag with scripts on a front page. The use of front

pages is illustrated in “A Printout Example: Time Sheets.”

Visible Elements

Maconomy Printing Language (MPL) 15

Visible Elements

A printout is constructed from the basic elements text, field, variable, island (frame), and line. The
remainder of an MPL layout is all about formatting: The placement of the basic elements, whether
part of the printout should be repeated for every item in a cursor, and whether parts of the printout
should only be printed under certain circumstances.

This section describes the use of the basic elements, and will enable you to create your first simple
layout, which we look at in the next section. In this section, we do not look at islands and lines;
these are described later.

Predefined Data From the Print Environment

One kind of data that we can print out in an MPL layout is the data from the predefined print
environment of our layout, that is, cursor fields and variables.

Fields

The field tag

<field attributes>

specifies that the contents of a database field are to be printed. This field tag takes one

mandatory attribute:

 data specifies the name of the database field to be printed. The attribute is both nameless and

mandatory.

Often you want to use the short form of field tags:

.field

Note the dot. This is the short form of

<field data=field>

If you want to specify from which cursor the field should be taken, you can specify the following
attribute:

 cursor specifies the name of the cursor from which the field is to be taken. The attribute has

the type ID.

Often you want to use the short form of field tags:

cursorname.field

Note the dot. This is the short form of

<field data=field cursor=cursorname>

If you do not specify a cursor name, the value is taken from the nearest cursor with a field of the
specified name. However, it is good design practice to specify a cursor name if several cursors
exist that contain the same field name.

The attributes for specifying the typography of the field (for example, fontname, fontsize,

bold, italic, and underline) work in exactly the same way as for texts, and are thus not

explained here. If you do not enter a font name and a size, the field has the font Helvetica 9 pt.
Apart from this, you can specify the following attributes:

 justification specifies the justification of the field. justification is nameless in the

short form and has the type ID. It can take the values left, center, and right. If you have

Visible Elements

Maconomy Printing Language (MPL) 16

not specified justification, a field is justified according to its type: Fields of the types

INTEGER, REAL, and AMOUNT are right-justified, whereas all other fields are left-justified.

 width functions just like the width attribute for text. However, the width of fields is set to the

default value if width is not specified. This is due to the fact that the value of the field is not

available at the time when the layout is being compiled.

 indent specifies an extra indentation of a field. The box will also be wider in accordance with

the specified length. You cannot use the indent attribute in combination with right justification

and centering. indent has the type LENGTH. You cannot use this attribute when the field

appears in a canvas.

 pos specifies the positioning of a field element within canvas. The attribute is nameless and

has the type POS. You can only use it when the field appears on a canvas, and is mandatory, if
so (see “Canvas” for further information about the canvas).

 zerosuppression specifies whether the value 0 is to be printed out, if the value is zero for

numeric fields, that is, fields of the type AMOUNT, INTEGER, or REAL. You cannot specify this
attribute for fields of other types.

 link specifies that the text is to function as a link. This applies to MPL for Universe Reporting

only. For more information, see “Links.”

In MPL 3 the attributes wrap (BOOLEAN), lines (INTEGER), height (LENGTH) are also

supported and are used to control text wrapping around multiple lines, as well as adding explicit
line breaks. See “wrap Attribute for <text>, <field>, and <var> Tags.”

In MPL 4, the <field> tag has been desupported. Its short form, however, is still valid as one of
the short forms of the <eval> tag. For more detail, see “Field and Variable Reference Tags
Desupported in MPL4.”

Example

Journal.Journalnumber:bold+:fontname="Courier"

Variables

The var tag

<var attributes>

specifies that the contents of a variable are to be printed. The variable tag takes one mandatory
attribute:

 data specifies the name of the variable to be printed. The attribute has the type ID.

Often you want to use the short form of var tags:

var

which is the short form of

<var data=var>

The attributes justification, fontname, fontsize, bold, italic, underline,

width, indent (replaced by pos in canvases), zerosuppression, and link work in the

same way for variables as for fields (see the previous section).

In MPL 3 the attributes wrap (BOOLEAN), lines (INTEGER), and height (LENGTH) are also

supported and are used to control text wrapping around multiple lines, as well as adding explicit
line breaks. See “wrap Attribute for <text>, <field> , and <var> Tags.”

Visible Elements

Maconomy Printing Language (MPL) 17

In MPL 4, the <field> tag has been desupported. Its short form, however, is still valid as one

of the short forms of the <eval> tag. For more detail, see “Field and Variable Reference Tags

Desupported in MPL4.”

Example

Companyname:indent=2cm:bold+

User defined data

In addition to printing out the predefined data, we can define the data—whether it is simple static
text or complex arbitrarily expressions.

Texts

The text tag

<text attributes>

specifies that a text is to be printed, for example, a column heading or a label. The text tag takes

one mandatory attribute:

 title specifies the text that is to be printed. The attribute has the type STRING and is both

nameless and mandatory.

Often you want to use the short form of text tags:

"text"

which is the short form of

<text title="text">

Apart from this, you can specify the following attributes:

 justification specifies whether the text should be left-, center-, or right-justified.

If the width attribute is also used, the justification takes place within the specified width.

Otherwise, the justification occurs within the space that is made available by the
surrounding elements. For instance, a right-justified text on the page is placed to the
extreme right on the page, and a centered text in an island is placed in the middle of the
island.

If the attribute stretch on the island is false, the island will only be as wide as its
contents, and if the text is the only content, you cannot tell whether justification is left,
center, or right.

justification has the type ID and is nameless. It can take the values left, center, and

right. If justification is not specified, texts are left-justified.

 fontname specifies the font that is to be used for printing the text. All fonts that are available

on the computer on which the layout is compiled can be used—remember that they must also
be available on other computers and on the server, if printouts are executed on the server. No
error message is displayed if an unknown font is specified. The attribute has the type STRING.
The default font is Helvetica. For more information, see “Font Administration in Maconomy” in
the Maconomy Administrator’s Guide.

 Fontsize specifies the size of the selected font. The attribute has the type INTEGER. The

default font size is 7pt.

Visible Elements

Maconomy Printing Language (MPL) 18

 bold specifies that the text should be printed in boldface. The attribute has the type

BOOLEAN.

 italic specifies that the text should be printed in italics. The attribute has the type

BOOLEAN.

 underline specifies that the text should be printed underlined. The attribute has the type

BOOLEAN.

 width specifies the width of the box that surrounds the text. The attribute has the type

LENGTH.

If this attribute is not specified, the remaining part of the layout is formatted according to
the actual width of the text. The text box is hence adjusted to fill in the available width
space.

If width is specified, the remaining part of the layout is formatted as if the text had the

specified width, and the text box is not adjusted. This has the following consequences:

 If the length is specified to be shorter than the text’s own width, the text is cut off.

 Justification is relative to the specified width.

 If the text appears in a column, this column is given a width that ensures space for the width
specified by the attribute width.

 indent specifies an extra indentation of the text. The text box will also be wider in accordance

with the specified length. You cannot use the indent attribute in combination with right

justification and centering. indent has the type LENGTH. You cannot use this attribute when

the text appears in a canvas (see “Canvas” for further information about the canvas).

 pos specifies the positioning of a text element of a canvas. The attribute is nameless and has

the type POS. You can only use it when the text appears on a canvas, and is mandatory, if so
(see “Canvas” for further information about the canvas).

 link specifies that the text is to function as a link. This applies to MPL for Universe Reporting

only. For more information, see “Links.”

In MPL 3 the attributes wrap (BOOLEAN), lines (INTEGER), and height (LENGTH)

are also supported and are used to control text wrapping around multiple lines, as well as
adding explicit line breaks. See “wrap Attribute for <text>, <field>, and <var> Tags.”

Example

"Hello world!":center:width=4cm:fontsize=18

See also “Alternative Text Tag” in “Advanced MPL.”

Visible Elements

Maconomy Printing Language (MPL) 19

Arbitrary Expressions

The eval tag, introduced in MPL 4,

<eval {expression} other_attributes>

specifies that the given expression should be evaluated and the result value printed. The eval

tag takes one mandatory attribute:

 expression of type EXPRESSION, which denotes an arbitrary Expression Language

construct that is evaluated and the result of that evaluation is printed. For more information on
expressions, see “Expressions” and “Literal Values for Different Types

 When declaring a var or a val or just using literals as values in expressions, it is useful to

know how the different literals look for values of different types:

Type Comma separated example values

INTEGER 457, 77, -123

REAL 41.789, 99.4

AMOUNT AMOUNT(99.74), AMOUNT(6.45)

BOOLEAN true, false

DATE DATE(2013, 12, 25), DATE(1987, 2, 15)

TIME TIME(12, 23, 58), TIME(23, 15, 33)

STRING "Text”, "example string”

POPUP GenderType'Male, CountryType’France

Standard FunctionsWhen declaring a var, val or just using literals as values in expressions, it is useful

to know how the different literals look like for values of different types:

Type Comma separated example values

INTEGER 457, 77, -123

REAL 41.789, 99.4

AMOUNT AMOUNT(99.74), AMOUNT(6.45)

BOOLEAN true, false

DATE DATE(2013, 12, 25), DATE(1987, 2, 15)

TIME TIME(12, 23, 58), TIME(23, 15, 33)

STRING "Text”, "example string”

POPUP GenderType'Male, CountryType’France

Visible Elements

Maconomy Printing Language (MPL) 20

The preferred form of evaluating and printing out expressions is the short form of the eval tag,

for example,

^{addMonths(currentDate, 20)}

The full form of the above eval tag is:

<eval expression={addMonths(currentDate, 20)}>

There is no compelling reason, though, to use the full form, and it is in the language mostly for
completeness reasons.

The attributes justification, fontname, fontsize, bold, italic, underline, width,

indent (replaced by pos in canvases), zerosuppression, link, wrap, and lines work in

the same way for eval in MPL 4 as for field and variable tag for MPL 3 (see the previous

sections).

Example MPL Layout

Maconomy Printing Language (MPL) 21

Example MPL Layout

This section contains an example of the creation of an MPL layout. The layout developed in the
example is a new layout for the printout “Print Warehouse Information Card” and will be based on
the layout “Standard.”

Getting Started

When you want to define a new layout, it is common practice to export either the structure layout
or the original layout for a layout with the desired functionality. Thus to define a new layout for the
layout “Print Warehouse Information Cards” we export the structure layout for the layout
“Standard” from the window Print Layout in the Maconomy client.

The result of the export is a file in which the printout name and original layout name have been
correctly set, and cursor and script names have been attached to blocks as required. A list of all
available variables and fields is provided in the document “List of variables in MPL.” This document
is updated for each version of Maconomy and can be found on the Maconomy Partner web site.

Header

The printout should be formatted for A4 paper and named “Simple.” Thus you should insert the
following layout heading:

<mpl 2>

<layout "Simple"

print="Print_Inventory_Info_Card"

originallayout="Standard">

<page "A4">

Page

The layout “Standard” for the printout “Print Warehouse Information Cards” prints one warehouse

information card per page. This is due to the specification of a cursor in the paper tag. The cursor

is “Inventory.” A script is also specified, namely “Inventory_PageScript1.” The resulting

code is

<paper cursor=Inventory script="Inventory_PageScript1">

...

<end paper>

Note that the heading specified in the last section, combined with using the paper tag mentioned

before, is very similar to the resulting layout of an export of the structure layout.

Contents

The procedure for placing elements side by side in the structure is described later in this
document, so we will therefore use the following structural form for this exercise:

descriptive text

field/variable

field/variable

where the descriptive text is formatted as bold text. Enter the following code to print out name and
address:

"Name":bold+

Example MPL Layout

Maconomy Printing Language (MPL) 22

.InventoryName:indent=1cm

"Address":bold+

.Address1:indent=1cm

.Address2:indent=1cm

.Address3:indent=1cm

.Address4:indent=1cm

Complete Layout

Now we have the complete layout:

<mpl 2>

<layout "Simple"

print="Print_Inventory_Info_Card"

originallayout="Standard">

<page "A4">

<paper cursor=Inventory script="Inventory_PageScript1">

"Name":bold+

.InventoryName:indent=1cm

"Address":bold+

.Address1:indent=1cm

.Address2:indent=1cm

.Address3:indent=1cm

.Address4:indent=1cm

"Attention":bold+

.AttPerson:indent=1cm

"Company No.":bold+

.CompanyNumber:indent=1cm

"Company Name":bold+

CompanyName1Var:indent=1cm

"Phone":bold+

.Telephone:indent=1cm

"Fax":bold+

.Telefax:indent=1cm

"Telex":bold+

.Telex:indent=1cm

<end paper>

The result of importing this definition and printing with the new layout is a number of pages, each
of which looks like this:

Example MPL Layout

Maconomy Printing Language (MPL) 23

Basic Tags

Maconomy Printing Language (MPL) 24

Basic Tags

This section contains a detailed description of a number of most commonly used MPL tags.

Stacking Tags

A stacking tag is a parenthetical tag that is used for placing elements on top of each other. Most
parenthetical tags in MPL are stacking tags. This means that all elements in such a tag are placed
on top of each other—they are stacked. We have already seen an example of a stacking tag: In the

paper tag, the things written between <paper> and <end paper> are all placed below each

other. The only parenthetical tags in MPL that are not stacking are row and canvas.

The contents of stacking tags are a number of elements that are to be printed. Before these
elements, you can specify various definitions (see “Rulers—Column Definitions” in “Arrays” and
“Length Constants” in “Advanced MPL” for further information about these definitions). These
definitions apply within the tag in which the definitions are made. The stacking tag in which the
definition appears is called the definition’s scope.

Stacks

The parenthetical tag

<stack attributes>

...

<end stack>

is the simplest example of a stacking tag. Without attributes it is used to ensure that elements are
stacked on top of each other. This can be useful in connection with rows that make it possible to
place two stacks next to each other.

stack cannot appear in a canvas or in rows if the script attribute has been specified, or if the

stack has a header or footer. For more information, see “Print Structure.”

stack has the following attributes:

 script specifies the name of a script (program) that is to be run before the contents are

printed. Typically, the script takes care of initializing variables that are to be used later in the
printout. Scripts can only be used in the same way as in the original layout. For more

information, see “Print Structure.” script is nameless and has the type STRING.

 baseline is used to specify the baseline of the stack. If two elements are placed next to each

other, they can be placed in such a way that their baselines are aligned. If baseline is set to

top, the stack inherits the baseline of the upper element—that is, if a stack is placed next to a

text, the text appears at the same baseline as the upper element of the stack. If baseline is

set to bottom, the stack inherits the baseline of the lower element. The default value for

baseline is bottom, and baseline has the type ID.

The baseline for texts, variables, and fields is determined by the font used. Here the
baseline is the line on which the text is printed. The baseline is placed immediately
below the bottoms of letters such as “a” and “b,” while letters such as “q” and “g” extend
below the baseline.

 height specifies the height of the stack. This only influences the placing of subsequent

elements. If the contents of the stack cannot be placed within the specified margin, or if the
height of the contents cannot be determined (due to conditions or repetitions), an error message

Basic Tags

Maconomy Printing Language (MPL) 25

is displayed. Furthermore, you cannot use the height attribute if the stack contains other

stacks with a header or a footer, or if the script attribute has been set—the system displays

an error message. If height is not specified, the height of the stack is dictated by its content.

The attribute has the type LENGTH.

 width specifies the stack’s width. This influences the positioning of elements to the right of the

stack as well as the justification of elements in the stack. If the contents of the stack cannot be

placed within the specified margins, the system displays an error message. If width is not

specified, the stack’s width is stretched to fit the space available. The attribute has the type
LENGTH.

 indent specifies extra indentation of the stack (all elements contained in the block are

indented). The attribute has the type LENGTH. This attribute cannot be used when the stack
appears in a canvas.

 pos specifies the positioning of the stack in a canvas. The attribute is nameless and has the

type POS. You can only use it when the stack appears in a canvas, and is then nameless and
mandatory. See also “Exact Positioning of Elements” in “Canvas.”

Stacks cannot appear in a canvas or in rows if the script attribute has been set, or if the stack

is provided with a header or a footer. For more information, see “Print Structure.”

Example

<stack>

"Upper"

"Lower"

<end stack>

Islands

The parenthetical tag

<island attributes>

...

<end island>

defines a stacking tag. The tag results in the drawing of a frame around the contents and is used
for highlighting or grouping information on printouts.

The behavior of an island can be modified using the following attributes:

 stretch. If this attribute is set to false, the island’s width is determined by its contents. If the

attribute is not set or is set to true, the island’s width is determined by its surrounding

elements. If the island is defined on the page, it is stretched across the entire width of the page.
If the island is positioned in a column, it is stretched to the width of the column. The attribute
has the type BOOLEAN.

 baseline is used to specify the baseline of the island. As for the stack tag, you can set

baseline to either top or bottom to specify whether the island should inherit the baseline of

the upper or lower element. In addition, you can set baseline to title, meaning that the

island inherits the baseline of the island title. The default setting is bottom, and the attribute

has the type ID.

 justification only makes sense if the width attribute has been set or if the stretch

attribute has been set to false. In these cases, the island may be smaller than the space

allotted to it by the surrounding elements. It can therefore be placed to the left, in the middle

Basic Tags

Maconomy Printing Language (MPL) 26

(default), or to the right. justification has the type ID and can take the values left,

center, and right.

 rounded is used to specify whether the corners of the island should be rounded (default) or

square. The attribute has the type BOOLEAN.

 topmargin is used to specify the upper inner margin of the island, that is, the distance

between the upper line of the island and the top of the upper element. The attribute has the
type LENGTH.

 bottommargin is used to specify the lower inner margin of the island, that is, the distance

between the lower line of the island and the bottom of the lower element. The attribute has the
type LENGTH.

 leftmargin is used to specify the left inner margin of the island, that is, the distance between

the left line of the island and left side of the contents. The attribute has the type LENGTH.

 rightmargin is used to specify the right inner margin of the island, that is, the distance

between the right line of the island and right side of the contents. The attribute has the type
LENGTH.

 indent is used to indent the island and can therefore you can only use it if the

justification attribute has been set to left. The attribute has the type LENGTH.

 pos is used to specify the position of an island in a canvas. The attribute is nameless and has

the type POS. You can only use it when the island is a part of a canvas, and in those cases it is
nameless and mandatory. See also “Exact Positioning of Elements” in “Canvas.”

 height is used to specify the height of the island’s contents. If the island’s contents are higher

than the value specified, the compiler displays an error message. The attribute has the type
LENGTH.

 width is used to specify the width of the island’s contents. If the island’s contents are wider

than the value specified, the compiler displays an error message. If width has been set, the

stretch attribute value is ignored. The attribute has the type LENGTH.

You can also use island to frame rows (see “Rows in Stacking Tags” in “Arrays”), but only if the

attributes leftmargin, rightmargin, and indent have been set to zero (or not set, because

zero is the default value). If these attributes have not been set correctly, you cannot refer to rulers
that have been defined outside the island.

Example

<island>

"Hello"

<end island>

will result in the following printout

The MPL fragment

<island leftmargin=1cm

rightmargin=1cm

topmargin=5mm

bottommargin=5mm

stretch->

"Hello"

<end island>

Basic Tags

Maconomy Printing Language (MPL) 27

will result in the following printout

For further information and an illustration of the lengths that can make up the formatting of an
island, see “Island Lengths” in “Tips and Tricks.”

Island Titles

You can assign a title to an island. Such a title will be printed as part of the top line of the island.

The island tag has a number of attributes that determine the behavior of the title:

 title is used to specify the island title text. The attribute has the type STRING and is

nameless.

 titlejustification is used to specify whether the title should be placed on the left, in the

middle, or to the right on the top line of the island. The possible values are thus left, center

(default), and right.

 fontname, fontsize, bold, italic, and underline are used to specify the text format.

See the description of the text tag for further information on the use of these attributes. The

default font is 16pt, bold, Helvetica.

Example

<island title="Hello Island" bold+ fontsize=12>

"Hello"

<end island>

Repetitions, Conditions, and While

The result of executing an MPL print definition of course depends on the data that is stored in the
Maconomy system. In this manual, we started out by setting up a print definition that would print
selected setup information about warehouses. When the print definition is executed, that is, not
when it is compiled, the data on the resulting printout is an exact representation of data in the
Maconomy system.

An MPL print definition also depends on other forms of data. When you print an invoice, naturally
you want to print all invoice lines, and the number of invoice lines depends on data that is in the

Maconomy system at the time of printing. To do this, you can use the repeating tag that prints

out its contents for each record in a specified cursor. Similarly, you may want only to print lines with
cash discount if the customer actually receives a discount. To do this, you can use the

conditional tag that prints out its contents subject to a condition specified in the MPL definition.

You cannot define your own repetitions and conditions in MPL, because the MPL compiler
demands that you follow the structure of the original layout. For more information, see “Print
Structure.” To ensure this, it is recommended that you base your layout on a structure layout that
contains the necessary conditions and repetitions.

Repeating Blocks

The parenthetical tag

<repeating attributes>

Basic Tags

Maconomy Printing Language (MPL) 28

...

<end repeating>

is used for repeating the contents for each record in a given cursor. The use of repeating

iterating over the predefined standard cursors must follow the way in which it is used in the original
layout. For more information, see “Print Structure.” The following describes how the block is

repeated is specified using the cursor attribute:

 cursor specifies the name of the cursor, which defines the repetition. It can be either a

standard predefined cursor or a custom MQL cursor defined in an MPL 4 layout. The contents

of the repetition (between <repeating ...> and <end repeating>) will be printed for each

record in the cursor, and fields from the cursor will be available within the tag. cursor has the

type ID and is mandatory and nameless.

repeating also has the following attributes:

 groupby is used to define the cursor attribute. It enables grouping of the records in the

cursor. Records where the fields that are marked by the groupby attribute are alike will

become grouped, and each group can be assigned a common heading.

An inner repeating block for the same cursor but without the groupby attribute must

always be placed inside a repeating block with the groupby attribute—meaning that with

several nested repeating blocks with the same cursor, the innermost block should have no

groupby attribute. A repetition within a repetition block will terminate when the value of the

fields specified by the groupby attribute of the surrounding groupby change. Note that

the groupby attribute must be used in exactly the same way as in the original layout.

The following example is from the printout “Print Item Group Statistics,” layout “Standard”:

<repeating cursor=ITEM

groupby=[ItemGroup]

script="ITEMGROUPBLOCK">

.ItemGroup:bold+

...

<repeating cursor=ITEM script="ITEMBLOCK">

.ItemText1

<end repeating>

<end repeating

The outer repetition block will begin with an item record in some item group (and print it). As
long as the item group does not change, the inner repetition block will print out the item
text, but as soon as the inner repetition block reaches an item record in a new item group,
the repetition will terminate, and the outer repetition block will take over, so that a new
item group will be printed.

The printout “Print Item Group Statistics” will therefore look like this:

Basic Tags

Maconomy Printing Language (MPL) 29

Be aware that incorrect use of repeating blocks might crash the Maconomy server.
Consider the following MPL-fragment:

<repeating cursor=myCursor groupby=[myField]>

-- (1) Fields of myCursor will assume the "first" record values

-- for each group of records (with identical myField)

<repeating cursor=myCursor>

-- (2) Fields of myCursor will assume all record values

<end repeating>

-- (3) Fields of myCursor cannot be accessed. This should result

-- in an MPL compilation error, but unfortunately

-- crashes the server

<end repeating>

Fields from the cursor named myCursor can only be used in subfragments (1) and (2) and

cannot be used in subfragment (3). Note that only some fields make sense in (1), notably

myField and derived fields.

The values for the groupby attribute are specified as [ID1,...,ID2] where each ID specifies

a field name in the cursor. The attribute is nameless.

When repeating over an MQL cursor in MPL 4, the use of groupby is strongly

discouraged in favor of defining a multilevel MQL query and using nested repeating to
iterate over groups. For more detail, see “Multilevel Queries.”

 script specifies the name of a script (program) that is to be run before the contents are

printed. Typically, the script takes care of initializing variables that are to be used later in the

printout. Scripts can only be used in the same way as in the original layout. script is

nameless and has the type STRING.

 skipHeaderFooterIfEmpty specifies whether the header and footer should be skipped if

no iterations took place, that is, when the cursor had no records. It is of type BOOLEAN and

defaults to false. If you want to reference cursor fields of this repeating in either the header or

the footer, you must set this attribute to true.

 height specifies the height of each iteration of the repetition. If the contents cannot be placed

within the specified height, or if the height of the contents cannot be determined (due to

conditions or repetitions), an error message is displayed. If height is not specified, the height

of the stack will be dictated by its content. The attribute has the type LENGTH.

 width specifies the repetition’s width. This influences the positioning of elements to the right

of the stack as well as the justification of elements in the stack. If the contents of the stack

cannot be placed within the specified width, the system will issue an error. If width is not

Basic Tags

Maconomy Printing Language (MPL) 30

specified, the stack’s width will be stretched to fit the space available. The attribute has the type
LENGTH.

 indent specifies extra indentation of the repetition (all elements contained in the block are

indented). The attribute has the type LENGTH.

The use of the attributes cursor, groupby, and script must be exactly as in the original layout,

when iterating over standard, predefined cursors. For more information, see “Print Structure.”

Repetitions cannot appear in a canvas (see “Canvas”) or in rows (see “Arrays”).

Conditionals

The parenthetical tag

<conditional attributes>

...

<end conditional>

is used to specify elements which should only be printed under some circumstances. Whether the
contents should be printed is determined by the value of exactly one of the following attributes:

 variable specifies the name of the variable that must be true for the contents to be printed.

In the print definition for “Print Posting Journal,”,for instance, a conditional with the variable
“IncludeTotals” is used to determine whether totals should be printed. This variable is set to

true when you select the field “Include Totals” in the client Print window. The variable

attribute is nameless and has the type ID.

 field (supported in MPL 3 and 4 only) specifies the name of the field that must be true for

the contents to be printed. This attribute goes hand in hand with the optional cursor attribute

that the specified field must belong to. If not specified, cursor is resolved automatically to the

first cursor in the scope chain that contains the field in question. Both field and cursor

attributes are of type STRING.

 expression (supported by MPL 4 only) specifies a Boolean expression that must evaluate to

true for the contents to be printed. expression is nameless and has the type

EXPRESSION.

The remaining attributes of the tag <conditional> include:

 script specifies the name of a script (program) that is to be run before the contents are

printed (that is, if the condition is true). script is nameless and has the type STRING.

 negate is of the type BOOLEAN. If it is set to true, the value of the conditional will be

negated—that is, the content of the conditional will be printed if its value is false. This applies

to MPL 3 and MPL for Universe Reports only.

 baseline is used to specify the baseline of the conditional block. As for stacks, baseline

can be set to either top or bottom, specifying whether baseline should be inherited from

the upper or lower element.

 height specifies the height of the conditioned block. If the condition is true (and the contents

are printed), the following elements will treat the conditioned block as if it had the given height. If
the contents do not fit in the allotted space, or the height of the contents cannot be determined

(see the height attribute for stack), an error message is displayed. If the attribute is not

specified, the height is dictated by the contents. The attribute has the type LENGTH

Basic Tags

Maconomy Printing Language (MPL) 31

 width specifies the width of the conditioned block. This influences the positioning of elements

to the right of the conditional as well as the justification of elements in the conditional. If the
contents of the conditional block cannot be placed within the specified space, the system will

display an error message. If width is not specified, the conditional’s width will be stretched to fit

the space available. The attribute has the type LENGTH.

 indent specifies extra indentation of the conditional block (all elements contained in the block

are indented). The attribute has the type LENGTH.

The use of conditions is subject to certain restrictions that are dictated by the original layout. See
“Print Structure.”

A conditional cannot appear in a canvas. At most, one conditional can appear in any given row
(this restriction does not apply to MPL 3).

In MPL 3 the attributes field (STRING) and cursor (STRING) are also supported and are used

to make a conditional depend on values of a database field. For more information on conditional
changes in MPL 3, see “Conditionals” and “Skipping False Conditionals.” MPL 4 adds expressions
as a possible means of specifying the guarding condition for conditionals. For more detailed
description of expression, see “Expressions.”

Example 1

In this example we use a nameless attribute variable to specify the condition guarding this

conditional:

<conditional EUSalesVar>

"VAT NO."

PayerVATNumber:indent=1cm

<end conditional>

Example 2

In this example we use a nameless attribute expression to specify the condition guarding this

conditional:

<conditional {AgeVar > 75 && congratulateSeniorsVar} >

"Congratulations to " .EmployeeName

"on having lived for" AgeVar "years!”

<end conditional>

While Loops

The parenthetical tag

<while attributes>

...

<end while>

is a looping construct in MPL—that is, it keeps executing its children as long as its guarding

condition attribute evaluates to true. while loops can be used together with the Expression

Language to perform arbitrary calculations. On top of that, they can be also employed to repeat
the execution of a chosen part of an MPL layout while a certain condition holds. In the latter

scenario, though, you should remember that while loops are part of the layout script structure in

the same ways as repeating blocks and conditionals are, which basically means that when you

customize an existing layout you cannot add a while loop around a block of MPL code from the

Basic Tags

Maconomy Printing Language (MPL) 32

original layout that might potentially call scripts (at least one of the tags has a script attached). For
more details on this restriction, see “Print Structure.”

The <while> tag has the following attributes:

 condition specifies the condition that must be true for the next iteration of the loop to

execute. The attribute is mandatory, nameless, and of type EXPRESSION.

 skipHeaderFooterIfEmpty specifies whether the header and footer of this while loop

should be skipped if no iterations took place, that is, when the guarding condition evaluated to
false the first time the loop was executed. The attribute is of type BOOLEAN and defaults to

false. When set to true, both the header and the footer are not printed when no iterations

took place.

while loops support indent, height, and width attributes in the exact same way as repeating

blocks.

The <while> tag has been introduced in MPL 4 as of TPU 16 SP2.

Example 1

The following code implements the insertion sort algorithm, sorting characters in the input
numbers string in ascending order. It goes through the characters in the numbers string one by

one, and inserts them in ascending order into the resulting sortedNumbers string. Because

sortedNumbers string is at all times sorted, the inner while loop stops as soon as it finds an

element bigger than or equal to the current one—this is exactly the right spot to insert the current
element.

<var numbers {"918273645"}>

<var sortedNumbers {""}>

<var currentIndex {0}>

<val numbersLength {length(numbers)}>

-- Iterate over all the numbers

<while {currentIndex < numbersLength}>

 <val currentElem {charAt(numbers, currentIndex)}>

 <var insertionIndex {0}>

 -- Find insertionIndex to insert currentElem into the resulting sortedNumbers

 <while { insertionIndex < currentIndex

 and charAt(sortedNumbers, insertionIndex) < currentElem} >

 -- Iterate as long as currentElem is bigger than the elements in

 -- sortedNumbers

 <assign insertionIndex {insertionIndex +1}>

 <end while>

 -- Insert currentElem into sortedNumbers at the found insertionIndex

 <val prefix {substring(sortedNumbers, 0, insertionIndex)} >

 <val postfix {substring(sortedNumbers, insertionIndex)}>

 <assign sortedNumbers {prefix + currentElem + postfix}>

 <assign currentIndex {currentIndex +1}>

<end while>

^{"Input numbers: " + numbers} -- prints 918273645

^{"Sorted numbers: " + sortedNumbers} -- prints 123456789

Basic Tags

Maconomy Printing Language (MPL) 33

Example 2

In addition to performing calculations, you can also use while loops to repeat executing an MPL

code snippet as long as a certain condition is satisfied.

For example, suppose we have a layout that lists all of the employees in a repeating over the

Employee cursor. A skeleton of it could look somewhat like this:

<repeating Employee>

…

<end repeating>

We want to print the contents for each employee twice, adding the text “Copy 1 of 2” the first time
and “Copy 2 of 2” the second time. To this end, we can modify the above snippet in the following
way:

<var copyNumber {1}>

<while {copyNumber <= 2}>

 <repeating Employee>

 …

 <end repeating>

 ^{"Copy " + copyNumber + " of 2”}

 <assign copyNumber {copyNumber +1}>

<end while>

Horizontal Lines and Spaces

Inside a stacking block, it is sometimes convenient to control horizontal spacing between the
stacked elements as well as to print horizontal lines in between them. This can be achieved be

means of the <skip> and <hline> tags in MPL.

skip

The simple tag

<skip attribute>

is used to insert extra vertical space between elements and has the following attribute:

height is used to specify the height of the extra space that is to be inserted. The attribute is

mandatory and nameless and has the type LENGTH.

Example

<island>

"Hello!"

<end island>

<skip 5mm>

<island>

"Bye bye!"

<end island>

Here the skip attribute is included in the block to ensure space between the two islands.

hline

The simple tag

Basic Tags

Maconomy Printing Language (MPL) 34

<hline attribute>

is used for inserting a horizontal line in a stacking tag. The line will be stretched across the width of
the stacking tag. The tag has one attribute:

multi is used to specify the number of lines that are to be inserted. For example, set the multi

attribute to 2 to insert a double line underneath a total. The attribute has the type INTEGER. If not

specified, one line is inserted.

Example

<stack width=1cm>

"123":right

"+234":right

<hline>

"357":right

<hline multi=2>

<end stack>

This results in the following printout:

Arrays

Arrays are used for arranging elements into rows and columns. Because arrays can be used
within arrays, they offer almost unlimited possibilities for formatting data.

Columns and Rows

array

The parenthetical tag

<array attributes>

...

<end array>

specifies an array. The contents of an array tag must be rows. The rows are placed above each

other, and the elements in the rows are arranged in columns. You can use the following short
form:

{ shortattributes

...

}

array has the following attributes:

 ruler is used to specify the format of the columns of the array. Rulers are described in

“Rulers—Column Definitions.” You can specify a ruler value or an ID that refers to a ruler with
a specified name. The attribute is nameless.

 baseline is used to specify the baseline of the array. As for the tag stack, you can set

baseline to top or bottom, specifying whether the baseline is inherited from the upper or

lower row. The default value is bottom. The attribute has the type ID.

Basic Tags

Maconomy Printing Language (MPL) 35

 height specifies the height of the array. This only influences the placing of the elements that

follow the array. If the contents of the array cannot be placed within the specified margin, the

system will display an error message. If height is not specified, the height of the array is

dictated by the contents of the array. The attribute has the type LENGTH.

 width specifies the array’s width. If the contents cannot be placed within the specified width,

the system will display an error message. If none of the columns is stretchable, the width of the
array will be the sum of the columns’ widths, whether width is specified or not. If one or more
columns are stretchable, the array is given the specified width. The attribute has the type
LENGTH.

 indent specifies extra indentation of the array. The attribute has the type LENGTH. This

attribute cannot be used when the array appears in a canvas or if the array uses a named ruler.

 pos specifies the positioning of the array in a canvas. The attribute is nameless and has the
type POS. You can only use it when the array appears in a canvas, and in that case it is
nameless and mandatory. See also “Exact Positioning of Elements” in “Canvas.”

Following the description of the row tag in the next section, you will find a number of examples of

the use of arrays.

row

The parenthetical tag:

<row attributes>

...

<end row>

is used to specify rows. Often you will want to use the short form:

...;shortattributes

A row consists of elements placed next to each other. A row cannot contain repetitions and can
contain only one condition.

 align is used to specify how the elements in the row are placed next to each other. The

attribute can be given the following values:

 baseline is used to specify that the elements in the row are placed in accordance with the

baseline. A simple element’s baseline—that is, texts, fields, and variables—is selected on
the basis of the font (characters such as “w” and “t” are placed on the baseline, while “g,” “j,”
and “q” extend a little below the baseline). Baseline for a stacking tag is decided by this
tag’s baseline attribute. If no value is specified for align, baseline is standard.

 top is used to specify that the elements should be placed in such a way that the upper

edge of the elements are aligned.

 center is used to specify that the elements should be placed in such a way that the

middles of the elements are aligned.

 bottom is used to specify that the elements should be placed in such a way that the lower

edges of the elements are aligned.

The align attribute has the type ID and is nameless in short as well as in long form.

 height specifies the height of the row. This only influences the placing of subsequent rows. If

the contents of the row cannot be placed within the specified margin, the system will display an

error message. If height is not specified, the height of the row is dictated by the contents of

the row. The attribute has the type LENGTH.

Basic Tags

Maconomy Printing Language (MPL) 36

skip

A previous section described how you can use the skip tag in stacking tags. You can also use the

skip tag to define the distance between rows. To do this, the tag must be the only element in a

row.

A row that only contains a skip tag is not included when checking the number of columns in an

array.

Examples

The following array:

{

"REFERENCE" .Reference:width=5cm;

"RECEIVER" .Receiver:width=5cm;

}

results in the following printout with that contains two rows and two columns:

It is superfluous to set the width of both fields because the width of the column is derived from
the widest element. The example, therefore, shows how to set the width of the column, instead.

The elements in rows can also be stacking tags. For example:

{

<stack baseline=bottom>

"CUSTOMER"

"REFERENCE"

<end stack>

.Reference:width=5cm;

<skip 2mm>;

"RECEIVER" .Receiver:width=5cm;

}

which results in the following printout:

As you can see, the printout contains two rows: the first element in the first row is a stack that has
two elements, which therefore span across two lines.

Finally, arrays can occur in rows:

{

{

"CUSTOMER NO." .ThePaymentCustomer:width=5cm;

"REFERENCE" .Reference:width=5cm;

"RECEIVER" .Receiver:width=5cm;

Basic Tags

Maconomy Printing Language (MPL) 37

}

{

"ORDER NO." .OrderNumber:width=5cm:left;

<skip 5pt>;

"INVOICE DATE" .InvoiceDate:width=5cm;

}

;:top -- end row with two arrays

}

which results in the following printout

This representation is often used in printout headers (for example, at the top of an invoice) where

the information is represented in two columns, and information is grouped by inserting <skip

5pt> between the elements. You achieve two columns with information by inserting an array with

one row (stretching from line 2 to 12). This row contains two array elements, each of which
represents a column. Thus the first column is defined between lines 2 and 6, and the other column
is defined between lines 7 and 11.

Rows in Stacking Tags
{

<conditional EUSalesVar>

"TAX NO." PayerTaxNumber;

<end conditional>

"CUSTOMER NO." .PaymentCustomer;

}

Horizontal Lines

Just as in stacking tags, you can specify horizontal lines in arrays. You can use these as sum or
header lines, or in combination with vertical lines to make tables. The syntax for horizontal lines

(hline) is as follows:

<hline attributes>

In arrays the tags have the following attributes:

 columns specifies how many columns the line is to stretch across. columns has the type

INTEGER and is nameless. If you do not specify a span attribute, one of the following things

happens:

 If the hline tag appears as the only element in the row, the line will stretch across all

columns.

 If the hline tag appears with other elements in the row, the default value for columns is

1.

 multi specifies how many lines you want. You might, for example, set multi to 2 if you want

to make a double line under a sum. The attribute has the type INTEGER. If it is not specified, a
single line is drawn.

 left and right. Horizontal space is placed between the columns to ensure a nice array

layout. By using these attributes, you can specify whether the line is to underline this extra

Basic Tags

Maconomy Printing Language (MPL) 38

space to the left or right of the columns across which the line is stretched. The attribute has the

type BOOLEAN. The default value is true—that is, if they are not specified, the line will stretch

across the space between the columns to the left as well as to the right.

Because all columns have extra space on the left and on the right, the specification of
left+ or right+ means that half of the distance between the columns is underlined. The
first column only has extra space on the left if a column separator has been specified
before the first column (see “Column Separators”). Similarly, the last column only has
extra space on the right if a column separator has been specified after the last column.

Example

{

<hline columns=3>;

<conditional ItemSalesOut script="Item Sales">

"TOTAL ITEM SALES" .Currency .ItemSumCurrency;

<end conditional>

}

Note that both rows contain three elements, the first due to the span attribute. You could also

leave out the column attribute.

The following example illustrates the use of the other attributes:

{

"a" "b" "c" "d";

"" <hline columns=2 multi=2> "" ;

"e" "f" "g" "h";

"" <hline columns=2 left- right-> "" ;

}

which results in the following printout (enlarged to illustrate the effect of left- and right-):

Note that the bottom line is shorter than the double line because of the use of left- and right-.

Rulers—Column Definitions

A ruler specifies how the columns of an array should behave—how wide they should be and how
they should be separated. To begin, we will explain how a ruler is used to specify column widths.

Rulers correspond to tab stops in word processors. However, rulers have more options.

A column is viewed as a tag that only has a short form.

A ruler value is given as:

[columndefinition]

where columndefinition is a number of columns separated by columnseparators (defined

in “Column Separators”). Furthermore, a columndefinition can start and end with a column

separator. A column is written as:

Basic Tags

Maconomy Printing Language (MPL) 39

[columnattributes]

A ruler value should contain as many columns as the array that it describes.

This means that a ruler value without column separators has the following format:

[[columnattributes][columnattributes] ... [columnattributes]]

Every occurrence of [columnattributes] defines the behavior of one column. The following

column attributes can be provided:

 stretch indicates whether the column should stretch. If the attribute is not provided, the

column will not stretch. If at least one column in an array is allowed to stretch, the whole array
will stretch to fill the surrounding space. The extra space will be distributed evenly among the
stretchable columns. The attribute has the type BOOLEAN.

 width specifies the minimum width of the column. The attribute has the type LENGTH and is

nameless.

Example

Consider:

<island width=10cm>

{:ruler=[[][stretch+]]

"ORDER NO." .OrderNumber;

"INVOICE DATE" .InvoiceDate;

"VERSION NO." .VersionNumber;

}

<end island>

The ruler has two columns, just as the three rows in the array. The first column has no specifications
for the column containing the fixed text. Thus the width of the column will only be determined by its

contents, and it will therefore be made wide enough to contain the three fixed texts. The stretch

attribute is specified for the other column. This means that the array will stretch across the space
available in the island: 10 cm. Therefore, the second column will be 10 cm wide minus the width of
the widest text line (probably “INVOICE DATE”) and minus any column spacing.

When you prepare tables like this you should consider carefully which fields should be assigned
any additional space. Usually, fields and variables that contain text must stretch, because you
cannot predict their width.

Naming Rulers

You often want the columns of two arrays to have the same width. This is done in MPL by letting
the two arrays share the same ruler—the ruler is given a name, and the two arrays refer to the
name of the ruler definition. Ruler definitions can occur in the beginning of the following stacking

tags: frontpage, paper, header, footer, conditional, repeating, island,

stack, and span. The scope of the ruler is explained in “Ruler Scope.”

To name a ruler, the following tag is used:

<ruler attributes>

The tag has two attributes:

 name specifies the name by which the ruler should be known. The attribute has the type ID and

is mandatory.

Basic Tags

Maconomy Printing Language (MPL) 40

 value specifies the ruler that is to be named. The attribute value must be a ruler. The attribute

is nameless and mandatory.

The attribute can also have the type ID, in which case it must be the name of a ruler.
This attribute type can be used to assign a new name to a ruler, but it is not
particularly useful.

Example

Consider

<ruler common [[][]]>

{:common

"ORDER NO.":fontsize=12:bold+

.OrderNumber:width=5cm:left:fontsize=12:bold+;

}

PaymentAddress1

PaymentAddress2

PaymentAddress3

{:common

"CUSTOMER NO." .PaymentCustomer:width=5cm;

"INVOICE DATE" .InvoiceDate:width=5cm;

}

If you only look at the first five lines of this fragment, the ruler will seem superfluous (because no
column attributes have been specified, this corresponds to not specifying a ruler). The ruler’s
purpose is exclusively to ensure that the two arrays are formatted with the same column definition.

This ensures that .PaymentCustomer and .InvoiceDate will appear in the same column as

the order number:

Subrulers

You might want two arrays to share certain (but not all) columns. For example, the sum amount on
an invoice is to be placed in the same column as the amounts on the invoice lines, but the
information on the sum lines does not have to be placed in the same column as the information on
the invoice lines. For this purpose a subruler is used. With a subruler you can take a selection of
columns from a ruler and group other columns into one column.

This might sound complicated but, for example, the definition:

<subruler new [[2][3:4]] parent=old>

will create a ruler with the name “new” consisting of two columns. The first column is the second
column from a ruler named “old” and the second column in “new” consists of a grouping of the
third and fourth column in the ruler “old.”

Subruler definitions can appear in the beginning of the following stacked tags: frontpage,

paper, header, footer, conditional, repeating, island, stack, and span.

The syntax for subruler is:

Basic Tags

Maconomy Printing Language (MPL) 41

<subruler attributes>

The tag has three attributes:

 name specifies the name that you want to give to the subruler. The attribute has the type ID

and is nameless and mandatory.

 value is the subruler itself. The attribute value must be a subruler. The attribute has the type

ID and is nameless and mandatory.

 parent specifies the name of the ruler from which you want to define a subruler.

The ruler must be recognized and can also be the name of a subruler. The attribute has the
type ID and is nameless and mandatory.

A subruler value is very similar to a ruler value and is specified as:

[subcolumndefinition]

where the subcolumndefinition is a row of subcolumns divided by column separators.

Furthermore a subcolumndefinition can be started and ended by a column separator. A

subcolumn is written as:

[Range]

or

[INTEGER]

A range is specified as INTEGER:INTEGER. A range n1:n2 specifies that the column must

correspond to the columns n1 to n2 (both included). If only INTEGER n is specified, this is actually

an abbreviation of n:n.

As for columns, subcolumns can be viewed as tags that only have a short form:
[shortattributes]. The only attribute is a range that has the type RANGE. This type is either
INTEGER or INTEGER:INTEGER. The attribute interval is nameless and, therefore, you will
usually only write a subcolumn as [INTEGER] or [INTEGER:INTEGER].

Subcolumns must refer to the parent ruler’s columns from left to right, and they cannot overlap.

Iteration: If [n1:n2] [m1:m2] is a part of the subruler, n1≥n2 and m1≥m2.

Examples of legal subrulers:

[[1][3][5]]

[[1:2][4:5]]

[[1:3][4][5]]

Examples of illegal subrulers:

[[5][3][1]] -- Columns not ordered

[[2:1][4:5]] -- Columns not ordered [[1:3][3:4][5]] -- Two columns are

overlapping

Example

The following example is taken from a simplified layout to the layout “Print Invoice,” but many
details have been left out. We define the following rulers:

<ruler lines [[1cm][stretch+][15mm]]>

<subruler primarylines[[1:2][3]] parent=lines>

Basic Tags

Maconomy Printing Language (MPL) 42

<subruler secondarylines [[2][3]] parent=lines>

The first line defines all of the columns on an invoice line. Consider the ruler “lines” as defining
three tab stops. The first column is 1 cm wide and is used as the indent marker that is to be
inserted before secondary lines (“Discounts” and “Extra Text” in this example). The second column
is the text column. This should be as wide as possible and has therefore been made stretchable.
The last column contains amounts and is set to 15 mm.

The second line defines primary lines. Here the text must start from the very left and the first
column therefore consists of the first and second column from the ruler “lines.” The second column
is the amount column, which should contain the price.

The third line defines secondary lines that are related to primary lines. This ruler is similar to the
ruler “primarylines,” but in this case the text column is indented as it only consists of column 2 from
the ruler “lines.”

The rulers can now be used as follows:

<repeating InvoiceLine script="InvoiceLineBlock">

<conditional PricesOut>

{:primarylines

.ExternalItemText CorrectedPriceWithoutDiscount;

}

<end conditional>

<conditional DiscountOut>

{:secondarylines

.DiscountText CorrectedDiscountCurrency;

}

<end conditional>

<repeating InvoiceBOMLine script="BOMLineBlock">

<conditional PricesOut>

{:secondarylines

InvoiceBOMLine.ExternalItemText

CorrectedPriceWithoutDiscount:zerosuppression+;

}

<end conditional>

<end repeating>

<end repeating>

which results in the following printout

“Spanning Columns” contains a description of an alternative way of achieving this formatting. You
can use whichever of the two methods you prefer the most.

Ruler Scope

The name of the ruler is recognized in all of the stacking tags in which it is defined. However, it will
not be recognized in a tag where the left or right edge has been indented in relation to the stacking

Basic Tags

Maconomy Printing Language (MPL) 43

tag in which the ruler is defined. Such indentation is inserted due to the use of the indent

attribute in a parenthetical tag or the use of leftmargin or rightmargin in islands.

The following example illustrates the ruler scope:

-- my_ruler is not recognized here

<stack>

<ruler my_ruler [[][stretch+]]>

-- my_ruler is recognized here

<island>

-- my_ruler is recognized here

<end island>

<island leftmargin=1cm>

-- my_ruler is not recognized here as the island’s

-- contents are indented

<end island>

<stack>

-- my_ruler is recognized here

<end stack>

<stack indent=1cm>

-- my_ruler is not recognized here as the stack

-- is indented

<end stack>

<end stack>

-- my_ruler is not recognized here

Column Separators

You can insert column separators between columns in rulers or subrulers. A column separator
specifies what should be inserted between the columns.

A column separator is a tag; you can only use the vline, text, and text2 tags as column

separators. The vline tag is described later in this manual; it is used more often as a column

separator than as an independent tag. The text2 tag is described in “Alternative Text Tag.”

The following fragment constitutes a legal ruler:

[[]<text "Hello">[]<vline>[]]

This ruler will write the text “Hello” in each row between the first and the second column and insert
a vertical line between the second and the third column. You will often use the short form of these
tags, and the ruler will look as follows:

[[]"Hello"[]|[]]

Note that the short form of vline is just a vertical line: |.

The most common characters in column separators are dividing characters (“-,” “/,” and so on).
Furthermore, you can also insert multiple spaces using this tag to obtain extra space between
columns. To make this easier, you can simply specify a width:

[[]2cm[]]

This ensures a column separation of 2 cm.

Thus you can specify the following column separators:

Basic Tags

Maconomy Printing Language (MPL) 44

 Vertical lines are used to create tables. A vertical line is written as <vline attributes> or with

the short form “|shortattributes.”

The only attribute to the vline tag is justification (see also “vline”). The attribute is

rarely used when vline is used as the column separator.

 Strings that should be repeated in all columns are specified using the text or text2 tags.

 The distance between columns. If you want to change the distance between all columns, you

should change the length constant InterColumnSpacing instead (see “Length Constants” in

“Advanced MPL”).

Subrulers do not inherit column separators from the parent ruler. If, for example, you want to repeat
vertical lines, you must specify these again in the subruler.

Example

If you want to create a simple table, it can be done as follows:

<ruler tableline[|[]|[]|]>

{:tableline

<hline>;

"Field":bold+ "Selection Criteria":bold+;

<hline>;

"Delivery Mode" DeliveryModeVar; "Delivery Terms" DeliveryTermsVar;

"Carrier" TransporterVar;

"Consignment Type" ConsignmentTypeVar;

<hline>;

}

which results in the following printout:

The following is an example of the use of subruler:

<ruler tableline[|[]|[2cm]"-"[2cm]|]>

<subruler headingline[|[1]|[2:3]|] parent=tableline>

{:headingline

<hline>;

"Field":bold+ "Selection Criteria":bold+:center;

}

{:tableline

<hline>;

"Invoice No." FromInvoiceNumber:right ToInvoiceNumber:left;

"Ordrenr." FromOrderNumber:right ToOrderNumber:left;

"Company No." FromCompanyNumberVar:right ToCompanyNumberVar:left;

"Bill to Customer No." FromPaymentCustomer:right

ToPaymentCustomer:left;

Basic Tags

Maconomy Printing Language (MPL) 45

<hline>;

}

This fragment also shows how you can use a text as a column separator. The result is the following
printout:

Spanning Columns

It is often useful to make an element in an array stretch across several columns, for example, if a

heading should span across two columns. The span tag is a parenthetical tag that can contain

only one element. This element can be a parenthetical tag, although not a row. You use this tag to
specify the number of columns across which the contents should span. The syntax is as follows:

...

<end span>

The contents of a span tag is one element (possibly preceded by definitions of rulers, defaults,

and length constants). Often you will use the short form, that is, surrounding parentheses:

(

...

)shortattributes

The tag has the following attribute:

 columns is used to specify the number of columns across which the contents should span.

The tag has the type INTEGER and is mandatory and nameless both in the short and the long
forms.

Example

First we will consider an example based on the print layout for “Print Balance”:

{:[[1cm][stretch+][][15mm][15mm][15mm][15mm]]

"" "" "" ("Period":center):2 ("Year to Date":center):2; ("Account"):2

"Tax Code" "Debit":center "Credit":center "Debit":center

"Credit":center;

<repeating cursor=ACCOUNTSTRUCTURELINE script="B_BLOCK">

<conditional variable=ShowAccount>

AccountNoField .Description VATCodeField

MovementDebitField:right

MovementCreditField:right

BalanceDebitField:right

BalanceCreditField:right;

<end conditional>

<end repeating>

}

Basic Tags

Maconomy Printing Language (MPL) 46

Here you should pay attention to the fact that the span tag is used twice on line 2. The heading

“Period” spans across two columns: The debit and credit columns for ”Period.” Similarly, the
heading “Year to Date” spans across a debit column and a credit column. On line 3, the heading
“Account” spans across two columns (account number and account description). The result is as
follows:

We will now return to the example from “Subrulers.” Here we define the ruler:

<ruler invoicelines [[1cm][stretch+][15mm]]>

The rulers can now be used as follows:

{:invoicelines

<repeating Invoiceline script="Invoicelineblock">

<conditional PricesOut script="PricesOut">

(.ExternalItemText):2

CorrectedPriceWithoutDiscount;

<end conditional>

<conditional DiscountOut script="DiscountOut">

"" .Discounttext CorrectedDiscountCurrency;

<end conditional>

<repeating InvoiceBOMLine script="BOMLineBlock">

<conditional PricesOut>

{:secondarylines

InvoiceBOMLine.ExternalItemText

CorrectedPriceWithoutDiscount:zerosuppression+;

<end conditional>

<end repeating>

<end repeating>

}

The resulting printout matches the printout on the figure above, but without the use of subrulers.

vline

We are already familiar with the vline tag and how it is used as a column separator. Vertical lines

can also be used as an element in rows:

<vline attributes>

The short form of the vline tag is simply:

| shortattributes

The tag has a single attribute:

 justification is nameless in both the long and the short forms and has the type ID. It can

take the values left, center, and right. If justification is not specified, the default value is

left.

Basic Tags

Maconomy Printing Language (MPL) 47

It is not an easy task to use the vline tag to create tables; it is recommended to use the tag as

column separator instead.

Example

The program fragment:

{

<hline 5 left- right->;

|:left "1" |:center "2" |:right;

<hline 5 left- right->;

"" |:left "3" |:right "";

"" <hline 3 left- right-> "";

}

results in the following printout:

Notice how left- and right- have been used to prevent the horizontal lines from stretching

below the column separators that are inserted before and after the vertical lines.

Printout Example: Time Sheets

Maconomy Printing Language (MPL) 48

Printout Example: Time Sheets

In this section we will create a layout for the printout “Print Time Sheet.” The section describes the
practical procedures involved in the creation of a new layout.

Getting Started

Export the structure layout for the printout “Print Time Sheet” from the window Print Layout in the
Maconomy client. The result is a valid MPL definition. The structure is shown below:

<mpl 1>

<layout title="Standard"

print="Print_TimeSheets"

originallayout="Standard">

<page "A4">

<frontpage>

<end frontpage>

<paper>

<header onfirstpage+ height=61pt>

<end header>

<stack>

<repeating TimeSheetHeader

script="S_TimeSheetHeader">

<repeating TimeSheetLine

script="S_TimeSheetLine">

<header>

<end header>

<end repeating>

<stack>

<end stack>

<end repeating>

<end stack>

<end paper>

The structure layout defines the structure of the original layout, that is, the allowed structure of new
layouts. For more information, see “Print Structure.” The structure layout is therefore a good
starting point for the design of your own layouts.

To see which fields and variables you are able to access for each printout in Maconomy, use the
manual “Variables and Cursors in Printouts,” which is updated for each application version of
Maconomy. If you want to see where and how the fields and variables are used, it is a good idea to
export the original layout.

Create the New Layout

The Header

We want to create a layout that can be printed on A4 paper in landscape orientation. We shall
name the layout “Landscape, standard.” The header of the MPL definition will look as follows:

-- Layout:

Printout Example: Time Sheets

Maconomy Printing Language (MPL) 49

-- "Landscape, standard" to be used by consultants

--

-- Design:

-- Peter Smith (May 5 2004)

--

-- Based on structure layout version:

-- Application version: Maconomy W 8.0

-- Application date (yyyy/mm/dd): 2004/02/24

<mpl 2>

<layout title="Landscape, standard"

print="Print_TimeSheets"

originallayout="Standard">

<page "A4" landscape>

As you can see, a comment has been included in the MPL header, making it easy to pinpoint:

 The layout designer

 The purpose of the layout

 The Maconomy version for which the layout has been designed

The information that you want to include in the comments is, of course, up to you.

The Front Page

The front page of the print layout “Print Time Sheet” has two purposes:

1. Inform about who is printing the time sheet

2. Show the selection criteria specified for the printout

The information about the printout is bundled in an island that we have named “Time Sheets.” This
island contains an array with two columns where the first column contains the user name and
company name, and the other contains the time and date. Both columns have been stretched so
that they take up the entire space and become equally sized (ensuring that we have room for the
contents of the fields). Furthermore, the time and date have been right-adjusted.

The selection criteria information has also been placed in an island that has been made smaller
than the paper. The array in this island has three columns: A Text column, a From column, and a
To column. The last two columns are separated by hyphens (specified as ‘-’ instead of “-” in the
ruler; the difference is explained in “Alternative Text Tag” in “Advanced MPL”). The text column
cannot stretch, and the two other columns share the extra space.

The first row is aligned to this ruler, but the next row is not, because only one superior is specified

and not a range. This is done by letting SeniorEmployeeVar stretch across two columns.

The fifth row is different from the rest, as the “From” and “To” information is a date consisting of
week number, slash (“/”), and year. For each of these pieces of information we specify an
embedded array consisting of one row with the date.

<frontpage>

-- Header

<island "Time Sheets" leftmargin=5mm rightmargin=5mm

bottommargin=2mm>

{:[[stretch+][stretch+]]

CompanyName Time:right;

UserName TodaysDate:right;

Printout Example: Time Sheets

Maconomy Printing Language (MPL) 50

}

<end island>

<skip 1cm>

-- Selection Criteria

<island width=14cm

leftmargin=2cm rightmargin=2cm

topmargin=2mm bottommargin=2mm>

{:[[][stretch+]'-'[stretch+]]

"Employee No." FirstEmployeeNumber

LastEmployeeNumber;

"Superior" (SeniorEmployeeVar):2;

"Secretary" (SecretaryEmployeeVar):2;

"Submitted" (SubmittedVar):2;

"Week No." {FirstWeek '/' FirstYear;}

{LastWeek '/' LastYear;};

"Layout Name" (LayoutName):2;

}

<end island>

<end frontpage>

In the preceding print definition we have used span and embedded arrays in the rows that did not fit
into the overall ruler. This is easier to understand if there are only a few rows—if there had been
more rows, the easiest and most elegant solution would be to use named rulers and subrulers:

<frontpage>

-- Header

...

-- Selection Criteria

<island width=14cm

leftmargin=2cm rightmargin=2cm

topmargin=2mm bottommargin=2mm>

<ruler DateRangeLine

[[][stretch+]'/'[stretch+]'-'[stretch+]'/'[stretch+]]>

<subruler RangeLine [[1][2:3]'-'[4:5]] parent=DateRangeLine>

<subruler SimpleLine [[1][2:3]] parent=RangeLine>

{:RangeLine

"Employee No." FirstEmployeeNumber LastEmployeeNumber;

}

{:SimpleLine

"Superior" SeniorEmployeeVar;

"Secretary" SecretaryEmployeeVar;

"Submitted" SubmittedVar;

}

{:DateRangeLine

"Week No." FirstWeek FirstYear LastWeek LastYear;

}

{:SimpleLine

"Layout Name" LayoutName;

}

Printout Example: Time Sheets

Maconomy Printing Language (MPL) 51

<end island>

<end frontpage>

If you want to include more date range lines, this definition also ensures the alignment of the week
and year fields.

The Paper Content

The Layout for Each Time Sheet Line

The inner repeating block from the structure layout looks as follows:

<repeating cursor=TIMESHEETLINE

script="S_TIMESHEETLINE">

<end repeating>

The contents of this block will be printed for each line on a time sheet. The desired information
here is job number, job name, activity number, entry description, number of hours for each of the 7
days of the week, and an hours total. This information should be presented in one row so that any
extra space is distributed to the two text fields (job name and entry description). As job numbers
can be quite long, 1.5 cm has been set aside for this column.

<repeating cursor=TIMESHEETLINE script="S_TIMESHEETLINE">

{:[[1.5cm][stretch+][][stretch+][][][][][][][][]]

.JobNumber JobName .ActivityNumber .TextofEntry

.NumberOfDay1 .NumberOfDay2 .NumberOfDay3

.NumberOfDay4 .NumberOfDay5 .NumberOfDay6

.NumberOfDay7 TotalLine;

}

<end repeating>

The Layout for Each Time Sheet

Information about the time sheet, the column headings, and the totals should be printed on each
time sheet.

The headings are placed in the same columns as the fields. The headings and the fields should
therefore share a ruler. This is achieved by letting the array “flow” out of the inner repeating tag. By
inserting a line after the headings, we get the following representation:

<repeating cursor=TIMESHEETHEADER script="S_TIMESHEETHEADER">

{:[[1.5cm][stretch+][][stretch+][][][][][][][][]]

"Job No." "Job Name" "Activity No." "Description"

"Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun" "Total";

<hline 12>;

<repeating cursor=TIMESHEETLINE script="S_TIMESHEETLINE">

...

<end repeating>

}

<end repeating>

The information about the time sheet should include employee number and name, period, whether
the time sheet has been submitted, and if so, when:

{:[[][][stretch+]]

Printout Example: Time Sheets

Maconomy Printing Language (MPL) 52

"Employee" .EmployeeNumber .EmployeeName;

"Period" .PeriodStart:width=1.5cm .PeriodEnd:width=1.5cm;

"Submitted" .Submitted .DateSubmitted;

}

Finally, the totals are made part of the array that surrounds the time sheet lines. Before the totals
we insert a line, and after the totals we insert a little extra space to separate the information from
the information for the next time sheet, if any:

<hline 12>; "" "" "" ""

SumDay1 SumDay2 SumDay3 SumDay4 SumDay5 SumDay6 SumDay7 GrandTotal;

<skip 5mm>;

The Entire Layout

If you put the fragments described above together, you get the following layout:

-- Layout:

-- "Landscape, standard" to be used by consultants

--

-- Design:

-- Peter Smith (May 5 2004)

--

-- Based on structure layout version:

-- Application version: Maconomy W 8.0

-- Application date (yyyy/mm/dd): 2004/02/24

<mpl 2>

<layout title="Landscape, standard"

print="Print_TimeSheets"

originallayout="Standard">

<page "A4" landscape>

<frontpage>

-- Header

<island "Time Sheets" leftmargin=5mm rightmargin=5mm

bottommargin=2mm>

{:[[stretch+][stretch+]]

CompanyName Time:right;

}

leftmargin=2cm rightmargin=2cm

topmargin=2mm bottommargin=2mm>

{:[[][stretch+]'-'[stretch+]]

UserName TodaysDate:right;

<end island>

<skip 1cm>

-- Selection Criteria

<island width=14cm

"Employee No." FirstEmployeeNumber

LastEmployeeNumber;

"Superior" (SeniorEmployeeVar):2;

"Secretary" (SecretaryEmployeeVar):2;

Printout Example: Time Sheets

Maconomy Printing Language (MPL) 53

"Submitted" (SubmittedVar):2;

"Week No." {FirstWeek '/' FirstYear;}

{LastWeek '/' LastYear;};

"Layout Name" (LayoutName):2;

}

<end island>

<end frontpage>

<paper>

<repeating cursor=TIMESHEETHEADER

script="S_TIMESHEETHEADER">

{:[[][][stretch+]]

"Employee" .EmployeeNumber .EmployeeName;

"Period" .PeriodStart:width=1.5cm .PeriodEnd:width=1.5cm;

"Submitted" .Submitted .DateSubmitted;

}

{:[[][stretch+][][stretch+][][][][][][][][]]

"Job No." "Job Name" "Activity No." "Description" "Mon"

 "Tue" "Wed" "Thu" "Fri" "Sat" "Sun" "Total";

<hline 12>;

<repeating cursor=TIMESHEETLINE

script="S_TIMESHEETLINE">

.JobNumber JobName .ActivityNumber .TextOfEntry

.NumberOfDay1 .NumberOfDay2 .NumberOfDay3 .NumberOfDay4

.NumberOfDay5 .NumberOfDay6 .NumberOfDay7 TotalLine;

<end repeating>

<hline 12>;

"" "" "" ""

SumDay1 SumDay2 SumDay3 SumDay4 SumDay5 SumDay6 SumDay7

GrandTotal;

<skip 5mm>;

}

<end repeating>

<end paper>

Below both the front page for the printout and the following page are shown.

Basic Tags Continued

Maconomy Printing Language (MPL) 54

Basic Tags Continued

Having analyzed the Time Sheets example, we can continue our tour through the basic MPL
tags.

Headers and Footers

Headers and footers are used to specify print elements that must be printed at the top or bottom
part of each page. They are often used to specify print information (page number, date, the name
of the printout), information about the contents (for example, which employee’s time sheets are
being printed on a given page), and column headers for repetitions.

In MPL, you can specify several types of headers and footers:

 With page headers, you can specify text elements that you want printed in the top part of each
page.

 As with page headers, you can use page footers to specify text elements that you want printed
in the bottom part of each page.

 You can specify block headers in repetitions, conditions, and stacking tags. These headers
contain text elements that you want printed in the top part of each page as long as the block is
printed.

 As with block headers, you can use block footers to specify text elements that you want printed
in the bottom part of each page as long as the block is printed.

If you specify both a page and a block header/footer, both headers/footers will be printed. The
usual rules of scope apply, meaning that if a given print element results in a page break, the block
header/footer that belongs to the closest surrounding block (and only that header/ footer) will be
printed.

Page Headers and Footers

You can specify page headers and footers anywhere in the page definition, that is, within the

parenthetical tag <paper> ... <end paper> and not within any other parenthetical tags. You

should always specify these headers and footers after any possible definitions (ruler statements
and so on) on the page; they can share rulers with the contents of the page.

Headers and footers function as stacking tags; however, they cannot contain other headers or

footers, newpage tags, repetitions, conditions, or stacks with scripts.

The contents of a page header will be printed in the top part of each page. Using an attribute, you
can control whether a header should be printed on the first page. Similarly, the contents of a page
footer will be printed in the bottom part of each page, and you can use an attribute to control
whether a footer should be printed on the last page.

Headers and footers are often used to print out information about the contents of the printout, the
date, and possibly page numbers (available as a variable in all prints).

Block Headers and Footers

You can specify block headers and footers anywhere in repetitions, conditions, and stacks.
Headers/footers will be printed in the top/bottom part of the page if a page break is triggered while
printing the contents of the repeating/conditional tag or stack.

If you have specified a header both on the page and in a block, both headers will be printed. The
page header will be printed first, followed by the block header. Similarly, a block footer will be
printed over the page footer.

Basic Tags Continued

Maconomy Printing Language (MPL) 55

You can specify headers/footers in several nested blocks. If an element specified inside such
nested blocks triggers a page break, the header/footer in the closest surrounding block with a
header/footer is printed.

header

Headers are specified using the parenthetical tag:

<header attributes>

...

<end header>

The header tag has the following attributes:

 onfirstpage is used only in page headers and specifies whether the header should be

printed on the first page. The attribute has the type BOOLEAN and the default value is false.

 atstart is used in repetitions/conditions and stacks and specifies whether the header should

be printed immediately before the printing of the actual block is initiated or only at page breaks.

The attribute has the type BOOLEAN and the default value is false.

 script is used to specify the name of a script (program) that is executed each time that the

header is printed. The attribute has the type STRING. The use of scripts must correspond to
their use in the original layout. For more information, see “Print Structure.”

 height specifies the height of the header and is therefore used to determine where the text

after the header should begin. If the contents are higher than the specified height, an error
message is displayed. The attribute has the type LENGTH.

In addition to the height of the header, the length constant HeaderSkip also

determines the distance between the header and the header text.

footer

Footers are specified using the parenthetical tag:

<footer attributes>

...

<end footer>

The footer tag has the following attributes:

 onlastpage is used only in page footers and specifies whether the footer should be printed on

the last page. The attribute has the type BOOLEAN.

 atend is used in repetitions/conditions and stacks, and specifies whether the footer should be

printed immediately after the block has been printed or only at page breaks. The attribute has
the type BOOLEAN.

 script specifies the name of a script (program) that is executed each time the footer is

printed. The attribute has the type STRING. The use of scripts must correspond to their use in
the original layout. For more information, see “Print Structure.”

 height specifies the height of the footer and is therefore used to determine how far down the

page the main text extends to. If the contents are higher than the specified height, an error
message is displayed. The attribute has the type LENGTH.

Basic Tags Continued

Maconomy Printing Language (MPL) 56

This means that text is only printed until the bottom margin of the page plus the height
of the footers plus the length constant FooterSkip.

 pagebottom is used in repetitions/conditions and stacks, and specifies whether the footer

should be printed at the bottom of the page or follow the block. The attribute has type

BOOLEAN and its default value is true.

Example

We will now attempt to use headers and footers in the time sheet layout described in the previous
section.

Key information about the printout should be included in the page header:

<header onfirstpage+>

<island "Time Sheets"

leftmargin=5mm rightmargin=5mm bottommargin=2mm>

{:[[stretch+][stretch+]] CompanyName TodaysDate:right;

}

<end island>

<end header>

You can then, for example, specify the page number in the page footer:

<footer onlastpage+>

{:[[stretch+][][][][stretch+]]

"" "-" PageNumber:center "-" "";

}

<end footer>

The first and last columns are empty but will be stretched. This ensures that the three middle
columns are centered.

As specified in the print definition in the last section, a line with column headings was printed
before each list of time sheet lines. If such a list triggers a page break, it would be convenient if the
line were repeated on each new page. This can be achieved by replacing the heading line with a

header in the inner repeating block. By setting the attribute atstart to true, the heading is also

printed before the first time sheet line:

<header atstart+>

"Job No. " "Job Name" "Activity No. " "Description"

"Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun" "Total";

<hline 12>;

<end header>

If a page break is triggered in the middle of a time sheet, we want the printout to show that the time
sheet is continued on the next page.

In this printout, it is not possible to display subtotals. The variables SumDay1, SumDay2, and
so on, are updated by the script S_TIMESHEETLINE. This script is executed for each record
before the contents of the repeating block are printed. This means that .NumberOfDay1 is
added to SumDay1 on each line before the contents are printed, and therefore, before the
printout breaks to a new page. A footer based on SumDay1 will, therefore, display subtotals
that include the first line from the following page.

Basic Tags Continued

Maconomy Printing Language (MPL) 57

This is achieved by inserting a footer in the inner repeating block:

<footer>

("Continued":right:italic+):12;

<end footer>

We do not use the atend attribute here because the footer should not be printed when the

repeating block has terminated. With these changes, the paper part of the time sheet layout will

look as follows:

<paper>

<header onfirstpage+>

<island "Time Sheets"

leftmargin=5mm

rightmargin=5mm

bottommargin=2mm>

{:[[stretch+][stretch+]]

CompanyName TodaysDate:right;

}

<end island>

<end header>

<footer onlastpage+>

{:[[stretch+][][][][stretch+]]

"" "-" PageNumber "-" "";

}

<end footer>

<repeating cursor=TIMESHEETHEADER

script="S_TIMESHEETHEADER">

{:[[][][stretch+]]

"Employee" .EmployeeNumber .EmployeeName;

"Period" .PeriodStart:width=1.5cm .PeriodEnd:width=1.5cm;

"Submitted" .Submitted .DateSubmitted;

}

{:[[][stretch+][][stretch+][][][][][][][][]]

<repeating cursor=TIMESHEETLINE

script="S_TIMESHEETLINE">

<header atstart+>

"Job No." "Job Name" "Activity No." "Description" "Mon"

 "Tue" "Wed" "Thu" "Fri" "Sat" "Sun" "Total";

<hline 12>;

<end header>

.JobNumber JobName.ActivityNumber .TextOfEntry

.NumberOfDay1 .NumberOfDay2 .NumberOfDay3 .NumberOfDay4

.NumberOfDay5 .NumberOfDay6 .NumberOfDay7 TotalLine;

<footer>

("Continued":right:italic+):12;

<end footer>

<end repeating>

<hline 12>; "" "" "" ""

SumDay1 SumDay2 SumDay3 SumDay4 SumDay5 SumDay6 SumDay7

Basic Tags Continued

Maconomy Printing Language (MPL) 58

Grandtotal;

<skip 5mm>;

}

<end repeating>

<end paper>

The next page displays the result of including headers and footers in the definition. The printout
displays the bottom of a page and the top of the following page.

Canvas

This section describes the use of a canvas in MPL. A canvas is used for placing elements at exact
positions on the paper.

Exact Positioning of Elements

One of the main advantages of using MPL is that the you do not need to worry about the exact
position of each element, but can concentrate on the logic of the print definition. In some
circumstances it is, however, necessary to position print elements at exact places on the paper.
This can be useful if you want a printout to match a preprinted form, and even necessary if you

want texts or fields to overlap. You use the parenthetical tag canvas to achieve this. You can also

use this tag can if you want to draw lines that are not horizontal or vertical.

canvas

While stacking tags can be illustrated as a sheet of ruled paper where the text is positioned
horizontally underneath each other, a canvas corresponds to the canvas of a painter, where the
element can be positioned freely. The syntax for canvases is:

<canvas attributes>

...

<end canvas>

Basic Tags Continued

Maconomy Printing Language (MPL) 59

Every element in a canvas must be assigned a pos attribute that specifies where the element is to

be positioned. You specify the position of the element’s top-right corner in relation to the top-left
corner of the canvas. The canvas tag has the following attributes:

 height specifies the height of the canvas. The attribute has the type LENGTH. If the tag is

specified, all elements in the canvas must observe the specified height. If not specified, the
height of the canvas is calculated based on the contents.

 width specifies the width of the canvas. The attribute has the type LENGTH. If the tag is

specified, all elements in the canvas must observe the specified width. If not specified, the width
of the canvas is calculated based on the contents.

 indent specifies the indentation of the canvas. The attribute has the type LENGTH. The

attribute cannot be used if the canvas is part of another canvas.

 pos specifies the position of a canvas in another canvas. The attribute has the type POS. When

the attribute is used (that is, when the canvas is part of another canvas) it is nameless and
mandatory.

If you place a canvas in a row, the baseline for the last element in the canvas will be the baseline
for the canvas itself. Because the order of elements is not subject to any rules, you can specify the
elements from which the baseline should be inherited.

Elements in a canvas can overlap each other.

Example

The following example illustrates the use of canvas:

{

<canvas>

"hello":(0mm,0mm)

"world":(8mm,8mm)

<end canvas>

"!!";

}

which results in the following printout:

Note that baseline for the canvas is inherited from the last element (that is, “world”). “!!” is therefore
positioned on the same line as “world.”

Lines

You can use a canvas to draw lines:

<line attributes>

The tag has the following attributes, both of which are mandatory. Both attributes have the type
POS:

 start specifies the starting point of the line.

 end specifies the ending point of the line.

Lines can go in any direction and have any length (as long as they are within the canvas), and
lines are allowed to cross each other or other elements.

Basic Tags Continued

Maconomy Printing Language (MPL) 60

Example

The following example illustrates the use of line:

<canvas width=2cm height=2cm>

<line start=(0cm,0cm) end=(2cm,2cm)>

<line start=(1cm,0cm) end=(1cm,2cm)>

<line start=(2cm,0cm) end=(0cm,2cm)>

<line start=(2cm,1cm) end=(0cm,1cm)>

<end canvas>

which results in the following printout

Custom Calculations

MPL 4 introduces expressions as a unified means of referring to the predefined environment
values (that is, fields and variables) as well as calculating new ones. The newly calculated values
can then be bound to named symbols—vals (that is, constant values) or vars (that is, mutable
variables). Vals represent constants, and their values cannot be changed throughout the
execution of the print. On the other hand, vars represent mutable variables and can be assigned

new values using the <assign> tag.

To define a new val, you can use the <val> tag, for example:

<val currencySymbol {if currencyName = "USD" then "$"
 else if currencyName = "EUR" then "€"
 else if currencyName = "GBP" then "£"
 else currencyName }>

the currencySymbol val represents a new value that can be used as any other predefined

environment variable in the scope in which it is defined. So, for instance, you could use it to print
out an amount like this:

 "Billing price" billingPriceVar currencySymbol;

Vars are defined in very similar ways to vals, but in contrast to them, vars can be assigned new

values by means of the <assign> tag. Let us consider an example where we want to calculate

an average of hours per time sheet line. In MPL 4, you can code it in the following way (provided

that the TimeSheetLine cursor contains a field called .HoursRegistered):

<var HoursSum {0}>

<var LineCount {0}>

<repeating TimeSheetLine>

<assign HoursSum {HoursSum + .HoursRegistered}>

<assign LineCount {LineCount + 1}>

...

<end repeating>

<val AverageHoursPerLine {HourSum / LineCount}>

At the end, we create a val that holds the resulting average of hours per line.

Basic Tags Continued

Maconomy Printing Language (MPL) 61

Both vals and vars can be referenced only in the scope in which they are defined or in any of its
nested scopes.

Value Definitions

The val tag:

<val attributes>

is used to define a new constant value that can be used in expressions. Once this is defined, the
value cannot be changed—it is immutable.

The val tag takes three attributes:

 name specifies the name of the new value. The attribute has the type ID and is mandatory and

nameless.

 value is an expression that specifyies the value that the new val should have. The attribute

has the type EXPRESSION and is mandatory and nameless.

 type optionally specifies the type of the new value. The MPL compiler will check that the type

of the expression supplied by the value attribute matches the specified type. If this attribute is

not specified, the value's type is inferred by the MPL compiler. The attribute is optional and has
the type ID, but the passed ID must match a valid type name.

Variable Definitions

The var tag:

<var attributes>

is used to define a new mutable variable that can later be modified using the assign tag. A

variable that is defined using this tag can be used in expressions in the same way as existing
variables.

The var tag takes three attributes:

 name specifies the name of the new variable. The attribute has the type ID and is mandatory

and nameless.

 value is an expression that specifyies the initial value of the new variable. The attribute has the

type EXPRESSION and is mandatory and nameless.

 type optionally specifies the type of the new variable. The MPL compiler will check that the

type of the expression supplied by the value attribute matches the specified type. If this

attribute is not specified the variable's type is inferred by the MPL compiler. The attribute is
optional and has the type ID, but the passed ID must match a valid type name.

Variable Assignments

The assign tag:

<assign attributes>

is used change the value of a variable defined using the var tag.

The assign tag takes two attributes:

 var specifies the name of the variable to modify. The attribute has the type ID and is mandatory

and nameless.

 value is an expression that specifies the new value of the variable. The attribute has the type

EXPRESSION and is mandatory and nameless.

Database Queries

Maconomy Printing Language (MPL) 62

Database Queries

Starting with MPL version 4, you can declare your own database queries.

Up until MPL version 3 you were limited to using only the predefined cursors found in the
standard Maconomy prints. However, this is not always sufficient for the task at hand. Sometimes
the predefined cursors do not provide the information that you need, or they cannot be used
freely due to the structure requirements on customized layouts (see “Print Structure”). In the

“Print Employee” standard layout, for example, you will find this repeating block.

<repeating Employee script="L_Employee">

{:ruler12

.EmployeeNumber .Name1 .Telephone;

}

<end repeating>

This repeating block is iterating over a predefined cursor named “Employee,” but in this instance
that cursor is used with a script and due to the structure requirements the cursor cannot be
reused in another location in the customized layout.

To enable you to get to the information that you need in your prints, MPL version 4 introduces
custom database queries. These are based on the Maconomy query language (MQL) that
queries the Maconomy universes.

The description of MQL database queries and their use in MPL is described below using
examples. The examples contain very little formatting, if none at all. This means that if you try to
run the examples, the output will not be very beautiful. However, the examples are easier to read
because we focus only on the data part in this section.

After describing queries by example we will give a more formal definition of the new tags:

<query>, <cursor>, and <parameter>.

Queries, Cursors, and Repeating Blocks

Before looking into defining queries and cursors and using them in an MPL layout, let us first get
an overview of the concepts involved.

You use the <query> tag to define a new database query. Custom queries in MPL take

parameters, which, for example, can be used in the where clause. The query itself is written using
MQL. Defining a query does not execute anything against the Maconomy database. A simple
query could look like this:

<query EmployeeQuery>

mselect EmployeeNumber, Name1, CostPrice

from Employee

<end query>

A query must be instantiated, yielding a cursor, which can then be used in a repeating block. If a
query is defined to take parameters, actual values for the parameters must be supplied when the
query is instantiated. Because a query can be instantiated multiple times with different parameter
values, queries in MPL are reusable. In our simple example, however, there are no parameters.
To instantiate the query and get a cursor we would write:

<cursor name=EmployeeCursor query=EmployeeQuery>

<end cursor>

Database Queries

Maconomy Printing Language (MPL) 63

We now have a cursor. Still, nothing is executed against the database. To do that we need to use

a <repeating> block:

<repeating EmployeeCursor>

<header atstart+>

{:ExampleRuler

"EMPLOYEE NUMBER." "EMPLOYEE NAME" "COST PRICE";

}

<end header>

{:ExampleRuler

.EmployeeNumber .Name1 .CostPrice;

}

<end repeating>

Now, our query is executed and the three fields EmployeeNumber, Name1, and Costprice are
printed.

You can use a cursor in repeating blocks multiple times. It will, however, return the same data
every time (provided that the database has not changed). More interesting is to create another
cursor that binds the query parameters to different values.

Queries with Parameters

Let us have a closer look at defining queries. The query we looked at before was without
parameters, so let us define a query that takes parameters. If we, for example, want to print out
all employees who have a particular superior employee, we could define this query:

<query EmployeeWithSuperior>

mselect name1, costprice from employee

where SuperiorEmployee = superiorParam

using parameters superiorParam type string

<end query>

This query takes one parameter, the employee number of the superior whom we want to use for
restricting the query.

To supply the actual values for the parameters of our query, we use the <parameter> tag inside

our cursor definition:

<cursor name=EmployeeCursor query=EmployeeWithSuperior>

<parameter superiorParam {"1010"}>

<end cursor>

When using the cursor EmployeeCursor in a repeating block, we will list all subordinate
employees of the employee with employee number 1010.

Instantiating a Query inside a Repeating Block

Also, as previously mentioned, you can instantiate a query with parameters multiple times. This
is, for example, useful when binding a query inside another repeating block.

Consider the two query definitions from before:

<query EmployeeQuery>

mselect EmployeeNumber, Name1, CostPrice

from Employee

<end query>

Database Queries

Maconomy Printing Language (MPL) 64

<query EmployeeWithSuperior>

mselect Name1, Costprice

from Employee

where SuperiorEmployee = SuperiorParam

using parameters SuperiorParam type string

<end query>

We want to use these two queries to list all employees, and for each employee we want to list the
subordinates of that employee. To do that we use two embedded repeating blocks and bind one
of our cursors inside the outer repeating block like this:

<cursor name=EmployeeCursor query=EmployeeQuery>

<end cursor>

<repeating EmployeeCursor>

-- Instantiate the current employee

-- as the superior employee.

<cursor name=SubordinateCursor

query=EmployeeWithSuperior>

<parameter parameter SuperiorParam

{EmployeeCursor.EmployeeNumber}>

<end cursor>

-- List current employee

{:Ruler3Col

.EmployeeNumber .Name1 .CostPrice;

}

-- List all subordinates

<repeating SubordinateCursor>

{:Ruler2Col

.Name1 .CostPrice;

}

<end repeating>

<end repeating>

The cursor SubordinateCursor is redefined for each iteration of the outer repeating block. Each
time the cursor is defined, the superiorParam parameter is bound to the current employee. After
defining the SubordinateCursor, we print out information about the current employee and then we
iterate over the SubordinateCursor.

Scoping of Queries, Cursors, and Fields

Queries and cursors are scoped, which means that they cannot be used outside the block where
they are defined. Likewise, the fields of a cursor cannot be accessed outside the scope where the
cursor is executed—that is, a field on a particular cursor cannot be accessed outside a repeating
block iterating over that cursor. When looking up fields we can either just name the field using the
field syntax that is prefixing the field with a “.” or we can explicitly name the cursor in which the
field is going to be looked up. When MPL determines which field to print it always tries to find the
field in the nearest repeating block.

If we revisit the example above, the scoping rules mean that the fields Name1 and CostPrice are
looked up on the nearest cursor—that is, a field on a particular cursor cannot be accessed
outside a repeating block iterating over that cursor. When looking up fields we can either name
the field using the field syntax that is prefixing the field with a “.” or we can explicitly name the

Database Queries

Maconomy Printing Language (MPL) 65

cursor in which the field is going to be looked up. When MPL is the SubordinateCursor, a field on
a particular cursor cannot be accessed outside a repeating block iterating over that cursor. When
looking up fields we can either just name the field using the field syntax that is prefixing the field
with a “.” or we can explicitly name the cursor in which the field is going to be looked up. Since
the field names exist on that cursor, the information is taken from the cursor. However, both
cursors in the example define fields with these particular names. To access the fields with the
same names on the outer cursor, EmployeeCursor, we must prefix the names with the cursor
name.

Take a look at the inner repeating, where we access fields on both the inner and the outer cursor
by prefixing with the cursor name where necessary. Note that the field EmployeeNumber does
not exist on the inner cursor, so MPL finds the field on the outer cursor, even though the field is
not prefixed with the cursor name:

<repeating EmployeeCursor>

-- Bind the current employee as the superior employee.

-- (cursor definition as before)

-- List current employee

-- (left out for brevity)

-- List all subordinates

<repeating SubordinateCursor>

{:Ruler2Col

.Name1 -- SubordinateCursor.Name1

.CostPrice -- SubordinateCursor.CostPrice

.EmployeeNumber -- EmployeeCursor.EmployeeNumber

EmployeeCursor.Name1

EmployeeCursor.CostPrice

}

<end repeating>

<end repeating>

Multi-Level Queries

MQL supports multi-level queries, and that can be used in MPL prints. Let us consider an
example of a multi-level query:

<query RegTimeQuery>

mselect

-- Outer query

 [

Employee.EmployeeNumber,

Employee.EmployeeName,

-- Inner query

[

Job.JobNumber,

-- alias for field

Registered.SumNumberRegistered as Hours

Database Queries

Maconomy Printing Language (MPL) 66

] as cursor Job -- name of inner cursor

] as cursor Employee -- name of outer cursor

-- selecting from pre-defined Maconomy Jobs universe

-- featuring joins over employees, timesheets,

-- jobs, etc.

from JobCost::Universes::Jobs

<end query>

The preceding query selects its data from the predefined Maconomy Jobs universe, which can be
seen from the line:

from JobCost::Universes::Jobs

Two embedded queries are defined in this query definition. This corresponds to a “groupby”
definition in plain SQL, but it enables us to do embedded iteration over the result of the query—
that is, a field on a particular cursor cannot be accessed outside a repeating block that iterates
over that cursor. When looking up fields we can either name the field using the field syntax that is
prefixing the field with a “.” or we can explicitly name the cursor in which the field is going to be
looked up. With MPL, we can use two embedded repeating blocks to iterate over the result.

In this example, the outer cursor iterates over all distinct values of the fields
Employee.EmployeeNumber and Employee.EmployeeName in the Jobs universe. Note that fields
in an MQL universe can contain “.” in their names. For each distinct value pairs of these two
fields, the inner cursor will iterate over Job.JobNumber and Hours (which is an alias for the field
Registered.SumNumberRegistered).

The outer and inner cursors have been assigned the names “Employee” and “Job,” and these
names are used when iterating over a cursor that is defined using the query:

<cursor name=RegTimeCursor query=RegTimeQuery>

<end cursor>

-- Iterating the outer “Employee” cursor

<repeating RegTimeCursor.Employee>

.Employee.EmployeeNumber .Employee.EmployeeName

-- Iterating the inner “Job” cursor

<repeating RegTimeCursor.Employee.Job>

.Job.JobNumber .Hours

<end repeating>

<end repeating>

Note how the cursors are accessed. The defined <cursor> name, RegTimeCursor, is used to

prefix the cursor names that are defined in the query, and the full path to a cursor inside the query
is used. To access the outermost query, Employees, you must write:

<repeating RegTimeCursor.Employee>

To access the innermost cursor, Jobs, which is embedded in the outermost cursor, Employees,
you must type the full path:

<repeating RegTimeCursor.Employee.Job>

Database Queries

Maconomy Printing Language (MPL) 67

Aggregates

MQL also supports aggregates on values—that is, a field on a particular cursor cannot be
accessed outside a repeating block iterating over that cursor. When looking up fields we can
either name the field using the field syntax that is prefixing the field with a “.” or we can explicitly
name the cursor in which the field is going to be looked up. With MPL that is count, sum, and
maximum, minimum, and average values. Revisiting and extending the example from the above
we get:

<query RegTimeQuery>

mselect

-- Outer query

[

Employee.EmployeeNumber,

Employee.EmployeeName,

-- Inner query

[

Job.JobNumber,

-- alias for field

Registered.SumNumberRegistered as Hours

] as cursor Job -- name of inner cursor

] as cursor Employee -- name of outer cursor

-- make sum of hours available on outer cursor

aggregate sum() on Hours

-- selecting from pre-defined Maconomy Jobs universe

-- featuring joins over employees, timesheets,

-- jobs, etc.

from JobCost::Universes::Jobs

<end query>

The only addition is the line marked in boldface. This line tells MQL to calculate the sum of the
field Hours and make it available on the cursor one level out from where this field is defined. In
our case the sum will be available on the Employees cursor as the field Hours$SUM and what we
get is the sum of registered hours per employee.

We must update our example from before to include the new field:

<repeating RegTimeCursor.Employee>

.Employee.EmployeeNumber .Employee.EmployeeName

.Hours$SUM

<repeating RegTimeCursor.Employee.Job>

.Job.JobNumber .Hours

<end repeating>

<end repeating>

The new field is marked in boldface. Adding a bit more formatting yields a print like the following,
where we see the time registrations per job per employee and also see the sum of hours
registered per employee.

Database Queries

Maconomy Printing Language (MPL) 68

Metadata Cursor

When executing an MQL query a special top-level metadata cursor name main exists. However,
by default this top-level cursor is hidden.

Let us have a look at a simple query definition:

<query EmployeeQuery>

mselect

EmployeeNumber,

Name1

from Employee

<end query>

As usual, we bind the query to a cursor:

<cursor name=EmployeeCursor

query=EmployeeQuery>

<end cursor>

And then we execute the query:

<repeating EmployeeCursor>

.EmployeeNumber .Name1

<end repeating>

To get access to the metadata top-level cursor, we change the cursor definition slightly:

<cursor name=EmployeeCursor

query=EmployeeQuery

showmaincursor+>

<end cursor>

We now have a multi-level cursor where the top-level cursor is called main, and the next level
cursor is called query. The name of the inner cursor, query, is automatically chosen by MQL
because we did not name the cursor in the MPL query definition. We can now change the
repeating block like this:

<repeating EmployeeCursor.main>

.query$RowCount -- Total row count of lowest sublevel

.query$Date -- Date of execution

.query$Time -- Time of execution

.query$Count -- Row count of query on next level

Database Queries

Maconomy Printing Language (MPL) 69

<repeating EmployeeCursor.main.query>

.EmployeeNumber .Name1

<end repeating>

<end repeating>

The three first of the new fields are only present at the top level and show us the total row count
of the query (which is the same as the sum of rows fetched by each of the iterations of the
innermost cursor of the query). The last field, query$Count, is present on any level except the
innermost and tells of the count of rows on the cursor immediately below. The first part of the
field’s name is named after the cursor that it is counting—in this case the query cursor.

If we revisit the first multi-level query example from before, we get a better feel of how automatic
count fields work:

<query RegTimeQuery>

mselect

-- Outer query

[

Employee.EmployeeNumber,

Employee.EmployeeName,

-- Inner query

[

Job.JobNumber,

-- alias for field

Registered.SumNumberRegistered as Hours

] as cursor Job -- name of inner cursor

] as cursor Employee -- name of outer cursor

-- selecting from pre-defined Maconomy Jobs universe

-- featuring joins over employees, timesheets,

-- jobs, etc.

from JobCost::Universes::Jobs

<end query>

We now bind the query using the showmaincursor attribute:

<cursor name=RegTimeCursor

query=RegTimeQuery

showmaincursor=true>

<end cursor>

We can now iterate over the cursor like this:

<repeating RegTimeCursor.main>

.query$RowCount -- Total row count of Jobs listed

.query$Date -- Date of execution

.query$Time -- Time of execution

.Employee$Count -- Number of Employees listed

<repeating RegTimeCursor.main.Employee>

.Job$Count -- Number of Jobs for this Employee

.Employee.EmployeeNumber

Database Queries

Maconomy Printing Language (MPL) 70

.Employee.EmployeeName

<repeating RegTimeCursor.main.Employee.Job>

.Job.JobNumber

.Hours

<end repeating>

<end repeating>

<end repeating>

We now see that we have two count fields: Employee$Count and Job$Count. The prefixes before
the “$” sign are now the names of the cursors that we named in the query definition. Also note
that the name of the main cursor now must be part of the prefix when accessing the cursors in the

<repeating> tags.

Aggregates on the Top Level

If you use aggregates in MQL on fields that belong to the outermost cursor of your query, you
must access the main cursor to access the aggregate values. These always exist on the cursor
that is immediately above the cursor whose fields are aggregated. The cursor that is immediately
above the top-level cursor that is defined in an MPL query definition is the main cursor.

Consider this query definition:

<query EmployeeQuery>

mselect EmployeeNumber,

Name1,

CostPrice

aggregate min() on CostPrice,

max() on CostPrice

from Employee

<end query>

Here, we are asking for the minimum and maximum cost price. To access the aggregate values
we must access the main cursor:

<cursor name=EmployeeCursor

query=EmployeeQuery

showmaincursor+>

<end cursor>

Now, we can print the aggregate values (again with no formatting to simplify the example):

<repeating MyCursor.main>

-- Print the aggregate values

.CostPrice$Min .CostPrice$Max

-- Print the employee information

<repeating MyCursor.main.query>

.EmployeeNumber .Name1 .CostPrice;

<end repeating>

<end repeating>

Database Queries

Maconomy Printing Language (MPL) 71

Tags for Database Queries

In the previous section we saw a number of examples that illustrate the use of database queries
in MPL. In this section we will give a more formal definition of the tags that are involved and their
attributes.

Queries

The query tag:

<query attributes>

MQL query

<end query attributes>

is used to define a new database query. You can place the query tag anywhere in the layout
where a repeating can also be placed. A query definition is scoped and cannot be accessed

outside the scope where it is defined. The query tag has no short form.

The tag is a parenthetical tag that encloses the MQL query that should be executed against the

database. Note that defining a query does not execute the MQL query. The query must be

instantiated to a cursor, and the cursor is iterated over in a repeating tag. The MQL query is

executed just before the iteration starts.

The query tag takes one attributes:

 name specifies the name of the query. The name is used when a cursor tag binds the query.

The attribute has the type ID and is nameless and mandatory.

For a thorough description of the query tag including examples of use, see “Database Queries.”

Example

<query EmployeeQuery>

mselect EmployeeNumber, Name1, CostPrice

from Employee

<end query>

Cursors

The cursor tag:

<cursor attributes>

parameter bindings...

<end cursor>

is used to instantiate a previously defined query that yields a cursor that you can use in a

repeating block. You can place a cursor tag anywhere in the layout where a repeating can

be placed, but it can only refer to already defined queries that are in scope, which means that the

referenced query must be defined in the same block or in an enclosing block in the layout. The

query is not executed by being instantiated by a cursor tag. The query is executed only when

the cursor is iterated over in a repeating block.

The tag is a parenthetical tag that encloses a number of parameter tags that must match the

query definition’s parameter section.

The cursor tag takes three attributes:

 name specifies the name of the cursor. The name is used when a repeating tag refers the

cursor for execution. The attribute has the type ID and is mandatory.

Database Queries

Maconomy Printing Language (MPL) 72

 query specifies the name of the query that is bound by this cursor definition. The referenced

query must be defined in the same or an enclosing scope as the cursor definition. The attribute
has the type ID and is nameless and mandatory.

 showmaincursor designates whether the main metadata cursor is accessible when iterating

over the cursor in a repeating block. The attribute has the type BOOLEAN and is optional. Its

default value is false.

For a thorough description of the cursor tag including examples of use, see “Database

Queries.”

Example

<query EmployeeQuery>

mselect EmployeeNumber, Name1, CostPrice

from Employee

<end query>

<cursor name=EmployeeCursor query=EmployeeQuery>

<end query>

Cursor Parameters

The parameter tag:

<parameter attributes>

is used to bind formal parameters declared in query definition to actual values inside a cursor

tag. The parameters given inside a cursor tag must match exactly the parameters that are

declared in the query that is referenced by the enclosing cursor tag.

The parameter tag takes two attributes:

 name specifies the name of the formal parameter to bind. The name must match the name of

one of the parameters that is declared by the referenced query. The attribute has the type ID
and is mandatory and nameless.

 value specifies the value to bind to the formal parameter and can be any expression. The

attribute has the type EXPRESSION and is mandatory and nameless.

For a thorough description of the parameter tag including examples of use, see “Database

Queries.”

Example

<query EmployeeWithSuperior>

mselect name1, costprice from employee

where .SuperiorEmployee = superiorParam

using parameters superiorParam type string

<end query>

<cursor name=EmployeeCursor query=EmployeeWithSuperior>

<parameter superiorParam {"1010"}>

<end cursor>

Print Structure

Maconomy Printing Language (MPL) 73

Print Structure

All MPL layouts must be based on an existing layout. This layout—the original layout—specifies
which cursors, fields, variables, and scripts can be used in the layout. To ensure that the definition
of cursors makes sense and that the scripts are executed in the predefined order, all MPL layouts
must have the same structure as the original layout.

Usually, you will not run into any problems in the practical development of layouts because you
often base your new layouts on an existing original or structure layout. This section is therefore
only relevant to you if you receive error messages about the structure of your layout or if you
simply want to better understand the concept of print structure.

Structure

The MPL compiler ensures that the structure of an MPL layout sufficiently matches the structure of
the original layout. The structure consists of all the printout’s stacks, repetitions, conditions,
headers, footers, and the paper itself. The structure describes how these elements are contained
in one another.

If you export the structure layout, stacks, headers, and footers that do not have scripts assigned will
be excluded.

Whether the MPL layout matches the structure of an original layout is defined using the concepts
“script structure” and “stackless structure,” which only contain a part of the structure described
above.

Trees

When talking about the structure of MPL layouts it is often easier to perceive the structure as a

tree. The root of the tree is the paper tag, and each block (repetition, condition, or stack) is a

branch of the tree. You often refer to such a branch as a node. The analogy between MPL layouts
and trees is used in the rest of this section to explain and illustrate the presented concepts.

Example

See the structure layout for the printout “Print Employee Report.”

<paper cursor=EMPLOYEE

script="STANDARD_PAGESCRIPT1">

<repeating cursor=CUSTOMERTIMEACTIVITY

script="CUSTOMERTIMEACTIVITY">

<conditional script="CUSTOMERTIMEACTIVITYTOTAL"

variable=ShowTotalVar>

<end conditional>

<end repeating>

<stack script="CUSTOMERTIMETOTAL">

<end stack>

<repeating cursor=INTERNALTIMEACTIVITY

script="INTERNALTIMEACTIVITY">

<conditional variable=ShowTotalVar>

<end conditional>

<end repeating>

Print Structure

Maconomy Printing Language (MPL) 74

<stack script="EMPLOYEETOTAL">

<end stack>

<end paper>

The corresponding tree looks as follows:

Script Structure

The script structure is a layout that is made up of all entities that can have a script assigned—that
is, paper, stacks, repetitions, conditions, headers, and footers. An entity is a part of script
structure if it either:

1. has a script assigned.

2. is a condition, repetition, while loop, or a paper that contains a block observing rule 1 or 2.

If you view the tree, the rule can be defined as follows: If a block observes rule 1, all conditions ,
repetitions, while loops, and a paper along the path between the block and the root must be
included.

The script structure in the user-defined layout must be identical to the script structure in the
original layout. The purpose of this condition is to ensure that scripts are executed the same
number of times and in the same order for all layouts with the same original layout.

The examples in this section (below) have been constructed for the purpose of illustration. Note
that layouts with a similar structure exist.

Example 1

The following structures have the same script structure:

<paper script="s1">

<stack script="s2">

<repeating cursor=c1>

<end repeating>

<end stack>

<end paper>

and

<paper script="s1">

<stack script="s2">

<end stack>

<end paper>

The script structures are identical, because the repeating block is not a part of the script structure.

Print Structure

Maconomy Printing Language (MPL) 75

Example 2

The following structures do not have the same script structure:

<paper script="s1">

<repeating cursor=c1>

<stack script="s2">

<end stack>

<end repeating>

<end paper>

and

<paper script="s1">

<stack script="s2">

<end stack>

<end paper>

In this example, the repeating block is part of the script structure, because it contains a block with
a script.

Example 3

The following structures do not have the same script structure:

<paper script="s1">

<stack script="s2">

<end stack>

<stack script="s3">

<end stack>

<end paper>

and

<paper script="s1">

<stack script="s3">

<end stack>

<stack script="s2">

<end stack>

<end paper>

The script structures are not identical, because the order of the scripts that are used is different in the
two fragments.

Example 4

The following structures have the same script structure:

<paper script="s1">

<stack>

<stack script="s2">

<end stack>

<end stack>

<end paper>

and

Print Structure

Maconomy Printing Language (MPL) 76

<paper script="s1">

<stack script="s2">

<end stack>

<end paper>

Example 5

The script structure for the printout “Print Employee Report” looks as follows:

<paper cursor=EMPLOYEE

script="STANDARD_PAGESCRIPT1">

<repeating cursor=CUSTOMERTIMEACITIVITY

script="CUSTOMERTIMEACTIVITY">

<end repeating>

<stack script="CUSTOMERTIMETOTAL">

<end stack>

<repeating cursor=INTERNALTIMEACTIVITY

<end repeating>

<stack script="EMPLOYEETOTAL">

<end stack>

<end paper>

Stackless Structures (MPL 1 and 2)

The concept of stackless structure has been simplified and loosened up in MPL 4; see the next
section about the repeating structure for more details.

Until MPL 4, a stackless structure is defined as the structure that is obtained by removing all stacks

and conditionals (that is, stack and conditional elements).

The stackless structure of the user-defined layout must be a subtree of the stackless structure of
the original layout. A subtree is achieved as a result of pruning the tree; that is, nodes or branches
must be removed from the top of the tree. In other words, you can leave out part of the stackless
structure from the original layout, but you can only leave out an entire block, not part of its
contents.

Example 1

The following structure:

<paper script="s1">

<conditional variable=v1>

<end conditional>

<end paper>

is a subtree of:

<paper script="s1">

<conditional variable=v1>

<repeating cursor=c1>

<end repeating>

<end conditional>

<end paper>

Print Structure

Maconomy Printing Language (MPL) 77

whereas the following structure:

<paper script="s1">

<repeating cursor=c1>

<end repeating>

<end paper>

is not a subtree, because the elements have not been removed from the inside.

Example 2

The stackless structure of the printout “Print Employee Report” looks as follows:

<paper cursor=EMPLOYEE

script="STANDARD_PAGESCRIPT1">

<repeating cursor=CUSTOMERTIMEACTIVITY

script="CUSTOMERTIMEACTIVITY">

<end repeating>

<repeating cursor=INTERNALTIMEACTIVITY

script="INTERNALTIMEACTIVITY">

<end repeating>

<end paper>

Repeating Structure (MPL 4)

Repeating structure is a simplified and loosened up model of what was known as a stackless
structure until MPL 4.

A repeating structure consists of all of the repeatings in an MPL 4 layout. We say that the
repeating structure of a custom layout (or just custom repeating structure) must comply with the
repeating structure of its original layout (or just original repeating structure).

Before digging into the details of what it actually means for a custom repeating structure to
comply with its original repeating structure, let us first understand what purpose this check
serves.

Every print environment contains a set of predefined cursors that can be iterated over by means

of the <repeating> tag. These cursors can reference other cursors in the where clauses of their

underlying SQL queries. For instance:

<repeating TimeSheetHeader >

<repeating TimeSheetLine>

<end repeating>

<end repeating>

for the TimeSheetLine cursor to contain only the lines of the TimeSheetHeader to which it

belongs, TimeSheetLine must reference the TimeSheetHeader cursor in the where clause of

its underlying SQL query. For this to work, it is necessary that any repeating over the

TimeSheetLine cursor is embedded inside of a repeating over the TimeSheetHeader cursor.

In general, for all of the cursors in a custom layout we want to guarantee that their underlying
references are initialized, which basically means that such a cursor is embedded in the same
sequence of parent repeatings as at least one of the sequences of parent repeatings in the
original layout.

As an example, let us consider the following original repeating structure:

Print Structure

Maconomy Printing Language (MPL) 78

<repeating A>

<repeating B>

<repeating D>

<end repeating>

<end repeating>

<repeating D>

<end repeating>

<repeating C>

<end repeating>

<end repeating>

The following custom repeating structure complies with the given original repeating structure,
because each repeating in the custom structure is embedded in the exact same sequence of
parent repeatings as in the original layout:

<repeating A>

<repeating D>

<repeating C>

<end repeating>

<end repeating>

<end repeating>

In particular, the repeating over C in the original structure expects to be embedded in a repeating
over A, which is clearly the case in the custom structure as well. Likewise, D in the original
structure is embedded both just in A, and in the sequence A followed by B. The custom structure
complies with the first parent sequence, namely a single parent A. A has no parents both in the
original and custom structure, hence the custom repeating structure complies with the original
structure

On the other hand, the custom repeating structure below does not comply with the original
repeating structure:

<repeating B>

<repeating D>

<end repeating>

<end repeating>

D in the original layout is embedded in A followed by B, or in a single parent repeating A. In the
custom layout, though, D is embedded only in B; therefore, the repeating over D violates the
repeating structure. Likewise B, because it is expected to be embedded in A like in the original
structure.

In the given examples, we were using name aliases to represent repeating blocks. As far as the
repeating structure is concerned, for the two repeatings to be considered the same, not only do

they have to iterate over the same cursor, but also have the same values of attributes: script

and groupBy when these attributes are set.

Advanced MPL

Maconomy Printing Language (MPL) 79

Advanced MPL

This section describes the remaining tags in MPL. Among other things, we will cover two tags that
make it possible to control page breaks and to redefine embedded formatting constants.
Furthermore, these sections will describe a number of tags that are not necessary in the structural
definition of printouts, but make it easier to build elegant MPL definitions that are easily edited and
maintained.

Additional Tags

border

A border tag specifies a vertical limit above which all preceding elements must be printed. Text

elements that are specified before the border statement in the MPL definition will only be printed

above the position of the border and continue on the following page, while elements that are
specified after the border will be printed further down on the page. The elements after the border
start at the height specified in the border.

<border attributes>

Note, however, that footers will be placed below the border.

The tag has the following attributes. You must specify exactly one of the following attributes:

 top specifies the position on the page where the border should be inserted. The attribute has

the type LENGTH and defines the distance from the top of the page (that is, including page
margins).

 bottom is similar to top, but specifies the distance to the bottom of the page. The border tag

can only be specified in the paper tag; that is, it cannot be specified within other parenthetical

tags.

If you specify more than one border tag, each tag only affects the positioning of the elements after
the previous border tag:

elem1 -- placed in the top 10 cm of the page

...

elemm -- placed in the top 10 cm of the page

<border top=10cm>

elemm+1 -- placed in the top 5 cm of the page

...

elemn -- placed in the top 5 cm of the page

<border top=5cm>

elemn+1 -- placed 5 cm from the top of the page

Note that the element elemm+1 following the first border is placed 10 cm from the top edge of the

page, but because it is followed by a border, which is placed 5 cm from the top edge of the page, a
page break is triggered before this element, and elemm+1 is printed in the top part of a new page.

Advanced MPL

Maconomy Printing Language (MPL) 80

Example

Let us assume that you want to print out an invoice on stationery with a preprinted giro payment
slip in the lower part of the page. Let us also assume that the height of the giro payment slip is
101.66 mm. You should therefore add a border of 101.66 mm from the bottom of the page.

The following is an extract from the print definition for “Print Invoice”:

<paper cursor=INVOICE script="SIDE">

-- Invoice lines

<repeating cursor=INVOICELINE

script="INVOICELINEBLOCK">

<repeating cursor=INVOICEBOMLINE

script="BOMLINEBLOCK">

...

<end repeating>

<end repeating>

-- Invoice totals

"TOTAL DUE" .Currency .TotalCurrency;

<conditional script="VATBLOCK"

variable=VATBlockIncludedVar>

<repeating cursor=CODE script="VATLOOPBLOCK">

...

<end repeating>

<end conditional>

-- Giro payment slip

<border bottom=101.6mm>

<canvas>

...

<end canvas>

<end paper>

Because the border has been specified after the invoice lines and totals, none of these will be
printed in the bottom 101.6 mm of the page.

If we assume that the printout contains many invoice lines, these lines will be printed on the first
page until reaching the 101.6 mm bottom border mark, after which a page break is triggered. Nor
will the totals be printed in the bottom 101.6 mm of the page, meaning that if the printing of the
invoice lines ends 12 cm from the bottom of the page, the first 18.4 mm of the totals will be printed,
followed by a page break and the remaining totals. When all invoice lines and totals have been
printed, the next print start position will be moved to 101.6 mm from the bottom of the page, where
printing is resumed. Thereafter, the border has no effect.

newpage

You can force a page break anywhere in your definition using the newpage tag:

<newpage>

The newpage tag has no attributes in MPL 2. In MPL 3, the attribute orientation (of type ID) is

supported in some cases. See “Paper Orientation Change” and “<newpage> in row no longer

allowed” for more on newpage changes in MPL 3.

You can include the tag in stacking tags (however not in headers and footers). In MPL 2, it can
also be used in arrays where it should be inserted as the only element in a row.

Advanced MPL

Maconomy Printing Language (MPL) 81

Example

If you want a page break after each time sheet in the printout from “A Printout Example: Time
Sheets,” you can force a page break for each iteration of the TIMESHEETHEADER repetition.

<repeating cursor=TIMESHEETHEADER

script="S_TIMESHEETHEADER">

...

{:[[][stretch+][][stretch+][][][][][][][][]]

...

"" "" "" ""

SumDay1 SumDay2 SumDay3 SumDay4 SumDay5 SumDay6 SumDay7 Grandtotal;

<newpage>;

}

<end repeating>

Here we have replaced <skip 5mm> with <newpage>. You could also choose to insert the page

break outside the array:

...

"" "" "" ""

SumDay1 SumDay2 SumDay3 SumDay4 SumDay5 SumDay6 SumDay7

Grandtotal;

}

<newpage>

<end repeating>

The result will be exactly the same. Note that a forced page break will be inserted after each time
sheet, that is, there will also be a page break after the last time sheet (the last page of the printout
is an empty page).

Alternative Text Tag

In the above we saw how you could set default values for attributes. This functionality is often used
to set defaults for text formatting. However, you often need two sets of defaults; Maconomy’s
default fonts for fixed texts are formatted to 7 pt, whereas texts that are parts of fields (for
example, hyphens in ranges or slashes in dates) are formatted to 9 pt.

To support two different default values for texts, MPL has an alternative text tag called text2 that

has the same characteristics as text but can be assigned separate default attribute values:

<text2 attributes>

You will often use the short form:

'text'

which is the short form for

<text2 title="text">

The short form of text2 is different from the short form of text as the text is in single quotes

instead of double quotes. text2 has exactly the same attributes as text. The default value for

fontsize is 9; the other default values are the same.

In “The front page” in “A Printout Example: Time Sheets” we became familiar with the use of the

text2 tag. Here we used the short form “/” in dates and “-“ in ranges to ensure that the separators

were assigned the same font sizes as the fields.

Advanced MPL

Maconomy Printing Language (MPL) 82

Grid

The grid tag enables you to define your own length units. The length unit is called grid, but it can

vary according to orientation (horizontal or vertical). A grid definition (only one) is provided
immediately after the margin definition (if any) in the print header.

<grid attributes>

The tag has the following attributes, which are both mandatory and have the type LENGTH.

 hor specifies the length of a horizontal grid unit.

 ver specifies the length of the vertical grid unit.

When you have defined a grid, you can use the tag as a unit alongside cm, in, and so on.

Example

To use Danish inches to specify the horizontal grid unit and Danish feet to specify the vertical
length unit, you can define the following grid:

<mpl 2>

<layout "Simple"

ancestor="Print_Inventory_Info_Card"

ancestorlayout="Standard">

<page "A4">

<grid hor=2.62cm –- A Danish inch

ver=31.40cm> -- A Danish foot

<paper>

<island width=5grid height=0.5grid>

<end island>

<end paper>

Here the island is assigned a width of 5 Danish inches and a height of 1/2 Danish foot.

Colors

MPL enables you to change the print color. You can specify the printing color by means of two
attributes:

1. The color attribute has type ID and the following legal values: black, red, blue, green, yellow,

cyan, white, magenta.

2. The rgb attribute has type RGB, which is a triple that contains percentages of Red, Green, and

Blue respectively: (INTEGER, INTEGER, INTEGER).

The color attribute is really a short form, because it represents all combinations of rgb where

values are either 0 or 100, for example, (100,0,0) = red, (100,100,100) = white.

The color and rgb attributes are both style attributes, which can be specified for almost all tags.

Furthermore, the rgb attribute is nameless. The attributes can be used in the following tags and

tag types:

 All parenthetical tags

 Ruler columns

 vline

 text

Advanced MPL

Maconomy Printing Language (MPL) 83

 text2

 field

 var

 line

 hline

 title

When the three percentages in an rgb are the same (for example, (30, 30, 30)), the result is a

shade of gray.

Example

"Text":color=blue

.FieldName:(50,50,50)

<stack rgb=(100,50,50)>

...

<end stack>

Images

The image tag:

<image attributes>

specifies that an image is to be printed.

MPL supports images of the following types:

 JPEG (Joint Photographic Experts Group). The usual file extensions are .jpg and .jpeg.

 PNG (Portable Network Graphics). The usual file extension is .png.

For an image to be printed, it is necessary that it must be imported into the database using the
Maconomy client window Document Archives. In this window, documents are organized in user-
defined document archives, so that all documents are identified by their names and document
archives. A reference to an image document in MPL takes the following form:

DocumentGroup\DocumentName

It is mandatory that an image has exactly one of four attributes:

 title specifies a direct reference to the image document. The title attribute is nameless.

 fieldname specifies the name of a field that contains a reference to the image document.

 varname specifies the name of a variable that contains a reference to the image document.

 expression specifies an expression that yields a reference to the image document (that is, a

value of type STRING). The expression attribute is nameless. For more information on

expressions, see “Expressions.”

Example

<image title="MyImages\MyLogo.jpg">

If you want to specify the cursor from which the fieldname should be taken, you can use the
following attribute:

Advanced MPL

Maconomy Printing Language (MPL) 84

 cursor specifies the name of the cursor from which the field is to be taken. The attribute has

the type ID.

If you do not specify a cursor name, the value will be taken from the nearest cursor with a field of
the specified name.

In addition to this, you can specify attributes concerning the image size and justification:

 height has the type LENGTH and specifies the height of the image.

 width has the type LENGTH and specifies the width of the image.

 justification has the type ID. It can take the values left, center, and right.

If justification is specified, width must be specified as well. This applies to MPL for

Universe Reports only.

 link specifies that the image is to function as a link. This applies to MPL for Universe

Reporting only. For more information, see “Links.”

By default, the image will be scaled to the height and width that are indicated by these attributes. If

only the height attribute is provided, the width will be scaled to maintain the default correlation

between height and width for the image. The same goes when only the width attribute is

provided. If neither a height nor a width attribute is provided, the default size of the image is

used.

Note, however, that when an MPL layout is compiled, the default size of the image is not known.

The height of an image is therefore assumed to be 0 if the height attribute is not provided,

regardless of whether the width attribute is provided or not. The same goes for the width of the

image. This means that a construction like:

<image title="MyImages\MyLogo.jpg"> "Text"

will result in “Text” being written on top of the image. To avoid this, while still keeping the default
size of the image, you can use the following attributes:

 scaleheight has the type BOOLEAN and specifies whether the image height should be

scaled. The default value is true.

 scalewidth has the type BOOLEAN and specifies whether the image width should be

scaled. The default value is true.

If we change the example above to:

<image title="MyImages\MyLogo.jpg" scaleheight- height=100pt> "Text"

the image will keep its default size, but the compiler will assume that the image height is 100pt and
consequently print “Text” 100pt below the top of the image.

Barcodes and QR codes

Barcodes and QR codes are ways of encoding information in a visual form that can be easily
scanned by electronic devices. Every modern smartphone these days is capable of scanning QR
codes and most types of barcodes, which avoids the unnecessary manual process of typing the
information into an IT system.

The <barcode> tag enables you to place a barcode in an MPL layout in a very easy way. It is

enough to specify the barcode type and the data to be encoded, and the barcode image will be
generated by the MPL engine. Such a barcode can be treated as any other image in MP; all of
the attributes applicable to images, apart from the ones used to specify the path to the image,
also apply to barcodes.

The three main barcode attributes are:

Advanced MPL

Maconomy Printing Language (MPL) 85

 data specifies the data that is to be encoded in the barcode. Different barcode types expect

different data formats. This attribute is mandatory, nameless, and of type EXPRESSION.

 type specifies which barcode type should be rendered to encode the given data. It is of type

ID. Exactly one of the type or typeExpression attributes must be specified. MPL supports

15 types of barcodes:

 EAN13 — International Article Number consisting of 13 digits (EAN-13), equivalent to

UCC-13.

 UPCA — Universal Product Code A (UPC-A) consisting of 12 digits, equivalent to EAN-12

or UCC-12.

 EAN8 — International Article Number consisting of 8 digits (EAN-8), equivalent to UCC-8.

 UPCE — Universal Product Code E, consisting of 8 digits.

 EANSUPP — EAN-13 with an EAN-5 supplement (specified using the dataSupplement

attribute).

 CODE128 — Plain barcode 128, variable length.

 CODE128UCC — UCC/EAN-128 with a full list of 128 ASCII characters, variable length.

 INTER25 — Interleaved 2 of 5 barcode, encoding an even number of digits (variable

length). When the attribute generateCheckSum is true, an extra checksum digit is

generated and hence an odd number of digits is required as input data text.

 POSTNET — Postal Numeric Encoding Technique, which can be:

 ZIP — Consisting of 5 digits.

 ZIP+4 — Consisting of 9 digits.

 ZIP+4 + DP (Delivery Point) — Consisting of 11 digits.

 PLANET — Postal Alpha Numeric Encoding Technique, variable length code consisting of

digits only.

 CODE39 — Code 39, also known as Alpha39, Code 3 of 9, Code 3/9, Type 39, USS Code

39, or USD-3. Variable length, the valid character set includes: uppercase letters (A through
Z), numeric digits (0 through 9), and a number of special characters (-, ., $, /, +, %, and
space). An additional character (denoted '*') is used for both start and stop delimiters.

 CODABAR — Also known as Ames Code, NW-7, Monarch, Code 2 of 7, Rationalized

Codabar, ANSI/AIM BC3-1995, or USD-4. Variable length, allowed symbols: 12 from the
group: (digits 0-9, dash, $), 4 symbols from the group: (:/+.), and 4 start/stop symbols:
(ABCD, in some specifications EN*T).

 PDF417 — PDF417 barcode, variable length.

 DATAMATRIX — DATAMATRIX barcode, variable length.

 QRCODE — QR code, variable length.

 typeExpression — the same as type, except that this attribute is of type EXPRESSION,

which allows for choosing a barcode type at run time, depending on the data in Maconomy.

Exactly one of the type or typExpression attributes must be specified.

In addition to the above attributes, the <barcode> tag supports a number of attributes that are

applicable only to certain barcode types. If not applicable to a certain barcode type, these
attributes simply take no effect.

Advanced MPL

Maconomy Printing Language (MPL) 86

 dataSupplement — The EAN-5 data supplement of type EXPRESSION, applicable for

EANSUPP barcodes only.

 guardBars — Some barcodes can render guard bars around them. The attribute is of type

BOOLEAN and should be set to true if the guard bars are to be generated.

 textJustification — Some barcodes support justification of the data text rendered along

with the barcode. The attribute is of type ID, and its valid values are: left, right, and

center.

 generateChecksum — Some barcodes can generate a checksum character for the data to

be encoded. The attribute is of type BOOLEAN and should be set to true if a checksum is to

be generated.

 checksumText — If the generateChecksum attribute is set to true, the generated

checksum can be also displayed as part of the data text rendered along with the barcode, if the

checksumText attribute is set to true as well.

 startStopText — Of type BOOLEAN, true if the data text rendered along with the barcode

should be surrounded by the start/stop text (if applicable).

 extended — Of type BOOLEAN, true if the barcode should operate on the extended

character set (if applicable).

In addition, the attributes width, height, scalewidth, scaleheight, justification, and

pos work in the exact same way as for images.

The <barcode> tag was introduced in MPL 4 as of TPU 16 SP2.

Example

The following code snippets generate all 15 kinds of barcodes that MPL 4 supports.

<default tag=eval attribute=fontsize value=12>

<val ean8Data {"96385074"}>

^{"EAN 8 : " + ean8Data}

<barcode {ean8Data} EAN8 height=50pt>

<skip 10pt>

<val ean13Data {"5901234123457"}>

^{"EAN 13 : " + ean13Data}

<barcode {ean13Data} EAN13 height=50pt>

<skip 10pt>

<val upcaData {"785342304749"}>

^{"UPC-A : " + upcaData}

<barcode {upcaData} UPCA height=50pt>

<skip 10pt>

<val upceData {"03456781"}>

^{"UPC-E : " + upceData}

<barcode {upceData} UPCE height=50pt>

<skip 10pt>

<val eanSupp_ean {"1234567891234"}>

<val eanSupp_sup {"54321"}>

^{"EAN-SUP, EAN: " + eanSupp_ean + ", SUPP: " + eanSupp_sup}

<barcode {eanSupp_ean} datasupplement={eanSupp_sup} EANSUPP height=50pt>

Advanced MPL

Maconomy Printing Language (MPL) 87

<skip 10pt>

<val code128Data {"0123456789 hello $%*@"}>

^{"CODE 128 : " + code128Data}

<barcode {code128Data} CODE128 height=50pt>

<skip 10pt>

<val code128UCCData {"0191234567890121310100035510ABC123"}>

^{"CODE 128 UCC: " + code128UCCData}

<barcode {code128UCCData} CODE128UCC height=50pt>

<skip 10pt>

<val code128UCCData2 {"(01)00000090311314(10)ABC123(15)060916"}>

^{"CODE 128 UCC, example 2: " + code128UCCData2}

<barcode {code128UCCData2} CODE128UCC height=50pt>

<skip 10pt>

<val codeInter25 {"41-1200076041-00"}>

^{"Barcode Interleaved 2 of 5: " + codeInter25}

<barcode {codeInter25} INTER25 height=50pt>

<skip 10pt>

<val codeInter252 {"06110123456783"}>

^{"Barcode Interleaved 2 of 5, 2: " + codeInter252}

<barcode {codeInter252} INTER25 height=50pt>

<skip 10pt>

<val codePostnet {"01234"}>

^{"POSTNET, ZIP: " + codePostnet}

<barcode {codePostnet} POSTNET height=20pt>

<skip 10pt>

<val codePostnet2 {"012345678"}>

^{"POSTNET, ZIP+4: " + codePostnet2}

<barcode {codePostnet2} POSTNET height=20pt>

<skip 10pt>

<val codePostnet3 {"01234567890"}>

^{"POSTNET, ZIP+4 and dp: " + codePostnet3}

<barcode {codePostnet3} POSTNET height=20pt>

<skip 10pt>

<val codePlanet{"01234567890"}>

^{"PLANET: " + codePlanet}

<barcode {codePlanet} typeExpression={"PLANET"} height=20pt>

<skip 10pt>

<val code39 {"MPL 4 IN ACTION"}>

^{"Barcode 3 of 9: " + code39}

<barcode {code39} CODE39 height=50pt >

<skip 10pt>

<val code39_2 {"MPL 4 in action"}>

^{"Barcode 3 of 9 Extended: " + code39_2}

<barcode {code39_2} CODE39 height=50pt extended+ >

<skip 10pt>

<val codeBar {"A123A"}>

^{"CODABAR: " + codeBar}

<barcode {codeBar} CODABAR height=50pt startstoptext+>

<skip 10pt>

Advanced MPL

Maconomy Printing Language (MPL) 88

<val text {"This is some pretty long text with strange characters like

%^&^!~"}>

^{"PDF 417: " + text}:wrap+

<barcode {text} PDF417 height=50pt>

<skip 10pt>

^{"DATAMATRIX: " + text}:wrap+

<barcode {text} DATAMATRIX height=80pt>

<skip 10pt>

<val qrData {"MPL 4 supports barcodes now!"}>

^{"QRCode : " + qrData}

<barcode {"MPL 4 supports barcodes now!"} QRCODE height=150pt>

Running this code snippet as a part of an MPL 4 layout results in the printout that is shown on the
next two pages.

Advanced MPL

Maconomy Printing Language (MPL) 89

Advanced MPL

Maconomy Printing Language (MPL) 90

Setting Next Page Number

It is sometimes convenient to be able to control page numbering in an MPL printout. For example,
when you are batch printing invoices you might want each invoice to start with page number 1,
instead of just continuing with increasing page numbers. Also, when you are including static
PDFs, it is sometimes convenient to set the page number to account for the size of the included
PDF document.

Advanced MPL

Maconomy Printing Language (MPL) 91

This functionality is provided by the <nextpagenumber> tag, which has one mandatory and

nameless attribute value of type EXPRESSION. The semantics of this tag are that the value of

the PageNumber variable will be set to the new value on the next page to be printed, after the

<nextpagenumber> tag has been executed. The PageNumber variable controls the page

numbers that are printed in an MPL layout.

The <nextpagenumber> tag was introduced in MPL 4 as of TPU 16 SP2.

Example 1

In the following example, the PageNumber variable will be reset to 1 after printing each invoice.

<paper cursor=InvoiceEditingHeader>

 "Invoice body”

 ...

 <nextpagenumber {1}>

<end paper>

Example 2

To see how you can use the <nextpagenumber> tag with <includepdf>, see “Example 2” in

“Including static PDF documents.”

Including static PDF documents

MPL is a language for dynamically generating PDF documents based on the data that is in
Maconomy. There are certain situations, however, when you want to include an already
generated, static PDF into a Maconomy print, for example when attaching a customer satisfaction
survey or a letter of fulfillment to an invoice.

The includepdf tag

<includepdf attributes>

 ...

<end includepdf>

has been designed to meet these exact needs. It enables you to include static PDF documents
from the Maconomy Document Archive directly into an MPL print.

The following attributes are supported:

 path denotes a path to the document in the Document Archive that we want to include. It is of

type EXPRESSION, meaning that the path can be calculated dynamically at run time,
depending on the context that we are currently in. The path attribute is mandatory and
nameless.

 skipNewPageAfterPdf specifies whether there should be a page break (new page) added

after the included PDF. This attribute is of type BOOLEAN and defaults to false.

There are two basic scenarios when including a PDF in an MPL print. We might want to

include the PDF at the end of a paper tag content, for example when attaching a

satisfaction survey document to an invoice. In this case the value of

skipNewPageAfterPdf should be set to true, because the paper tag will make an

implicit new page after each paper cursor record has been printed. On the other hand,

when including a PDF somewhere in the middle of a paper tag, we want to make a page

Advanced MPL

Maconomy Printing Language (MPL) 92

break after the included PDF, so we should set the skipNewPageAfterPdf to false,

which is its default value.

When including a PDF in an MPL print, a natural question arises: what about the page numbering?
Should we account for the included PDF pages or not? MPL leaves it up to the layout developer, who
can decide to either account for the included PDF document’s number of pages or not. To this end, the

includepdf tag brings a variable noOfIncludedPdfPages into its children’s scope, where we can

use the <nextpagenumber> tag to set the next page number to any value we wish.

The <includepdf> tag was introduced in MPL 4 as of TPU 16 SP2.

Example 1

When including a PDF somewhere in the middle of a paper tag, we would usually do something

like this (provided that there is a MyExample.pdf document in the PDFs group in the Document
Archive).

<paper>

 "First part of the print"

 ...

 <includepdf {"pdfs\MyExample.pdf"}>

 <end includepdf>

 ...

 "Second part of the print"

 <footer onLastPage+>

 ^{"Page " + PageNumber}

 <end footer>

<end paper>

Note that an automatic page break will be inserted after the included PDF document.

Example 2

Let us modify the previous example so that we account for the number of pages of the included

PDF in the document page numbering. To this end, we will use the <nextpagenumber> tag

together with the noOfIncludedPdfPages variable. We must remember that the

<nextpagenumber> tag will set the page number for the next page to be printed after this tag

has been executed. For that reason, we should postpone adding a page break after the included

PDF to the point after the execution of the <nextpagenumber> tag. These considerations lead

to the following piece of code (changes to the previous example appear in bold):

<paper>

 "First part of the print"

 ...

 <includepdf {“pdfs\MyExample.pdf"} skipNewPageAfterPdf+>

 <nextpagenumber {PageNumber + noOfIncludedPdfPages + 1}>

 <end includepdf>

 <newpage> --triggers nextpagenumber to take effect

 ...

 "Second part of the print"

Advanced MPL

Maconomy Printing Language (MPL) 93

 <footer onLastPage+>

 ^{"Page " + PageNumber}

 <end footer>

<end paper>

Example 3

When including a PDF document at the end of a paper tag, we should set the

skipNewPageAfterPdf attribute to true, because the paper tag will make an implicit page

break for each paper cursor record.

<paper>

 "The paper content"

 ...

 <includepdf {“pdfs\MyExample.pdf"} skipNewPageAfterPdf+>

 <end includepdf>

<end paper>

goto

The goto tag:

<goto attributes>

specifies moving the print cursor to a position on the page indicated by the attributes.

It is mandatory that a goto has exactly one of two attributes:

 top specifies the position on the page to which the cursor should move. The attribute has the

type LENGTH and defines the distance from the top of the page (that is, including page
margins).

 bottom is similar to top, but specifies the distance to the bottom of the page.

Example

<goto top=5cm>

Note that you can only move the print cursor forward. This means that a construction like:

<goto top=6cm> "Text1"

<goto top=5cm> "Text2"

will result in “Text2” being printed on the page that follows the page that contains “Text1.”

Together with the stop attribute, the goto tag enables you to make border constructions within all

parenthetical tags:

<stack stop=5cm>

...

<end stack>

<goto bottom=5cm>

This construction will have the result that nothing (except footers) from the stack is printed below
the 5cm margin to the page bottom. When the stack has been printed, the printing will continue
5cm from the page bottom.

Advanced MPL

Maconomy Printing Language (MPL) 94

title

Within Maconomy, a default title is associated with some fields and variables. In MPL, this default
title can be accessed through the tag:

<title attributes>

It is mandatory that a title has exactly one of two attributes:

 fieldname has type ID and specifies the name of a field.

 varname has type ID and specifies the name of a variable.

If you want to specify the cursor from which the fieldname should be taken, you can use the
following attribute:

 cursor specifies the name of the cursor from which the field is to be taken. The attribute has

the type ID.

If you do not specify a cursor name, the value will be taken from the nearest cursor with a field of
the specified name. Note that you can print titles “out of scope,” that is, you can print the default
title of a field even though you are not within the scope of the cursor to which the field belongs. To
do this, the title must be fully qualified with the cursor name(s).

Example

<title fieldname=JournalNumber cursor=Journal>

Often you will see a short form being used:

[cursorname.field]

[.field]

[VAR]

Example of usage “out of scope”:

<title fieldname=cursor1.cursor2.JournalNumber>

The title tag is closely related to the text tag, and you can therefore specify the same

attributes as for text. These attributes all have the same meaning, except for:

 title has the type STRING and specifies a title, which is used if the system default title is

empty.

Example

<title varname=VARNAME title="DefaultTitle">

or

[VARNAME]:"DefaultTitle"

All attributes that are nameless for the text tag are also nameless for the title tag.

Other attributes:

 uppercase has the type BOOLEAN and specifies whether the title should be writ- ten in

uppercase. The default value is false.

Example

[.FieldName]:uppercase+

Advanced MPL

Maconomy Printing Language (MPL) 95

Length Constants

MPL enables you to define length constants. By assigning a name to a length that you want to use
in more than one place, you ensure that any change that you make to the length will affect all
occurrences.

MPL also has a number of predefined lengths that control the formatting. You can refer to these
constants to align a length with an embedded length, or you can change the lengths to change the
formatting of your print.

All length constants have an orientation (horizontal or vertical) and can only be used with the
specified orientation.

Define

You can use the define tag to define a new length constant:

<define attributes>

Definitions with the define tag must be inserted in the beginning of parenthetical tags, that is,

along with default statements. The defined constants apply within the parenthetical tag in which

they are defined (and inside all embedded tags).

The tag has the following attributes:

 name specifies the name of the new constant. The attribute is mandatory and has the type ID.

 value specifies the value of the new constant. The attribute is mandatory and has the type

LENGTH.

 orientation specifies the orientation of the new constant. The attribute has the type ID and

can be assigned the values vertical or horizontal. The attribute is mandatory if the value

is specified using a grid unit. If the attribute is not set, the orientation is derived from the first

use of the constant.

Example

Consider the following:

<define name=nine value=9mm orientation=horizontal>

<define name=mylen value=1.5cm>

"Hello":indent=nine

"Hi!":indent=mylen

Both lengths can only be used horizontally: nine because it has been specified using the

orientation attribute, and mylen because it is used in indent, which is a horizontal length.

The resulting printout is:

Predefined Lengths

MPL has a number of predefined length constants. These lengths can be used in the same way as

lengths defined using define, that is, they can be used as values in all length attributes. For

example, you can use the radius of the island curves as margins:

<island leftmargin=IslandCornerRadius

rightmargin=IslandCornerRadius>

Advanced MPL

Maconomy Printing Language (MPL) 96

...

<end island>

You often redefine these lengths (see the next section) and thus change the formatting of MPL
layouts.

The following lengths are predefined in MPL:

 InterColumnSpacing specifies the distance between two columns if no column separators

have been inserted between the columns. Moreover, the length defines the distance from a
column to a column separator if any such has been inserted. It is the space that you can

underline with the attributes to hline, namely left and right. The orientation of the length

is horizontal and its default value is 4 points.

 IslandTitleIndent specifies the distance from the left-justified island title to the left edge

of the island (and the distance from a right-justified island title to the right edge of the island).
For further illustration of this length, see the figure in “Island Lengths” in “Tips and Tricks.” The
default value is 5 points.

 IslandCornerRadius specifies the radius of the quarter circles that make up the corners of

the islands (when the rounded attribute has not been set to false). The default value is 5

points.

The orientation of IslandCornerRadius is horizontal.

 MinTextWidth specifies the smallest width allowed for a (used) text block. If not set, the

default value is 0 (zero) and text blocks will therefore never be wider than their actual width.
The default value is 0.

 MinFieldWidth specifies the smallest width allowed for a field or a variable. As the contents

of the field is not known during compilation/interpretation of the layout, this length ensures that
fields always have a minimum width. The default width only provides a space for 5-6 characters
with normal font which is rarely enough space for text fields. On the other hand it is also
inexpedient to set a larger width than is actually needed; often the width of fields will be
controlled by other attributes (for example, width and column stretchability). The default value is
18 points.

 HlineSpacing specifies the distance between lines in an hline with the multi attribute set to

a higher value than 1. This constant is rarely used. The default value is 2 points.

 HlineSkip specifies the extra space after an hline. The default value of the constant is 0.

This constant is rarely used.

 HeaderSkip specifies the extra space after headers, that is, the distance between a header

and the main text (and between a page header and a block header). The default value is 4
points.

 FooterSkip specifies the extra space before footers, that is, the distance between the main

text and a footer (and between a block footer and a page footer). The default value is 4 points.

 MinBaseLineSkip specifies the smallest distance between the baseline of text lines. Thus

you set the line spacing by redefining this constant. Note that in certain cases the line spacing

can seem smaller than MinBaseLineSkip. This usually occurs when two stacking tags of

different height are placed alongside in a row. Here the baseline of the rows is the bottom text

line by default. This means that the baseline of the row can be MinBaseLineSkip from the

preceding baseline, without it being the case of the baseline of the top element. The default
value is 10 points.

Advanced MPL

Maconomy Printing Language (MPL) 97

redefine

You can assign a new value to an existing length constant using this constant:

<redefine attributes>

The tag can occur in the same places as the define tag and has the same attributes:

 name specifies the name of the constant to which you want to assign a new value.

The length constant should be known, meaning that it should either be predefined in MPL

or be defined using a define tag in the scope where the redefine tag is specified. The

attribute is mandatory and has the type ID.

 value specifies the new value that you want to assign to the constant. The attribute is

mandatory and has the type LENGTH.

 orientation specifies the orientation of the new value of the constant. Because the constant

keeps the orientation that has possibly been specified earlier, you should only use this attribute
if the constant has not already been assigned an orientation.

The attribute has the type ID and can be assigned the values vertical or horizontal.

The attribute is mandatory if the value has been specified with a grid unit, and the length

constant has not already been assigned an orientation. If orientation is not specified,

and the constant does not have an assigned orientation, the orientation is derived from the
first use of the constant.

If the constant has not already been assigned an orientation, a new orientation will not
be tied to the old value. When the scope of the redefine tag is concluded, the

constant will, therefore, still not have an assigned orientation.

The new value of the length constant will apply to the parenthetical tag in which the redefine tag

is inserted. After the parenthetical tag, the original value applies.

Example 1

Consider the following:

<paper>

<define name=mylen value=1cm>

"1cm indent":indent=mylen

<stack>

<redefine name=mylen value=2cm>

"2cm indent":indent=mylen

<end stack>

"1cm indent":indent=mylen

<end paper>

In the example the first and last text blocks are indented 1 cm, while the middle text block is

indented 2 cm. Note how stack is exclusively used to create a local scope.

Example 2

In this example we use redefine to set some of the embedded length constants:

<redefine name=MinBaseLineSkip value=1cm> "Hello"

"Hello again"

<stack>

Advanced MPL

Maconomy Printing Language (MPL) 98

<redefine name=InterColumnSpacing value=1cm>

{:[|[]|[]|]

<hline 2>;

"1" "2";

<hline 2>;

}

{

"a" "b";

}

<end stack>

{:[|[]|[]|]

<hline 2>;

"1" "2";

<hline 2>;

}

Redefining MinBaseLineSkip ensures that the line spacing is at least 1 cm (both between the

simple text lines and the rows).

Redefining InterColumnSpacing changes the distance between columns to 1 cm. The

difference is made more obvious by the fact that the same array is repeated after the stack in
which the redefinition no longer applies.

The resulting printout is:

Margins

The margin tag is part of the heading in the MPL definition. It should be specified immediately

following the page tag and specifies the margins of the printout. If no margin tag is specified, the

margin values from the Maconomy client window Paper Formats are used instead.

The tag is used as follows:

<margins attributes>

The tag has the following attributes which are all mandatory and have the type LENGTH:

 top specifies the top margin.

 bottom specifies the bottom margin.

 left specifies the left margin.

 right specifies the right margin.

Advanced MPL

Maconomy Printing Language (MPL) 99

Margins in Standard Prints

Some comments should be added to the use of the margin tag in connection with the standard

prints. The behavior of this tag depends on the version of the current TPU and on the client that is
using the standard printout.

Defaults

All attributes in all tags have a default value that is used if the attribute is not specified (not
mandatory attributes). You can, of course, always change this value, but if you must do this often, it
is easier to change the default value. A typical example is when you want to use another default
font or font size. You can also use a style where islands always have the same inner margin and
you therefore need to change the default value for the four attributes that decide the inner margins
of the islands.

It often results in a more elegant output if the margin size is larger than zero. The disadvantage
is the fact that rulers that are defined outside the island are not recognized inside the island if
leftmargin or rightmargin has been set to a value that is other than zero.

You can change default values using the default tag that is specified in the beginning of

parenthetical tags (for example, in the beginning of paper or in a repetition). The changing of

default has an effect on the inner part of the parenthetical tag that is surrounded by the default
statement (see the example below).

The syntax is:

<default attributes>

The tag has the following attributes that are all mandatory:

 tag specifies to what tag the attribute for which you want to change the default value belongs.

In other words, the combination of tag and attribute identifies the attribute. The attribute

has the type ID.

 attribute specifies for what attribute you want to change the default value. The attribute has

the type ID.

 value specifies the default value for the specified attribute. The attribute type depends on

what attribute is specified.

Because mandatory attributes must be specified, these have no default values and thus cannot be

changed using the default tag.

Note that the defaults for text and vline will also affect column separators. You can specify

default attribute values for the attributes in columns by using the col tag name (affecting both

ruler and subruler definitions).

Example 1

The default font size for texts is 7 pt, whereas it is 9 pt for fields and variables. This results in an
elegant layout when you print fixed texts in capitals, but it is not always as elegant if you want to
print fixed texts in normal size.

The default font size can therefore be changed by writing:

<paper>

<default tag=text attribute=fontsize value=9>

...

<end paper>

Advanced MPL

Maconomy Printing Language (MPL) 100

Because the default value is specified in the beginning of the paper tag, the default value will

apply to the entire print definition.

As an exercise, you could insert this line into the time sheet layout defined earlier. Note that the
island titles are also printed in 7 pt by default, and that it can also be useful to change this default
value.

Example 2

The following example illustrates the scope of the default statement:

<paper>

<island>

<default tag=island

attribute=leftmargin value=1cm>

<default tag=island

attribute=rightmargin value=1cm>

<default tag=island

attribute=topmargin value=5mm>

<default tag=island

attribute=bottommargin value=5mm>

...

<island>

"Hello"

<island stretch- rightmargin=4cm>

"Hi!"

<end island>

<end island>

...

<end island>

<end paper>

Here the two inner islands will be assigned an inner margin, while the outer islands will not. The
innermost island will have a right margin of 4 cm because of the specified attribute, while the other

three margins are defined by the default statements.

Inheritance of attribute values

In MPL, tags can inherit values of certain attributes from their parent tags. The following section
describe the rules guiding the inheritance of certain kinds of attributes.

Style Inheritance

In a layout you sometimes want to have different styles in different sections of the layout. For
instance, you may want a different font for your page header or right justification in a column of an
array. You can achieve this by specifying style attributes on parenthetical tags and ruler columns.

The attributes classified as style attributes are:

 justification

 fontname

 fontsize

 bold

Advanced MPL

Maconomy Printing Language (MPL) 101

 italic

 underline

 color

 rgb

 dateformat

 timeformat

 amountformat

 realformat

 integerformat

 booleanformat

In this section we will use the term block as a common name for all the parenthetical tags—

stack, array, repeating, conditional, canvas, island, page, frontpage, header,

footer, and link—including layout. Note, however, that island tags behave differently from

the other block tags as described below.

Block Inheritance

The meaning of adding a style attribute to, for example, a text tag is to print the text with a given

style. When you add a style attribute to a block, the result is that this style attribute is passed on to
all tags within its scope:

<stack justification=center>

"Text"

cursor.field

VAR

<end stack>

will give the same result as:

<stack>

"Text":justification=center

cursor.field:justification=center

VAR:justification=center

<end stack>

Note, however, that inherited style attributes will never overwrite any attributes on the tag itself.
Thus:

<stack

justification=center> "Text"

cursor.field:justification=left

VAR

<end stack>

will give the same result as:

<stack>

"Text":justification=center

cursor.field:justification=left

VAR:justification=center

Advanced MPL

Maconomy Printing Language (MPL) 102

<end stack>

Similarly, inherited style attributes do not overwrite default style definitions:

<stack justification=center>

<default tag=field attribute=justification value=left> "Text"

cursor.field

VAR

<end stack>

will again give the same result as:

<stack>

"Text":justification=center

cursor.field:justification=left

VAR:justification=center

<end stack>

Note that unlike the default definitions, the inherited style applies to all tags, regardless of type.

Column Inheritance

It is also possible to add style attributes to columns in ruler definitions:

<ruler Ruler1 [[italic+] [fontsize=10]]>

The result of this is that the first column is written in italic, and the second with font size 10.

Blocks placed in the columns will also inherit the tags and pass them on as described above. The
rules about not overwriting tag and default attributes described above also apply to column
inheritance.

However, column inheritance has precedence over general inheritance:

<ruler Ruler1 [[] [fontsize=10]]>

{ :Ruler1:fontsize=8

"Text1" "Text2";

}

will result in “Text1” being printed with font size 8 and “Text2” with font size 10.

Islands

The island tag differs from the other parenthetical tags in that the style attributes specified for an

island concern the island title and the island frame. Style attributes on islands are therefore not
passed on to the elements within the island. The style attributes are, however, passed on to the
island itself:

<stack justification=center fontsize=10>

<island "IslandTitle" fontsize=20>

"Text"

<end island>

<end stack>

will give the same result as:

<stack>

<island "IslandTitle" fontsize=20 justification=center

titlejustification=center>

Advanced MPL

Maconomy Printing Language (MPL) 103

"Text":fontsize=10

<end island>

<end stack>

Style Precedence Summary

The style of a tag is decided as follows in order of precedence:

1. Style attributes on the tag itself.

2. Default definitions in the same scope as the tag.

3. Column style attributes for the column containing the tag, if any.

4. Style attributes for the surrounding parenthetical tag(s) including the layout tag.

Note that when a color attribute is inherited, it does not overwrite an rgb attribute, and vice-

versa. Furthermore, where both the color and rgb attributes exist on a tag, the rgb attribute is

always used in preference over the color tag.

Block Attributes

The attributes described in this section are defined on all non-fixed parenthetical tags: stack,

array, repeating, conditional, island, and canvas.

 keeptogether: The attribute keeptogether has type BOOLEAN and indicates whether the

block should be printed on the same page if possible. The default value is false. If the value

is true, the block is moved to the top of the next page if the current page does not have room

for it.

Example

<stack keeptogether+>

"This block" "should be printed"

"on the same page"

<end stack>

Note that for repeating tags, the actual number of elements inside the block is not known at the

time of compilation. Therefore, adding a keeptogether to these tags will not guarantee that the

entire repetition is written on the same page. It does however ensure that each element of the
repetition is written on the same page if possible.

Example

<repeating Cursor script="L_Cursor" keeptogether+>

.fieldname

"This field and this"

"text should be printed"

"on the same page, but the"

"next field may be written"

"on the next page"

<end repeating>

 movepos: The attribute movepos has type BOOLEAN and indicates whether the position of

the print cursor should move after the block has been printed. The default value is true. If the

value is false, the tags following the block are printed on top of it.

Advanced MPL

Maconomy Printing Language (MPL) 104

This attribute enables you to print on top of background frames, watermark images, and so
on.

Note that movepos only works within one page. Adding a movepos- to a block therefore

automatically triggers that keeptogether is true.

Example

<stack movepos->

"This text will be overwritten"

<end stack>

"This text overwrites the text in the block"

 stop: The attribute stop has type LENGTH and indicates a distance to the bottom of the

page. When a stop attribute is added to a block, it means that no contents of the block are

written below the point given by the stop value.

Some printers—among others, matrix printers—do not support this feature.

The stop attribute can, together with the goto tag, be used to create border behavior

within parenthetical tags (see goto).

Example

<stack stop=100pt>

...

<end stack>

Standard Printouts in the Maconomy Clients for Windows and
Java

When selecting “Print...” and “Print this” in the standard Maconomy client, margins are defined in
MPL along with paper format and orientation. This is illustrated by the following MPL fragment:

<mpl 1>

<layout title="16 Columns Horizontal"

print="Print Finance Report"

originallayout="16 Columns Horizontal">

<page "A4" landscape>

<margins top=24pt bottom=30pt left=20pt right=20pt>

...

If orientation is left out, portrait is chosen as default. If margins is left out, the default is

derived from the margins of the paper format. The paper format is mandatory.

In the Windows client, paper formats are defined in the window Paper Formats. This allows
Maconomy users to define their own paper formats, and have MPL prints be formatted according
to those definitions. On the other hand, paper formats need not be related to paper formats
available on printers.

MPL is preformatted when it is installed, and all elements are given positions. This formatting is
performed with no knowledge of the printer that will be used. In older versions of Maconomy
(before TPU 27), the server formatted the print according to “standard” margins.

Advanced MPL

Maconomy Printing Language (MPL) 105

On Windows servers, the standard margins were derived from the default printer installed on the
server. On UNIX they were given fixed values.

In later versions of Maconomy, printable elements are given positions relative to the paper edge.
When the report is actually printed, it is adjusted to the physical margins of the selected printer.
This ensures that prints look the same on all printers.

To ensure backward compatibility, a configuration option controls whether prints should be
formatted in the new way or the old way. This option is set in the file Maconomy.ini located in the
folder MaconomyDir/Definitions on the server. To place printable elements in the new way, set

RunTimePrinterDependence=true.

Unless you have important reasons to do otherwise, you should always set this to true.

The meaning of the name is that the formatting of the report depends on the actual printer
chosen at run time.

If a few of your reports have been aligned to specific printers in an old system, you can force the

use of old formatting by setting the attribute runtimeprinterdependence to false on the

layout tag:

<layout title="16 Columns Horizontal"

print="Print Finance Report"

originallayout="16 Columns Horizontal"

runtimeprinterdependence->

If the report is printed from Maconomy client for the Java™ platform, PDF is produced and
presented in Acrobat Reader. The PDF that Maconomy creates contains information on the
dimensions of the paper format chosen. Acrobat Reader allows the user to choose that rotation
and paper source should be selected according to these dimensions. Furthermore, you can scale
the print; choosing not to scale ensures that the output matches the specifications of your MPL.

If the report is printed in the Windows client, you can displace the print in the Print Displacement
window (found on the “File” menu). This is a last resort, only to be used if your print does not come
out right on your printer. Print displacements are not saved as part of user settings.

The paper dimensions specified in MPL are ignored by the Windows client. Instead, you must
manually choose paper format and orientation in the Page Setup window (on the “File” menu). The
format chosen in the Page Setup window also determines the blue frame in Print Preview
windows.

RGL

This is similar to standard prints as described above. RGL printouts are affected by the

RunTimePrinterDependence option.

Universe Reports and the Analyzer

These are similar to standard prints as described above, except for the following: If a report is too
wide, the paper size in the generated PDF grows with the content. In this case, using Acrobat
Reader’s scaling possibilities is recommended.

These are not affected by RunTimePrinterDependence. That is, it always works in the new

way.

Filling in Forms

Maconomy Printing Language (MPL) 106

Filling in Forms

Printouts from Maconomy are often used to fill in preprinted forms. Forms can also be combined
with printouts with a free design, for example, combining a special offer with a tear-off coupon, or
an invitation to a business event with a registration form. In Denmark and other European
countries an invoice is often accompanied by a giro form that allows a direct transfer of funds to the
issuer of the invoice. The format of a giro form is defined in every detail to allow banks to read the
forms automatically. This section describes the design of a specific sort of giro form, but the
techniques employed are readily applicable to other preprinted forms.

A Giro Form

In the following example, it is assumed that all paper margins have been set to “0.”

<margins left=0cm right=0cm top=0cm bottom=0cm>

Furthermore, it is assumed that the font “OCR-B” is installed (below we use font “SAdvOCR-B”).
The following lines of MPL will fill in a preprinted giro form at the bottom of an invoice:

<border bottom=101.6mm>

<stack>

<default tag=field attribute=fontname value="SAdvOCR-B">

<default tag=var attribute=fontname value="SAdvOCR-B">

<default tag=text attribute=fontname value="SAdvOCR-B">

<default tag=field attribute=fontsize value=14>

<default tag=var attribute=fontsize value=14>

<default tag=text attribute=fontsize value=14>

<canvas height=101.6mm>

.ThePaymentCustomer

:(5mm,26mm):width=33.5mm:right:fontname="Courier":fontsize=9

.InvoiceNumber

:(45mm, 26mm):width=15mm:right:fontname="Courier":fontsize=9

.InvoiceDate

:(66.5mm, 26mm):width=18mm:right:fontname="Courier":fontsize=9

<stack (10mm,34mm)>

<default tag=var attribute=fontsize value=9>

<default tag=var attribute=fontname value="Courier">

<default tag=var attribute=width value=70mm> PaymentAddress1

PaymentAddress2 PaymentAddress3 PaymentAddress4 PaymentAddress5

PaymentAddress6 PaymentAddress7 PaymentAddress8

<end stack>

<stack (91mm,17mm)>

<default tag=var attribute=fontsize value=9>

<default tag=var attribute=fontname value="Courier">

<default tag=var attribute=width value=40mm>

CompanyGiroNumber:bold+

CompanyAddress1

CompanyAddress2

CompanyAddress3

CompanyAddress4

Filling in Forms

Maconomy Printing Language (MPL) 107

CompanyAddress5

<end stack>

DollarAmount:(10.5mm,72mm):width=28.5mm:right

CentAmount:(44mm,72mm):width=10mm:left

.DueDate:(90mm,72mm):width=25mm:left

-- The Receipt

<stack (153mm,17mm)> -- the box of (148mm, 14.81mm)

<default tag=var attribute=fontsize value=9>

<default tag=var attribute=fontname value="Courier">

<default tag=var attribute=width value=40mm> CompanyGiroNumber:bold+

CompanyAddress1 CompanyAddress2 CompanyAddress3 CompanyAddress4

CompanyAddress5

<end stack> DollarAmount:(158.5mm,72mm):width=28.5mm:right

CentAmount:(191.5mm,72mm):width=10mm:left "+04<":(7.62mm,90mm)

.PayerIdentification:(17.78mm,90mm):width=5cm:left "+":(60.96mm,90mm)

ExtAccountAccountNumberVar:(63.5mm,90mm):width=2cm:left "<":(81.28mm,90mm)

<end canvas>

<end stack>

First a border is placed 101.6mm (the height of a giro form) from the bottom. This ensures that no
elements before the border are printed on the preprinted giro form. Furthermore, it ensures that
the stack that follows the border starts at exactly 101.6mm from the bottom of the paper.

The stack that follows the border has only one function: It ensures that the scope of the definitions
in the stack is limited to the giro form. These definitions consist of a number of default declarations
setting the standard font to “OCR-B” 14pt.

The formatting of the elements on the giro form is made by a canvas that places the individual texts
and amounts correctly on the preprinted giro form. Note that the payment field and the payment
receiver are stacks for which the content is simply stacked, but for which the stack itself is placed
using coordinates in the canvas.

The result is as follows (slightly reduced in size):

Tips and Tricks

Maconomy Printing Language (MPL) 108

Tips and Tricks

This section contains useful hints that can help you construct better and more elegant layouts
using MPL.

Some of the most widely used layouts can initially seem difficult to construct using MPL. This
section provides you with a number of tips and tricks and also gives you the necessary inspiration
to get the most out of using MPL.

A layout can often be achieved using MPL—how you prefer to use MPL is naturally a matter of
personal taste. But some methods can help to ensure that your MPL layouts are more easily
maintained and updated.

Overlapping Fields

You often come across lines that need to include a debit field and a credit field. These lines can be
constructed as follows:

{:[[stretch+][3cm][3cm]]

.text

.debit:zerosuppression+

.credit:zerosuppression+;

}

Only one of the two fields can contain a value at a time, and you therefore waste space if you
position them in separate columns. Instead you should let the two columns overlap each other.

Basically, this functionality is not supported by MPL, but if the two fields are placed in a canvas,
they will overlap each other. You can then place the canvas in the same column:

{:[[stretch+][4cm]]

.text

<canvas height=10pt width=4cm>

.debit:(0cm,0pt):width=3cm:zerosuppression+

.credit:(1cm,0pt):width=3cm:zerosuppression+

<end canvas>;

}

Paper Format Independence

Consider the following two MPL fragments:

{:[[75pt][stretch+][75pt]]

.JobNumber JobName .ActivityNumber;

}

And:

{:[[75pt][380pt][75pt]]

.JobNumber JobName .ActivityNumber;

}

These two definitions result in exactly the same formatting on a sheet of A4 paper with margins of
1 cm. Still, for several reasons, you should prefer the first definition:

Tips and Tricks

Maconomy Printing Language (MPL) 109

 If you want to use the definition on another paper format (for example, landscape A4, US
Letter), the first definition will automatically adjust to the paper format, whereas the other
definition will have to be adapted, either because the entire sheet is not used, or because it has
become too wide and cannot be compiled.

 If you change the margin in the definition or redefine the constant InterColumnSpacing, you

will get an incorrect result.

 The first MPL fragment is a more logical representation than the second; that is, the length of

JobName is unknown, and it should therefore have all excess space assigned to it, whereas the

second fragment suggests that you should know for certain that 380 pt is an appropriate length

for all occurrences of JobName.

Alignment of Headers and Footers

You often use headers in column headings and footers in totals. To align column headings with the
contents, you can embed the repeating block in an array as in the following example:

{

<repeating InvoiceLine script="InvoiceLineBlock">

<header atstart+>

"ITEM NO." "ORDERED" "INVOICED" "UNIT" "ITEM DESCRIPTION" "UNIT

PRICE" "PRICE";

<hline 7>;

<end header>

<footer>

<hline 7>;

("Total Due":right):6 .TotalCurrency;

<end footer>

<conditional PricesOut script="PricesOut">

.ItemNumber .NumberOrdered

CorrectedNumberInvoiced .Unit

ExternalItemText CorrectedUnitPrice

CorrectedPriceWithoutDiscount;

<end conditional>

<end repeating>

}

You cannot use a similar technique for page headers and footers, since the paper tag cannot

occur inside an array. If you want to align page headers or footers with the paper contents you
must use rulers. An example of the use of this method can be seen in the following complete,
however simple, layout for “Print Chart of Accounts”:

<mpl 2>

<layout title="Simple" print="Print_Chart_Of_Accounts"

originallayout="Standard">

<page "A4">

<paper>

<ruler main [[][stretch+][][15mm]]>

<header onfirstpage+>

{:main

"ACCOUNT NO." "TEXT" "P&L, B/S" "TAX";

}

Tips and Tricks

Maconomy Printing Language (MPL) 110

<end header>

<repeating cursor=ACCOUNT>

{:main

.AccountNumber .AccountText

.ProfitAndLossStatus .FinanceVATCode;

}

<end repeating>

<end paper>

Empty Stretchable Columns

In the footer of the time sheet print definition we used the stretch attribute to center the page

number:

{:[[stretch+][][][][stretch+]]

"" "-" PageNumber:center "-" "";

}

If you only want to insert a page number without hyphens on each page, PageNumber:center is

of course sufficient, but by using a stretchable element you ensure that all three columns are
centered equally. The purpose of this is to assign the necessary space to the two text blocks and

the PageNumber variable, and all the remaining space is then equally distributed between the

preceding and following columns.

In the example:

{:[[stretch+][][stretch+][][stretch+]]

"" "a" "" "b" "";

}

we use the same method to ensure that “a” is positioned after a one-third indentation, and that “b” is
positioned after a two-thirds indentation.

Stretchability and Embedding

If an array can be stretched—that is, at least one of its columns is stretchable—the array will stretch
to the edges of the space that the surrounding elements provide. This is worth considering when
arrays are contained in other columns. Columns in themselves are not stretchable, and the
stretchability of the array will therefore not have any effect.

This point is illustrated in the following example:

<ruler main [[][]]>

{:main

{:[[][stretch+]]

"text";

.field;

}

"another text";

}

In this example, the array is contained in the first column of another array. Because the first
column is not stretchable, the width of “text” plus the minimum width for fields is assigned to the

inner array. If you change main to:

<ruler main [[stretch+][]]>

Tips and Tricks

Maconomy Printing Language (MPL) 111

the column that contains the inner array will become stretchable. Therefore the column that

contains .field can be stretched, and the field is assigned the width of the paper minus the

width of “text” and “another text.”

Island Lengths

The formatting of an island is defined using a number of attributes and length constants. The
following figure illustrates the functionality of the various lengths.

Title

IslandTitleExtraX topmargin

IslandCornerRadius

width

leftmargin

height

rightmargin

bottommargin

<redefine IslandTitleExtraX 2cm>

<redefine IslandTitleCornerRadius 1cm>

<Island “title”

Title justification=left

fontsize=24

Stretch-

Width-7cm

Height-4cm

Leftmargin-2cm

Rightmargin-2cm

Topmaring-2cm

Bottommargin-2cm>

If an island cannot be stretched, it is assigned the greatest of the following values:

 2 * IslandCornerRadius + 2 * IslandTitleIndent + the width of the title

 leftmargin + rightmargin + the width of the text (possibly as specified by the width attribute).

Fixed Frames and Watermarks

You cannot put repeating blocks inside islands. You can, however, put a fixed island frame around

a repeating block by using the movepos attribute:

<ruler line [2pt[][][]]>

<repeating Employee script="L_EMPLOYEE">

<header atstart+>

<island height=4.5cm movepos->

<end island>

{ :line

"EMPLOYEE NO." "NAME" "PHONE";

<hline left- right->;

}

<end header>

{:line

.EmployeeNumber .Name1 .Telephone;

}

Tips and Tricks

Maconomy Printing Language (MPL) 112

<end repeating>

In this example, the island frame is written in the header, but the print position is not moved. The
header and content of the repeating block are thereby written inside the island frame. Note
however that the frame is fixed, and that content from the repeating block therefore could exceed
the frame, or text that follows the block could be written inside the block. This approach is therefore
probably best suited for whole-page frames.

The same approach can be used for printing with background watermarks:

<ruler line [[3cm][stretch+][5cm fontsize=20]]>

<repeating Employee script="L_Employee">

<header atstart+>

<stack movepos->

<image title="Images\MaconomyBackground.JPG" height=18cm>

<end stack>

<end header>

{:line:keeptogether+

.EmployeeNumber .Name1 .Telephone;

"" .Name1 "";

"" .Name1 "";

}

<end repeating>

Dynamic Frames

To put repeating blocks into a frame which expands with the size of the block, you can use a

combination of the hline and vline tags and the pagebottom attribute:

<ruler line [|[][stretch+][5cm]|]>

<redefine HeaderSkip 0pt>

<redefine FooterSkip 0pt>

<repeating Employee script="L_Employee">

<header atstart+>

{:line

<skip 3mm>;

<hline>;

"EMPLOYEE NO." "NAME" "PHONE";

<hline left- right->;

}

<end header>

<footer atend+ pagebottom->

<hline>

<end footer>

{:line

.EmployeeNumber .Name1 .Telephone;

}

<end repeating>

In this example, the first hline in the header creates the top of the frame, and the vline tags in

the ruler create the sides of the frame. The bottom of the frame is created by the hline in the

footer, and setting the pagebottom attribute to false in the footer ensures that its content

Tips and Tricks

Maconomy Printing Language (MPL) 113

attaches itself to the frame. The two redefine tags are there to avoid space between header and

vertical lines, respectively.

Using stop and goto

The stop attribute, together with the goto tag, enables you to write blocks on preprinted paper

(for example, checks):

<repeating Employee script="L_Employee" stop=20cm>

<header atstart+>

...

<end header>

<footer atend+ pagebottom->

<hline>

<end footer>

{:line

.EmployeeNumber .Name1 .Telephone;

}

<end repeating>

<goto bottom=10cm>

<hline>

"Check":color=red:italic+:fontsize=24:right

The stop attribute ensures that no content of the block is written below a line 20cm from the page

bottom. After the loop has finished, the goto tag moves the printing position to a line 10cm from

the page bottom.

Grammar

Maconomy Printing Language (MPL) 114

Grammar

This section provides an easy-to-use overview of the syntax of MPL. The first section contains a
definition of the language syntax in the form of a BNF (Backus-Naur Form) diagram, and the
following section contains an overview of the MPL tags and their attributes.

Backus-Naur Form (BNF)

The syntax is described in a variant of the Backus-Naur Form. The notation (abbreviated BNF) is a
precise method for describing valid language constructions.

Terminal symbols are written in the typewriter font, non-terminal symbols as regular text,

and grammar primitives in CAPITALS.

Terminal symbols are characters that should be written as they appear. Non-terminal symbols
are symbols that are defined by the grammar. Grammar primitives are similar to non-terminal
symbols, but they are typically more fundamental and are defined less formally.

If a symbol s can be left out, it is written as s0. If s can appear any number of times (0 or more), it is
written as s*, and if s should only appear at least once (that is, once or more), it is written as s+. If
either s1 or s2 is to appear, it is written as s1|s2.

In BNF, you would normally use the form [s], but because the square brackets occur in the
grammar, that notation would make the grammar hard to read.

Syntax

The grammar primitives ID, STRING, INTEGER, LENGTH, and BOOLEAN are explained in
“Attribute Values” in “Basic MPL.” STRING2 is a string that is specified in apostrophes, for

example, ‘abc’. RGB is a triple of integers denoting the percentage of the colors red, green, and

blue, respectively, for example, (100,50,0).

Start <mpl 2>

<layout Attributes>

Page

Margin0

Grid0

Frontpage0

Paper

Page <page Attributes>

Margin <margins Attributes>

Grid <grid Attributes>

Grammar

Maconomy Printing Language (MPL) 115

Frontpage <frontpage Attributes>

Definition*

Elem*

<end frontpage>

Paper : paper Attributes> Definition*

Elem+

<end paper>

| <paper Attributes> Definition* FrameOrg

<end paper>

Header : <header Attributes> Definition*

Elem*

<end header>

Footer : <footer Attributes> Definition*

Elem*

<end footer>

Canvas : <canvas Attributes> Definition*

Elem*

<end canvas>

Conditional : <conditional Attributes> Definition*

Elem*

<end conditional>

Repeating : <repeating Attributes> Definition*

Elem*

<end conditional>

Island : <island Attributes> Definition*

Elem*

Grammar

Maconomy Printing Language (MPL) 116

<end island>

Stack : <stack Attributes> Definition*

Elem*

<end stack>

Span : Definition*

Elem

<end span>

| (Definition* Elem) Shortattributes

Array : <array Attributes>

Elem+

<end array>

| { Shortattributes Elem+ }

Elem : Conditional

Paper : <paper Attributes> Definition*

Elem+

<end paper>

| <paper Attributes> Definition* FrameOrg

<end paper>

Header : <header Attributes> Definition*

Elem*

<end header>

Footer <footer Attributes> Definition*

Elem*

<end footer>

Canvas : <canvas Attributes> Definition*

Elem+

Grammar

Maconomy Printing Language (MPL) 117

<end canvas>

Conditional : <conditional Attributes>

Definition*

Elem*

<end conditional>

Repeating : <repeating Attributes>

Definition*

Elem*

<end repeating>

Island : <island Attributes> Definition*

Elem*

<end island>

Stack : <stack Attributes> Definition*

Elem*

<end stack>

Span : Definition*

Elem

<end span>

| (Definition* Elem) Shortattributes

Array : <array Attributes>

Elem+

<end array>

| { Shortattributes Elem+ }

Elem : Conditional

| Repeating

| Array

Grammar

Maconomy Printing Language (MPL) 118

| Text

| Field

| Variable

| Island

| Stack

| Skip

| Canvas

| Line

| Border

| Newpage

| Header

| Footer

| Row

| Span

| Hline

| Vline

| Image

| Goto

| Title

Row : <row> Attributes>

Elem+

<end row>

| Elem+; Short attributes

Text : <text Attributes>

| STRING Short attributes

Text2 : <text2 Attributes>

| STRING2 Short attributes

Grammar

Maconomy Printing Language (MPL) 119

Field : <field Attributes>

| ID0.ID Short attributes

Variable : <var Attributes>

| ID Short attributes

Title <title Attributes>

| [ID] Short attributes

| ID0.ID Short attributes

Line : <line Attributes>

Border : <border Attributes>

Newpage : <newpage Attributes>

Hline : <hline Attributes>

Vline : <vline Attributes>

| | Short attributes

Skip : <skip Attributes>

Image : <image Attributes>

Goto : <goto Attributes>

Definition : defaultdef

| RulerDef

| Setlength

Setlength : <define Attributes>

| <redefine Attributes>

Defaultdef : <default Attributes>

RulerDef : <ruler Attributes>

| <subruler Attributes>

Attributes : Attribute*

Shortattributes : (:Attribute)*

Grammar

Maconomy Printing Language (MPL) 120

Attribute : ID = Attributevalue

| ID+

| ID-

| Attributevalue

Attribute value : BOOLEAN

| INTEGER

| STRING

| ID

| RGB

| Length

| (Length, Length)

| List

Paper : <paper Attributes>

Definition*

Elem+

<end paper>

Header : <header Attributes>

Definition*

Elem*

<end header>

Footer : <footer Attributes>

Definition*

Elem*

<end footer>

Canvas : <canvas Attributes>

Definition*

Grammar

Maconomy Printing Language (MPL) 121

Elem+

<end canvas>

Conditional : <conditional Attributes>

Definition*

Elem*

<end conditional>

Repeating : <repeating Attributes>

Definition*

Elem*

<end repeating>

Island : <island Attributes>

Definition*

Elem*

<end island>

Stack : <stack Attributes>

Definition*

Elem*

<end stack>

Span :

Definition*

Elem

<end span>

Array : <array Attributes>

Elem+

<end array>

| { Shortattributes Elem+ }

Grammar

Maconomy Printing Language (MPL) 122

Elem : Conditional

| Repeating

| Array

| Text

| Field

| Variable

| Island

| Stack

| Skip

| Canvas

| Line

| Border

| Newpage

| Header

| Footer

| Row

| Span

| Hline

| Vline

| Image

| Goto

| Title

Row : <row Attributes>

Elem+

<end row>

| Elem+; Short attributes

Text : <text Attributes>

Grammar

Maconomy Printing Language (MPL) 123

| STRING Short attributes

Text2 : <text2 Attributes>

| STRING2 Short attributes

Field : <field Attributes>

| ID0.ID Short attributes

Variable : <var Attributes>

| ID Short attributes

Title : <title Attributes>

| [ID] Short attributes

| [ID0 .ID] Short attributes

Line : <line Attributes>

Border : <border Attributes>

Newpage : <newpage Attributes>

Hline : <hline Attributes>

Vline : <vline Attributes>

| | Short attributes

Skip : <skip Attributes>

Image : <image Attributes>

Goto : <goto Attributes>

Definition : Defaultdef

| RulerDef

| Setlength

Setlength <define Attributes

| <redefine Attributes>

Defaultdef : <default Attributes>

RulerDef : <ruler Attributes>

Grammar

Maconomy Printing Language (MPL) 124

| <subruler Attributes>

Attributes : Attribute*

Shortattributes : (:Attribute)*

Attribute : ID = Attributevalue

| ID+

| ID-

| Attributevalue

Attribute value : BOOLEAN

| INTEGER

| STRING

| ID

| RGB

| Length

| (Length, Length)

| List

| Ruler

| SubRuler

Length : LENGTH

| ID

Ruler : [(ColSep0 Col)+ ColSep0]

Col : [Attributes]

ColSep : LENGTH

| Vline

| Text

SubRuler : [Col+]

List : [ID (, ID)*]

Grammar

Maconomy Printing Language (MPL) 125

Attribute List

The following table is a list of tags that are used in MPL and the attributes that belong to each tag.
To improve readability, some attributes, which are shared between many tags, have been
assembled into attribute groups.

The first column displays the tag name, and the second column displays attributes or groups of
attributes that you can assign to the tag in question. Attribute group names are written in italics. If
an attribute group is available in a tag, it means that all of the attributes that belong to that group
are available in the tag. At the end of this section is a table of the attributes that are available within
each attribute group.

The third, fourth, and fifth columns contain information about the use of the current tag: “M” stands
for mandatory, “N” stands for nameless, and “S” specifies that the tag is nameless in a possible
short form. The sixth column displays the attribute value type.

Tag Attribute M N S Type

array ruler
pos
indent
height
width
baseline

M

N
N

S
S

ID >> Ruler
POS
LENGTH
LENGTH
LENGTH
ID

assign (MPL 4) var
value

M
M

N
N

 ID
EXPRESSION

border top
bottom
style

 LENGTH
LENGTH

canvas pos
indent
height
width
style
block

M

M
M

N POS
LENGTH
LENGTH

concat pos
indent
width
justification
style
wrap

 N

N

S

POS
LENGTH
LENGTH
ID

conditional variable
script
indent
height
negate
width
baseline
style
block

M N
N

 ID
STRING
LENGTH
LENGTH
BOOLEAN
LENGTH
ID

Grammar

Maconomy Printing Language (MPL) 126

Tag Attribute M N S Type

expression (MPL 4) N EXPRESSION

cursor (MPL 4) query
name
showmaincursor

M N ID
ID
BOOLEAN

default attribute
value
tag

M
M
M

 ID

Any

define name
value
orientation

M
M

N
N

 ID
LENGTH
ID

eval (MPL 4) expression
zerosuppression
pos
indent
width
justification
style
wrap

M

M

N

N

S

EXPRESSION
BOOLEAN
POS
LENGTH
LENGTH
ID

field
(desupported in MPL 4)

data
cursor
zerosuppression
pos
indent
width

M

M

N

N

S

ID
ID
BOOLEAN
POS
LENGTH
LENGTH

footer onlastpage
attend
script
height
style

N

 BOOLEAN
BOOLEAN
STRING
LENGTH

frame height
width
style

framecolumn style

framerow style

grid hor
ver
pagebottom

M
M

 LENGTH
LENGTH
BOOLEAN

goto top
bottom

 LENGTH
LENGTH

Grammar

Maconomy Printing Language (MPL) 127

Tag Attribute M N S Type

header onfirstpage
atstart
script
height
style

N
N

 BOOLEAN
BOOLEAN
STRING
LENGTH

hline multi
columns
left
right
style

M

N

 INTEGER
INTEGER
BOOLEAN
BOOLEAN

image title
fieldname
varname
cursorname
justification
width
height
scalewidth
scaleheight
expression (MPL 4)

 N

N
N

 STRING
ID
ID
ID
ID
LENGTH
LENGTH
BOOLEAN

EXPRESSION

island title
titlejustification
titlecolor
titlergb
rounded
pos
indent
height
width
fontname
fontsize
stretch
italic
underline
bold
topmargin
bottommargin
leftmargin
rightmargin
justification
baseline
block

M

N

N

 STRING
ID
ID
RGB
BOOLEAN
POS
LENGTH
LENGTH
LENGTH
STRING
INTEGER
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
LENGTH
LENGTH
LENGTH
LENGTH
ID
ID

layout title
print
originallayout

M
M
M

N STRING
STRING
STRING

line start
end

M

 POS

Grammar

Maconomy Printing Language (MPL) 128

Tag Attribute M N S Type

style M POS

margins top
bottom
left
right

M
M
M
M

 LENGTH
LENGTH
LENGTH
LENGTH

page name
orientation

M N
N

 STRING
ID

paper cursor
script
style

 N
N

 ID
STRING

parameter name
vale

M
M

N
N

 ID
EXPRESSION

query name M N ID

redefine name
value
orientation

M
M

N
N

 ID
LENGTH
ID

repeating cursor
script
groupby
indent
height
width
style
block

M N
N
N

 ID
STRING
LIST
LENGTH
LENGTH
LENGTH

row align
height
style
block

 N S ID
LENGTH

ruler name
value

M
M

N
N

 ID
ID >> Ruler

skip height M N LENGTH

span columns M N S LENGTH

stack indent
pos
script
height
width
baseline
style

M

N
N

 LENGTH
POS
STRING
LENGTH
LENGTH
ID

Grammar

Maconomy Printing Language (MPL) 129

Tag Attribute M N S Type

block

subrulers name
value
parent

M
M
M

N
N

 ID
SUBRULER
ID

text title
pos
indent
width
justification
fontname
fontsize
bold
italic
underline

M

M

N
N

N

S

S

STRING
POS
LENGTH
LENGTH
ID
STRING
INTEGER
BOOLEAN
BOOLEAN
BOOLEAN

text2 same attributes as text

val (MPL 4) name
value
type

M
M

N
N

 ID
EXPRESSION
ID

var

(de
su
pp
ort
ed
in
MP
L
4)

data
zerosuppression
pos
indent
width
justification
style

M

M

N

N

S

S

ID
BOOLEAN
POS
LENGTH
LENGTH
ID

var (MPL 4) name
value
type

M
M

N
N

 ID
EXPRESSION
ID

vline justification
style

 N S ID

Col stretch
width
style

N

S

BOOLEAN
LENGTH

ColSpec interval M N S INTERVAL >>
INTEGER

title fieldname
varname
cursorname

ID
ID
ID

Grammar

Maconomy Printing Language (MPL) 130

Tag Attribute M N S Type

uppercase
title
width
style

N

STRING
LENGTH

Attribute Group List

The following is a table of attribute groups that can be used for several tags, namely the ones
where the group name in question appears in italics in the Attribute column in the attribute list. In
this table, the first column displays the attribute group name. The Attribute column shows the
attributes that are available in tags where the attribute group in question is available.

Group Attribute M N S Type

style justification2
fontname
fontsize
bold
italic
underline
color
rgb
dateformat3
timeformat
amountformat
realformat
integerformat
booleanformat

N

S

ID
STRING
INTEGER
BOOLEAN
BOOLEAN
BOOLEAN
ID
RGB
STRING
STRING
STRING
STRING
STRING
STRING

block keeptogether
movepos
stop

 BOOLEAN
BOOLEAN
LENGTH

wrap wrap
lines
height

 BOOLEAN
INTEGER
LENGHT

MPL for Universe Reports

This section describes a number of MPL extensions that have been created to support Maconomy
Universe Reports. Universe Reports are used in the Maconomy Portal to create dynamic,
interlinked reporting tools using HTML or PDF to display output. The layout of such reports is
based on MPL. However, you cannot use all MPL commands in Universe Reports. For a list of the
MPL features that are not available in Universe Reports, see “Standard MPL vs. Reporting MPL.”
Conversely, you cannot use the MPL extensions for Universe Reports in standard MPL used for
the layout of printed reports, unless specifically stated.

2 This attribute is nameless for the long form of the tag text, and the short form of the tags
text, field, and var.

3 Format attributes are used in MPL for Universe Reporting. See “Formats.”

Grammar

Maconomy Printing Language (MPL) 131

A Universe Report is generated using MQL statements. The Maconomy Query Language (MQL) is
a language for interacting with the Maconomy database. In structure, it is similar to SQL, but there
are a number of differences.

 With MQL, you do not have to be aware of the relation structure of the database.

 The data model is separated from the command—in MQL, the data model is defined in
universes.

 MQL is aware of the Maconomy types, and the types are validated before command execution.

 MQL is database-independent.

In MQL, data is selected using an mselect statement. For more information, see the “MQL

Language Reference.”

The extensions can be divided into three categories: links, tables, and charts. The following
sections describe these extensions.

Links

Using the parenthetical tag link, you can add a hypertext link in the report. The syntax of links is

the following:

<link attributes>

...

<end link>

The hyperlink that is specified in the attributes can be a regular URL, possibly with parameters; it
can be a JavaScript; or it can be a link to a Portal component or another Universe report. The

link tag has the following attributes:

 href specifies the address (URL) of the link. The attribute has the type STRING. If the tag is

specified, the link opens a browser window to the specified URL. If a parameters attribute is

specified, the parameters are added to the URL in the form described below.

 script specifies a piece of JavaScript code. The attribute has the type STRING. If the tag is

specified, the specified script is executed when the link is clicked. You cannot combine this
attribute with other attributes. For example:

field2:script="var x=’Hello World’;alert(x);"

 component specifies the name of a Portal component that will be opened when the link is

clicked. The attribute has the type STRING. This attribute is usually used in conjunction with

the parameters attribute (see below).

 report specifies the name of another report that will be called when the link is clicked. This

attribute is usually used in conjunction with the reportsetup and parameters attributes

(see below).

 reportsetup specifies how a linked report should be called. This attribute currently takes one

parameter of the type PARAMLIST, namely rpAction. If the reportsetup attribute is not

specified, the linked report will open with an empty selection criteria selection window. This

attribute only has effect when used in conjunction with report. See the description of

parameters below for an example.

This parameter takes the following values:

 drill: If this value is specified, the report will take the parameters specified through the

parameters attribute and use them in the selection criteria specification window, if

possible, and open the report directly, if possible (that is, if all mandatory selection fields

Grammar

Maconomy Printing Language (MPL) 132

are completed). Furthermore, it will be possible to return to the original report (a drill-down
path is displayed).

 drillaround: This value essentially does the same as drill, except that the old report

is not entered in the drill-down path, but replaced by the new report. This is useful if two
different reports present the same data in different ways and therefor exist at the same
level in the drill-down hierarchy.

 edit: This value forces the user to specify selection criteria by opening the selection

criteria specification window before drilling down.

 parameters specifies parameters that are to be added to the URL specified in the href,

component, or report attributes. The attribute has the type PARAMLIST. The parameters

can be the content of fields in the underlying MQL mselect statement, variables, or text. When

this attribute is specified, the parameters are added to the URL (as specified in the href,

report, or component attribute) in the following form:

<URL>?param1=value1¶m2=value2

Example of the use of parameters in conjunction with report as a link from a table field:

.EmployeeNumber

:report="Demo::ByJob"

:parameters=

[

ParEmployeeNumber=.EmployeeNumber

]

:reportsetup=[rpAction="drill"]

 transferparameters: This attribute is of type BOOLEAN. If this attribute is set to true, all

MRL parameters from the current report are automatically transferred as parameters in the link
to the next report. This is useful if universe reports that consist of several MRL definitions
share parameters. The attribute only has effect for report links.

 target specifies the target window of the link. The attribute is of type ID, and possible values

are self (replace the current window or frame), new (show in a new browser window), and

rightside (show to the right of the Portal). The attribute is ignored for report links and has no

effect for script links. For component and href links, the default is rightside.

Note that the link attributes can be added to a number of different MPL tags. Apart from the link

tag, the following tags accept the link attributes. Links are of course only relevant in reports in
HTML or PDF formats:

 text (see “Texts”)

 field (see “Fields”)

 var (see “Variables”)

 text2 (see “Alternative text tag”)

 image (see “Images”)

 title (see “Title”)

 fields (see “Tables”)

Grammar

Maconomy Printing Language (MPL) 133

Tables

Tables are a very common feature in reports, and the generation of tables has been simplified with

the MPL table tag. This tag is a form of preformatted template, where an HTML or PDF table is

generated by iterating through a cursor. This section describes:

 Syntax of the table tag

 Layout of individual fields

 Attributes applicable to fields tag

 Attributes applicable to individual fields

 Table headers and footers

 Example

Syntax of the Table Tag

The general syntax of tables is the following:

<table cursor=cursorName>

<fields>

.field1

.field2

...

.fieldN

<end fields>

<end table>

The attribute cursor is mandatory and should be the name of the cursor that contains the

mselect result columns to be shown in the table. The cursor is defined in MQL using the as

cursor keyword.

You can only use the table tag in stacking environments; that is, you cannot place a table in an

array row or a canvas.

If you want to show all of the fields that are contained in the current cursor, the following short-
hand is available:

<table cursor=cursorName>

<fields>

*

<end fields>

<end table>

The order of the fields in the table is determined by the way in which the underlying mselect

statement chose to sort the current cursor.

You can exclude fields or apply various formatting by combining the asterisk (*) notation with

explicit field references (the table tag is left out from the examples from now on):

<fields>

*

.field5:hidden+

.field6:color=red

<end fields>

Grammar

Maconomy Printing Language (MPL) 134

This will display all fields with the exception of field5. Furthermore, field6 is colored red.

There can be a maximum of one asterisk in a fields section. All fields in the current cursor that

have not been explicitly referenced anywhere in the fields section will be placed in the location of

the asterisk, in the order in which they appear in the cursor.

You can nest tables. If the underlying mselect statement has defined two cursors, you can add a

new table tag within the first table tag using the new cursor name like this:

<table cursor=cursorName1>

<fields>

.field1

.field2

<end fields>

<table cursor=cursorName2>

<fields>

.field1

.field2

...

.fieldN

<end fields>

<end table>

<end table>

This enables you to group entries within a table. For an example of this, see “Example” below.

Layout of Individual Fields

You can hide or apply special formatting to individual fields by applying attributes directly to the
fields, for example:

<fields>

.field1:bold+

.field2:bold+

.field3:hidden+

*

.field6:color=red

<end fields>

The following attributes can be applied to individual fields:

 href, script, parameters, component, report

These tags allow you to add links to the fields in the table. For more information, see
“Links.”

 Attributes in the attribute group “style”

For more information, see “Attribute Group List.”

Note that you can place other elements than fields in the fields section of the table tag. Texts,

titles, images, and stacks can also be inserted in the report columns. When using a stack, the
stack can only contain elements of the same type, for example, a stack of images. For more
information, see “Texts,” “Title,” “Images,” and “Stacks.” For instance, you can use a stack like
this:

<fields>

Grammar

Maconomy Printing Language (MPL) 135

.field1:bold+

.field2:bold+

<stack>

.field3

.field4

.field5

<end stack>

.field6:color=red

<end fields>

This will place the contents of fields 3 to 5 in the same table cell, written above one another.

Note that both the long form and the short form can be used when specifying tags. In the examples
in this section, only the short forms are used.

Attributes Applicable to Fields Tag

Instead of applying attributes to the individual fields, you can add attributes to the fields tag.

Attributes specified for individual fields will then overwrite the attributes specified in the fields

tag. In the following example, all fields except field6 are colored blue:

<fields:color=blue>

*

.field6:color=red

<end fields>

The attributes which you can use are the same as those mentioned above for the individual fields,

with the exception of hidden. See also “Style Inheritance.”

Formats

The output formats for fields (and variables) are by default the formats that are set up by the client
that is connected to the server. For Universe Reports, the client is the web server, so the format
settings are defined by the M-Script format settings. You can change these formats locally in a
report by using these format attributes:

 dateformat

 timeformat

 amountformat

 realformat

 integerformat

 booleanformat

These attributes are all of type STRING, and their values should be a (valid) format string for the
type that they represent. See the M-Script manual for a description of format strings.

The format attributes are part of the style attributes (see “Attribute Group List”) and can therefore
be added to any tag in MPL. They are inherited in the same way as style attributes.

Example

<fields dateformat="E:DDMMYY">

.dateField1

.dateField2:dateformat="E:YYDDMM"

Grammar

Maconomy Printing Language (MPL) 136

<end fields>

Here dateField1 will be written as "DD:MM:YY," whereas dateField2 will be written as

"YY:DD:MM".

As a special case, specifying the empty string as the value for a format attribute is interpreted as
the default format attribute value.

Example

<fields dateformat="E:DDMMYY">

.dateField1

.dateField2:dateformat=""

<end fields>

Here dateField1 will be written as "DD:MM:YY," whereas dateField2 will be written in the

default format.

A warning is issued if you specify an invalid format value or if you specify a format attribute on a
field (or variable), where the type of the field does not match the type of the attribute (for example,
a date format attribute on a time field). In both cases, the format attribute that caused the error is
ignored.

Attributes Applicable to Individual Fields

All of the attributes mentioned in “Attributes Applicable to fields Tag” and “Formats” can be applied
to individual fields as well. Apart from those, the following attributes can be applied to individual
fields:

 headertitle

Using this attribute, you can assign your own header to the column represented by the field.
For instance, if you want to change the default header “Description” for the field

.Activity, you can write the following:

.Activity:headertitle="Act. Name"

This example will output the header “Act. Name” above the “Activity” column. The

alternative to using the headertitle attribute is to specify a field in a separate header

(see “Table Headers and Footers”). A separate header is, for example, useful if you want to
add attributes to the header text. If, for instance, you add:

:color=red to the example above, the field will be colored red, not the header

text.

 footerfunction

Using this attribute, you can replace the default footer function with another function

specified in the MQL aggregate option. The default function is SUM. If the specified

function is not defined in the underlying mselect statement, no footer is displayed. For

more information, see the MQL Reference manual. For example:

.RegTime:footerfunction="Max"

This example will output the maximum number of registered hours below the “RegTime”

column. The alternative to using the footerfunction attribute is to specify a field in a

separate footer (see “Table Headers and Footers”).

 hidden

Using this attribute, you can hide the current field. See “Syntax of the Table Tag” for an
example of this.

Grammar

Maconomy Printing Language (MPL) 137

 tooltip

Using this attribute, you can add a tooltip text to the current field. The type of this attribute
is STRING. The tooltip is naturally only displayed in HTML output, even though you can
assign it in MPL layouts for printed output. For example:

.field2:tooltip="Click here to open the MyCustomer component showing the

current customer."

Table Headers and Footers

Headers and footers are enabled by default in tables. If you do not want a header or footer in a

table or nested table, add the attribute header- and/or footer- to the table tag:

<table cursor=cursorName header- footer- >

However, you can also add your own headers and footers to the table using the parenthetical tags

header and footer. The following example shows the syntax:

<header>

"Title for field1"

"Title for field2"

*

"Title for fieldN"

<end header>

<footer> "Total Time"

*

.RegTime$Sum:color=red

<end footer>

In the footer example, the field .RegTime$Sum is the result of the underlying MQL creating a sum

field. Any function that is used in a footer must be made available by the underlying MQL

statements (see also the description of the attribute footerfunction above).

For nested tables, headers can only be specified for the outermost table. Footers, however, can
(must) be specified for each table. You can add multiple headers to a table by repeating the

header tag. Note also that the use of the tags header and footer overwrites the specifications

in the headertitle and footerfunction attributes.

You can make headings in a header span multiple columns using the same technique as for
columns in regular MPL (see “Spanning Columns”). For example:

<header>

"Title for field1"

("Title for field2 and field3"):2

<end header>

If a span exceeds the number of available columns, the span is automatically reduced to match the
number of available columns.

Furthermore, you can use fields, titles, and images in headers and footers. For example:

<header>

"Employee Name"

*

<image title="MyImages\regtime.png" scaleheight- height=100pt>

<end header>

Grammar

Maconomy Printing Language (MPL) 138

You can add more headers to a table, simply by specifying multiple header tags. If you want to

use the title of a field as a header, you can reference the field’s title using the common MPL

syntax: [.field]. You can also reference fields that are beyond the scope of the current cursor

by qualifying the name with the full cursor path to the desired field, relative to the context that you

are in. For example, if the outer table uses cursor EmployeeCursor, but you really want the title

of a field in the embedded cursor ActivityCursor, you can use the following path within a
header tag:

[EmployeeCursor.ActivityCursor.Activity]

Example

Below is a basic example of the use of the table tag. This example will be expanded as all of the

features of this tag are explained.

<table cursor=EmployeeCursor>

<fields>

.EmployeeName

.Activity

.RegTime

<end fields>

<end table>

This example will yield a simple list of employee registrations:

Employee Name Description Registered Time

Joe Daniels Carpentry 20.0

Jack Johnson Photo Copies 26.0

Jack Johnson Consulting 25.0

Jack Johnson Photo Copies 4.0

Sally Rogers Photo Copies 5.0

 80.0

Now we want to avoid the repetition of the employee name, and we want different titles for our
header. The titles are by default the visible title (label) of the referenced field. Fortunately, our

mselect statement has defined another cursor as well, so we use a nested table with the cursor

ActivityCursor:

<table cursor=EmployeeCursor>

<header>

"Employee Name"

"Act. Name"

"Registered Time"

<end header>

<fields>

.EmployeeName

<end fields>

Grammar

Maconomy Printing Language (MPL) 139

<table cursor=ActivityCursor>

<fields>

.Activity

.RegTime

<end fields>

<end table>

<end table>

Employee Name Description Registered Time

Joe Daniels Carpentry 20.0

 20.0

Jack Johnson Photo Copies 26.0

 Consulting 25.0

 Photo Copies 4.0

 55.0

Sally Rogers Photo Copies 5.0

 5.0

 80.0

To remove the subtotals from the table and leave only the grand total, add the attribute footer-

to the inner table. Also add a bolded footer text to the first column:

<table cursor=EmployeeCursor>

<header>

"Employee Name"

"Act. Name"

"Registered Time"

<end header>

<footer>

"Total Time":bold+

<end footer>

<fields>

.EmployeeName

<end fields>

<table cursor=ActivityCursor footer->

<fields>

.Activity

.RegTime

<end fields>

<end table>

<end table>

Grammar

Maconomy Printing Language (MPL) 140

Employee Name Description Registered Time

Joe Daniels Carpentry 20.0

Jack Johnson Photo Copies 26.0

 Consulting 25.0

 Photo Copies 4.0

Sally Rogers Photo Copies 5.0

 80.0

If you want to consolidate the activities (for example, to avoid multiple entries for “Photo Copies”

for the same employee), an additional cursor is needed in the underlying mselect statement,

which could then be incorporated in another nested table in MPL.

Charts

Charts are diagrams which depict report data graphically. Currently, MPL supports pie charts and
bar charts.

Charts are currently considered one entity. This means that they cannot be broken into several
pages in a PDF. If a chart does not fit on a page, the excess part is cut off. This is similar to
specifying an image that is too large for one page in regular MPL. However, this restriction will be
resolved in the near future.

Pie Charts

The syntax of a pie chart is as follows:

<piechart cursor=cursorName height=xxxpt>

<legend>

.field3

<end legend>

<fields>

.field1

.field2

<end fields>

<end piechart>

This will draw two pie charts for field1 and field2, respectively. The default title of the field is

printed above each chart.

The pie chart definition is similar to the table definition, with the legend tag taking the place of the

header tag. Therefore, the description of the pie chart will focus on where the specification is

different from the table definition.

The cursor attribute is not mandatory, but is usually assigned a value. See “Cursorless Charts.”

The cursor contains the columns available in the result of the underlying mselect statement. The

attribute height is mandatory. The height attribute denotes the height of the chart excluding any

legend.

Grammar

Maconomy Printing Language (MPL) 141

The legend tag prints a legend that consists of colored boxes and the default text of the

referenced field. You can in principle add any MPL inside the legend tag, but you should keep the

legend simple. For instance, you can change the text that is displayed using the attribute

headertitle (see the description in “Attributes Applicable to Individual Fields”).

Also note in this connection that the fields section is not mandatory. This enables you to print

the chart legend separately from the actual chart, even in another frame (see the example in
“Frames”).

The titles of the referenced fields are shown in the pie chart. You can add links to the fields, and
you can add style information similar to ordinary table fields. The style is reflected in the title of the
fields.

Note that the use of the * wildcard in the list of fields in the fields tag is not supported. The

wildcard is ignored.

Bar Charts

The bar chart definition is very similar to that of the pie chart:

<barchart cursor=cursorName height=xxxpt>

<legend>

.field3

<end legend>

<fields>

.field1

<end fields>

<end barchart>

The height attribute specifies the height of the y axis of the chart.

You can use bar charts in two ways. In the preceding example, the title of the field that is

referenced in the legend tag is printed along with a colored box below the x axis as a caption for

the chart. The individual values of field1 are used as bars in the chart.

If you add more fields in the fields section of the bar chart definition, a bar will be shown with

the sum of the referenced columns—that is, a bar for each referenced field. Each bar will have a
different color, which is also reflected in the bar chart legend.

The bar chart has two additional, optional attributes:

 interbarspace: This attribute is of the type LENGTH. If you, for example, assign a value of

2pt to this attribute, the individual bars in the chart will be spaced 2 points apart. For example:

<barchart cursor=EmployeeCursor height=100pt interbarspace=2pt>

 maxbarwidth: This attribute is of the type LENGTH. The bar width is by default calculated by

dividing the width of the bar chart by the number of bars (and any space between). However,
when the number of bars is low, this can produce very wide bars. To avoid this, MPL operates
with a default maximum bar width of 20pt. You can change the maximum bar width by adding

the attribute maxbarwidth to the barchart tag. For example:

<barchart cursor=EmployeeCursor height=100pt interbarspace=2pt

maxbarwidth=16pt>

Cursorless Charts

Even though charts are usually based on cursors, you can create them without using a cursor from

an mselect statement, simply by omitting the cursor attribute from the pie chart or

Grammar

Maconomy Printing Language (MPL) 142

barchart tags. When no cursor is used, the chart picks its data from the currently active row in

the MSelect statement.

When you specify a chart without a cursor, the headertitle attribute and the legend tag change

their meaning: headertitle (or, if omitted, the default title) will function as the legend beneath the

x axis in bar charts, and the legend is used as a title and is printed above the chart.

Frames

In the Portal, dashboards are used for organizing multiple Portal components and reports into one
view. Using MPL, you can show the top-level layout of Universe Reports in a dashboard-style
layout using frames. This can, for example, be used for combining multiple reports in one view.

A frame has a fixed size. If the size is insufficient to hold the content of the frame, a scrollbar will
appear in the HTML output from the report. In PDF output, overflow is clipped, and little red arrows
will indicate that clipping has been performed.

You can only specify framesets (the sequence of frames) at the top level, in the paper tag.

Dashboard-style framesets are organized using framerow and framecolumn tags, which can

be nested arbitrarily. The frame tags are placed inside the frame rows and columns.

All the frame-related tags can take the style attributes (which will affect the content). For more
information, see “Attribute Group List.”

framerow

A frame row is created using:

<framerow attributes>

...

<end framerow>

Frame rows can be nested in other frame rows or columns. Note that frames defined within a

framecolumn without a surrounding framerow tag will be organized in rows.

framecolumn

A dashboard column is created using:

<framecolumn attributes>

...

<end framecolumn>

Frame columns can be nested in other frame columns or rows. Note that frames defined within a

framerow without a surrounding framecolumn tag will be organized in columns.

frame

The frame itself is specified using the parenthetical frame tag:

<frame attributes>

...

<end frame>

The behavior of a frame can be modified using the following attributes:

 height is used to specify the height of the frame’s contents. If this attribute is not specified, the

contents of the frame will determine its height. The attribute has the type LENGTH.

Grammar

Maconomy Printing Language (MPL) 143

 width is used to specify the width of the frame’s contents. If this attribute is not specified, the

contents of the frame will determine its width. The attribute has the type LENGTH.

The framedefinition is any content—for example, text, a pie chart, or a table.

Example

The following is an example of a dashboard that is created by using MPL (annotations are
described below):

<mpl 2>

<layout>

<paper>

1 <framecolumn>

2 <frame>

"Information about Employee":fontsize=16:bold+

<end frame>

3 <framerow>

4 <frame width=70pt>

<piechart Employeecursor height=50pt >

<fields>

.costprice:headertitle="Cost price"

<end fields>

<end piechart>

<end frame>

<frame width=70pt>

<piechart Employeecursor height=50pt >

<fields>

.salesprice:headertitle="Sales price"

<end fields>

<end piechart>

<end frame>

<frame width=100pt fontsize=7>

<piechart Employeecursor height=70pt>

<legend>

.name1

<end legend>

<end piechart>

<end frame>

<end framerow>

5 <frame height=100pt width=240pt>

<table Employeecursor>

<fields>

.name1:headertitle="Name of Employee"

.costprice:headertitle="Cost price"

.salesprice:headertitle="Sales price"

<end fields>

<end table>

<end frame>

6 <end framecolumn>

Grammar

Maconomy Printing Language (MPL) 144

<end paper>

This layout yields the following result, where the defined frames are marked:

Annotations

1. First, a frame column is defined.

2. In the column, frame a is inserted (the heading text).

3. Then a frame row within the frame column is defined, containing three frames (b-d). The
frames are “stacked” horizontally within the row; that is, they are placed next to each other,
moving right.

Note that a specific width is applied to the frames within the frame row.

4. After the <end framerow> tag, a new frame is inserted. This is stacked in the column; that is,

it is placed below the preceding frame. This frame (that contains the table) is given a fixed
height and width; this is typically necessary because the size of a table cannot be calculated
without knowing its content. It is not necessary to give a size to the frames that contain the pie
charts (frames b and c). We have chosen to do it in this layout, however, to align the pie chart
row with the table below.

5. The frame column is ended.

The PDF version of the same layout is shown below. Note the little red markers that indicate that
part of the frame is missing.

Grammar

Maconomy Printing Language (MPL) 145

Calculating MPL Attribute Values Using M-Script

Maconomy Printing Language (MPL) 146

Calculating MPL Attribute Values Using M-Script

This section contains a description of how to modify your layouts on the fly by calling M-Script
functions from the layout. This functionality was introduced to support Traffic Lighting, for example,
assigning a certain color to the content of a field depending on the value of the field. However, the
functionality has a number of additional uses.

To calculate the value of an attribute, assign the attribute value to an M-Script function and pass

parameters to the function like this: attributename=f(a1,...,an) where f is any M-Script

function name that is defined in the M-Script package that is associated with the current report,

and the arguments a1 - an consist of fields or constants.

Do not use this functionality for complex M-Script calculations or large SQL queries, because
performance will be too slow. To access the database, use the MQL part of the report.

You can achieve special layout effects by using global M-Script variables; for example you can
color every other table row. However, because of the internal structure of the compiled MPL
layouts, unpredictable side effects may occur, of which you should be aware.

Attributes and Return Value Types

The following table lists the MPL attributes for which a value can be calculated in M- Script and the
expected type of the value that is returned by the M-Script function.

Attribute Name Return Value Type

rgb | titlergb struct: {r: v1, g: v2, b: v3}

-where vn are integers

color | titlergb | fontname | component

| href | target | report | justification

| title (on both text and island tags) |

headertitle

STRING

bold | italic | underline |

zerosuppression

BOOLEAN

fontsize INTEGER

interbarspace | maxbarwidth struct { val: v, unit: s }

-where v is a REAL (the length value)

and s is a STRING ("pt", "in", "mm"

or "cm")

Calculating MPL Attribute Values Using M-Script

Maconomy Printing Language (MPL) 147

Attribute Name Return Value Type

pos struct { x: v1, xunit: s1, y: v2, xunit: s2 } -where

v1 and v2 are REAL (the length values) and s1

and s2 are STRING ("pt", "in", "mm" or "cm")

Note that no automatic conversion is performed. A function that returns {val:9,unit:"pt"} to

the attribute interbarspace will give a runtime error.

Instead, return {val:real(9),unit:"pt"} (or just 9.0).

The type of the parameters that are passed to the M-Script function is the original database type.

Returning Null from an M-Script Function

To call an M-Script function without applying the return value to any tag, use the tag

functioncall. This functionality is, for example, used for initializing and updating global

variables in the M-script before other functions are called.

functioncall < functioncall call=f(…) >

 call is the only attribute, and it is mandatory. The short form is simply f(…). If the tag is used

in rows, it counts as an element, but nothing is shown. Note that f must be a function, but the

value is ignored, so you might just return null.

Example

Consider the following example, which calculates the color of the header title depending on the
value of the employee’s degree of utilization:

<table EmployeeCursor>

<fields>

.employeenumber

.Utilization:color=calcColor(.Utilization)

<end fields>

<end table>

For every employee in the cursor EmployeeCursor, a row is built that consists of the employee

number and the utilization of the employee. The color of the utilization percentage (the color

attribute) is determined by the M-script calcColor, which takes the MQL field .Utilization

as its parameter.

The M-script, which is defined in the M-Script package associated with the report, might look like
this:

public function calcColor(util)

{

if (util == null)

return {r:0, g:0, b:0};

if (util < 50)

return {r:100, g:0, b:0};

if (util < 70)

return {r:100, g:100, b:0};

if (util > 100)

Calculating MPL Attribute Values Using M-Script

Maconomy Printing Language (MPL) 148

return {r:0, g:100, b:0};

return {r:0, g:0, b:0};

}

If the utilization is null or between 70 and 100, the color black is returned. If the utilization is less

than 50, red is returned; if it is less than 70, yellow is returned; if it is above 100, green is returned.

Note that the util value is also tested for null. This is to catch instances where the calcColor

function is called with no value. For instance, in the preceding example, MPL automatically

transfers a default headertitle attribute, as if the layout had said:

.Utilization:headertitle=<column name>:color=calcColor(.Utilization)

Therefore, the M-Script function is called implicitly by the headertitle attribute, but without a

valid parameter. This case is caught by the M-script testing for null and then returning the color

black.

Note that attributes (in the preceding example: the color attribute) are copied to headers and

footers, and therefore the function call is copied as well. However, the parameter that is sent to the
M-script might be out of scope in the header and footer. This is a good reason to include the

possibility of a null value in your M-script.

Standard MPL vs. Reporting MPL

Maconomy Printing Language (MPL) 149

Standard MPL vs. Reporting MPL

This section contains a description of the differences between standard MPL and the MPL
extensions for Universe Reporting.

 Variables

In MPL for Universe Reporting, no MSL variables are available. The only variables that are

available are system variables, of which there currently is only one: pagenumber.

 Field sizes

Because MPL for Universe Reporting is interpreted, rather than compiled and run as for
standard prints, the real sizes of the fields are used when formatting. This means that you

do not need to set the width attribute for fields, unless you want a column to be smaller or

bigger than the text size. If you give an element in the fields section of a table tag a

specific width using the width attribute, the output is truncated to that width.

 goto and border

The goto and border tags are currently not supported in MPL for Universe Reporting. If

you use a goto or border tag in a layout, it will be ignored.

 Page width

In standard MPL, an error is issued if the width of an element exceeds the content width
(or height). For example, you will get an error or warning if you specify an island to be
wider than the page. In MPL for Universe Reporting, these checks are omitted with regard
to page width. This means that the MPL compiler does not check whether the layout
exceeds the page width. You will, however, still get a warning/error if an element exceeds
the width or height of another element, such as an island.

 layout and page

The attributes title, print, and originallayout for the layout tag are mandatory in

standard MPL, but have no meaning in the reporting context and are consequently
ignored if they are specified.

In standard MPL, you must specify the page tag. This is not the case in MPL for Universe

Reporting. If you omit the page tag, the page size is assumed to be A4. The page size is

used for calculating the location of page breaks when creating PDF output, for calculating
the width of islands, the maximum width of charts, and for right- and center-justification of
elements.

 Warnings

When standard layouts are imported (during installation or by running MaconomyServer

–UP), warnings are active; that is, layouts with warnings will be compiled and installed. In

all other cases warnings are treated as errors, and the import fails.

In MPL for Universe Reporting, when you run a report for which the layout produces
warnings, you will still get an output. However, when you install a report, all warnings are
treated as errors.

 Miscellaneous

The justification of islands has no effect on the HTML output of MPL for Universe
Reporting. Islands are always right-justified.

MPL Version 3

Maconomy Printing Language (MPL) 150

MPL Version 3

MPL version 3 is a major new version of MPL; it breaks backward compatibility in some cases, and
it provides new functionality. Since the entire MPL framework has been rewritten and moved to the
Java platform, there are a number of areas (not only in the MPL language, but also in font handling
and so forth) that have been affected by this. Additionally, a number of new features have been
added to MPL 3.

The following sections describe the new futures as well as the changed functionality.

New Features

wrap Attribute for <text>, <field>, and <var> Tags

New in Maconomy version 12 is the ability to have some text fields that can contain multiple lines
(using linefeed/newline characters). To be able to preserve this new functionality when printing, the

<text>, <field>, and <var> tags now support a new Boolean attribute wrap. The attribute has

type BOOLEAN.

When this attribute is true, text that is too long to be displayed in the width that was allocated to

the text, field, or var tag will be wrapped, resulting in text that can be more than one line tall.

Also any newline characters in the text will result in a line break.

For example, "This text\nis two lines long":wrap+ will result in this output:

The behavior of a <text>, <field>, and <var> tag with the wrap attribute, when these

attributes are defined:

 When width is not specified, the tag with wrap+ will expand to fill all available width. See

below for implications when used in a column of an array.

 When height is not specified for a <var> or <field> tag, the height of the tag becomes

unknown (because it is not known at compile time how much text the tag will contain at run
time). Therefore, when the tag is used in a context where a fixed height is required (the

canvas tag, for instance, or a stack with a specific height set), you will get a compile error.

For the text tag, the height is calculated automatically, based on what the width is set to

(recall that it will expand to fill).

 lines is an additional attribute that you can use to specify the height of the tag in terms of the

number of lines that can be shown. You can specify only lines or height, not both. The

attribute has type INTEGER.

Furthermore, you should keep these points in mind:

 Because the content of wrapped <field> and <var> tags is unknown at compile time, the

baseline for these is always set to the top line, meaning that they will be aligned with other
items in a row using the first line as the baseline.

 Even in a canvas tag, you are not required to specify width. The tag will simply stretch from

its horizontal position to the rightmost boundary of the canvas. However, you must specify

height in a canvas.

MPL Version 3

Maconomy Printing Language (MPL) 151

Implicit Conversion to Stretching Column

When a wrapped text field or var occurs as a column in an array without an explicit width, and

that column does not have any width set in a ruler definition, the ruler definition for that column is
implicitly converted to become stretchable. This is done to make as much width available for
multiline texts as possible.

In the following example, ruler1 and ruler2 are equivalent, because ruler1 becomes

[[stretch+]] by implicit conversion. Because the field in ruler3 specifies a width, the column

in ruler3 is not made stretchable. The same applies to the column in ruler4 because that

column definition specifies a width. In effect, the arrays that use ruler1 and ruler2 will stretch

to fit the entire the entire page width, while the arrays that use ruler1 and ruler2 will become 5

cm wide.

<ruler ruler1 [[]]>

<ruler ruler2 [[stretch+]]>

<ruler ruler3 [[]]>

<ruler ruler4 [[5cm]]>

<repeating MyCursor>

{:ruler1

.MultilineField:wrap+;

}

{:ruler2

.MultilineField:wrap+;

}

{:ruler3

.MultilineField:wrap+:width=5cm;

}

{:ruler4

.MultilineField:wrap+;

}

<end repeating>

The wrap attribute propagates upward in the hierarchy, so if, for example, a stack contains a

wrapped text, and the width attribute is not specified on the stack, this stack will also be

stretched and make columns stretch.

In a context where a subruler contains a tag with the wrap attribute on, the implicit stretching will

affect the root ruler column definition if there is no explicit width set (as demonstrated above). In

the following example, column 1 and 2 of ruler1 will become stretchable because the first

column of ruler2 spans those two columns:

<ruler ruler1 [[][][]]>

<subruler ruler2 parent=ruler1 [[1:2]]>

{:ruler1

...

}

{:ruler2

.MultilineField:wrap+;

}

MPL Version 3

Maconomy Printing Language (MPL) 152

concat

A new parenthetical tag, <concat>, is introduced. The <concat> tag is not a stacking tag;

instead, it can concatenate text from <text>, <field>, and <var> tags to form one single text.

This text behaves as if it had the wrap attribute set to true; that is, it will wrap if contents become

too wide or newline characters are encountered.

You can specify style attributes on the concat tag; the tags within will inherit these. Only <text>,

<field>, and <var> tags can be put inside concat. Most attributes on the <text>, <field>,

and <var> tags inside a concat will be ignored (for example the width attribute), but most style

attributes will be applied, for example:

<concat>"We confirm that " .Quantity1:bold+ " items have been ordered."<end

concat>

Indent and justification style attributes are ignored for tags inside the concat (but can be applied

to the concat tag itself).

In addition to style attributes, you can specify these attributes for the concat tag:

 width specifies whether the concat tag should have a fixed width. If this attribute is not

specified, it will expand to use all available width in its context. If it is used in a column in an

array, the concat behaves like a <text>, <var>, or <field> tag with regard to implicit

stretching of those columns; see “wrap Attribute for <text>, <field>, and <var> Tags.” The
attribute has type LENGTH.

 height specifies a fixed height for the tag. If the height is not sufficient to display the contents

when printing, only the lines that are completely visible within the available height will be shown.

Alternatively, instead of using height, you can use the lines attribute instead. Only lines or

height can be provided, not both. The attribute has type LENGTH.

 lines specifies the height of the tag in terms of number of lines that can be shown. Note that

the height of the lines depends on the font that is associated with the concat tag. If other font

sizes are used in the tags inside the concat tag, the number of lines actually shown may not

match the specified number of lines. Only lines or height can be provided, not both. The

attribute has type INTEGER.

 indent specifies an extra indentation of the text. The attribute has type LENGTH.

 pos specifies the positioning of a text element of a canvas. The attribute is nameless and has

the type POS. It can only be used when the text appears on a canvas, and is mandatory, if so
(see “Canvas” for further information about the canvas).

Furthermore, keep these points in mind:

 Because the content of a concat tag is generally unknown at compile time, the baseline for

the concat tag is always set to the top line, meaning that it will be aligned with other items in a

row using the first line as the baseline. Furthermore, using different font sizes and fonts inside a

concat can reduce the accuracy of the baseline calculations.

 Even in a canvas tag, width need not be specified. The tag will simply stretch from its

horizontal position to the rightmost boundary of the canvas. height must be specified in a

canvas though.

Conditionals

The conditional tag has been modified in several ways. You can now use a conditional on

fields (not just variables), and you can also use string fields or variables as a conditional. These

two new attributes have been added to the conditional tag:

MPL Version 3

Maconomy Printing Language (MPL) 153

 field specifies the name of the field that must be true for the contents to be printed and has

the type STRING. Note that unlike the variable attribute, this attribute cannot be nameless.

 cursor. If you want to specify the cursor from which the field should be taken, you can use this

attribute. The attribute has the type ID. If you do not specify a cursor name, the value will be
taken from the nearest cursor with a field of the specified name.

Furthermore, you can now negate a conditional (this functionality previously existed in MPL for
Universe Reports only).

If a string variable or field is used in the conditional, the conditional will evaluate to false if the

string is empty (that is, ""); otherwise, the conditional evaluates to true.

See also “Skipping False Conditionals” for the changed functionality for the conditional tag: a

false conditional no longer skips space.

Paper Orientation Change

You can now switch the paper orientation of a layout when using the newpage tag in the

outermost parenthetical tag (that is, the paper). This attribute is now recognized:

You can set the orientation to landscape or portrait. The new page after the page break will have
this orientation.

Here is a simple example:

<paper>

...

<newpage orientation=landscape> -- switch to landscape for the rest of the print

<end paper>

Note that there are some side effects:

Page headers and footers will be shown using the least width available throughout the entire print;
that is, they will not become wider when switching from portrait to landscape orientation.

Be careful when reusing ruler definitions across different paper orientations. As a general rule,
avoid using the same ruler both on a page with landscape orientation and on a page with portrait
orientation. Doing this can lead to rulers becoming too wide (in this case a compile error will be
issued).

Varying Header/Footer Height

Headers and footers no longer need to have a fixed height. This allows for using wrapped texts

and the concat tag in a header or a footer. The header and footer heights are calculated for

every page at run time. This also means that they can potentially become taller than a page,
leading to a runtime error.

Text Length Greater than 255 Characters

MPL 3 supports texts that are longer than 255 characters. Because fields and variables in
Maconomy cannot yet be longer than 255 characters, this change is only visible when using the

text or the concat tags.

Scopes

Definitions of lengths, defaults, and rulers in MPL (the define, redefine, default, ruler,

and subruler tags) can now occur anywhere. They are no longer limited to be specified in the

MPL Version 3

Maconomy Printing Language (MPL) 154

beginning of a parenthetical tag (such as stack). The definitions take effect from the point of

definition until the end of the parenthetical tag in which they occur. For example:

<stack>

<stack>

{:ruler1

... -- error: ruler1 is not yet defined

}

<ruler ruler1 [[][]]>

{:ruler1

... -- fine: ruler1 is now defined

}

<ruler ruler1 [[][][]]> -- redefinition of ruler1

{:ruler1

... -- fine: using the new definition of ruler1

}

<end stack>

{:ruler1

... -- error: ruler1 is no longer defined

}

<end stack>

goto is No Longer Allowed in Headers and Footers

You can no longer use the goto tag in headers and footers. However, because the positions of

headers and footers and footers are (mostly) fixed on the page, it is often fairly easy to translate a

goto tag into a skip tag that will place the contents in the same place on the page. For more

precise control, you can apply a <stack movepos-> with a canvas tag inside. Both solutions

are demonstrated in this example:

<margins top=46pt bottom=30pt left=44pt right=20pt>

...

<header height=110pt>

<stack movepos->

<canvas>

"At (44pt,146pt) of the page":(0pt,100pt)

<end canvas>

<end stack>

"Line 1 in the header"

"Line 2 in the header"

<skip 80pt>

"At (44pt,146pt) of the page"

<end header>

You must specify the height of the header manually, because the stack with movepos- does not

influence the height of the header. The top margin of the page plays a role in determining the
position as you can see in the preceding example; while we place the text at 100pt in the canvas,

the real position on the page is 146pt (100pt+46pt top margin). Furthermore, the <skip 80pt>

relies on each of the two lines being 10pt tall (the default baseline skip for small font sizes).

MPL Version 3

Maconomy Printing Language (MPL) 155

<newpage> in Row No Longer Allowed

You can no longer make a new page in a row, so this example:

{:ruler1

...

<newpage>;

...

}

must be rewritten as:

{:ruler1

...

}

<newpage>

{:ruler1

...

}

Skipping False Conditionals

The functionality of the conditional tag has been improved in MPL 3 (see also “Conditionals”).

An important change that can impact existing layouts is that when the content of a conditional is

not shown (because the conditional evaluates to false), the conditional leaves no blank space

where it would normally have been. For example, in MPL 2 a conditional such as:

{

"First row";

<conditional SomeVariable> Second row";

<end conditional> "Third row";

}

would always produce three rows; even if the conditional evaluated to false, and the contents of

the second row were not printed, there would be an empty row instead. Now, this row is skipped
entirely. This applies to conditionals in general, no matter where they occur: If the content of a
conditional is skipped, the surrounding block shrinks. This means that for an island such as this:

<island>

<conditional SomeVariable>

...

< end conditional>

...

<end island>

the island (including the island frame) will shrink and grow depending on whether the conditional
inside is shown or not.

However, there are some pitfalls that you must be aware of. At compile time we include the

potential height of conditionals (as if they were true) when calculating the heights of blocks. This

is necessary to check whether they can possibly fit on pages or inside a user-specified height.
Often this will not cause any problems, but if you rely on bottom baseline alignments between
stacks containing conditionals, the result might not be as expected if the conditional content is not
skipped.

MPL Version 3

Maconomy Printing Language (MPL) 156

Header and Footer Height was not Checked in MPL 2

If, for instance, the specified height of a header was less than the height actually occupied by the
content, things would just be printed on top of the header, instead of giving an error message in

MPL 2. This is no longer allowed. If you want to achieve this effect, you must use movepos- on a

stacking block inside the header.

This snippet of MPL would work in MPL 2:

<header height=60pt>

<stack height=80pt>

…

<end stack>

<end header>

but must be changed in MPL 3. You must either update the header height so that it can contain

the contents, or you must put a movepos- attribute on the stack inside (if it is intended that the

stack is higher than the header).

Too-Long Localized Strings are now Clipped

Widths of columns and other tags are calculated at compile time when importing an MPL layout.
When dynamically localizing at runtime, this can lead to the localized text becoming too wide to fit
the width that was originally calculated. Previously, this would result in this text overlapping other
texts. In MPL 3 the text is now clipped to the size of the calculated width, so it will not overwrite
other texts and will not be shown in its full length. There is one exception: In a canvas, the text is
not clipped.

Length Orientations

The distinction between horizontal and vertical lengths has been mostly removed. For instance,
this is now possible:

<define MyWidth MinBaselineSkip>

"Some text":width=MinBaselineSkip

Previously, this would not be possible because MinBaselineSkip is a vertical length, whereas the
width attribute expects horizontal widths.

The only place where the orientation of lengths remains is with lengths that come from the <grid>
tag. For instance specifying "Some text":width=2.5grid will use the horizontal grid length,

whereas height attributes will use the vertical grid length (as expected).

Minor Changes

There are some additional changes that should not influence most existing prints:

 The pagebottom attribute of the footer tag is no longer supported. It had no effect previously

anyway.

 The image tag now requires a pos attribute when placed in a canvas (like all other tags).

 The HeaderSkip length was, contrary to what the MPL manual says, not used between the

page header and a block header. Now HeaderSkip is used.

MPL Version 3

Maconomy Printing Language (MPL) 157

Converting MPL 2 to MPL 3

Most layouts will work immediately just by changing the <mpl 1> or <mpl 2> version tag to <mpl

3>. The layout should of course always be tested.

Content Becomes too Wide

In some cases the converted layout will not work out of the box; width and height calculations have
changed in MPL 3, so sometimes rulers become a few points (1pt=1/72 inch) wider in MPL 3. This
might make the ruler too wide to fit the available width (as determined by the surrounding tag, for

example, the paper tag). In this case you must reduce the ruler size by using smaller fonts,

decreasing intercolumn spacing, or by providing more space for the ruler by, for example,
decreasing page margins.

MPL Version 2 and MPL Version 3 Interoperability

In this section we describe some issues with using both MPL 2 and MPL 3 in one Maconomy
system. These are not, as such, related to the MPL language.

Customization

You can customize an MPL 2 original layout so that it becomes an MPL 3 layout, both by
shadowing the original MPL 2 layout or by importing it as a new layout.

However, after an original layout has been upgraded to MPL 3, customizing using MPL 2 is not
recommended. You should upgrade existing customized MPL 2 layouts.

Print Layout Selection

When you specify Print Layout Selection rules (see the Maconomy Reference Guide), it is
important that MPL 2 (or 1) and MPL 3 layouts do not participate in the same set of rules. If an
MPL 3 layout is selected when MPL 2 is executing, or vice-versa, an error will occur. It is therefore
quite important to verify that this cannot happen when you set up the layout selection rules. Also,
updating a single layout that participates in layout selection rules requires updating all layouts that
participate in the same rules.

M-Script printGetPDF Function

The M-Script Maconomy API function printGetPDF cannot mix MPL 2 (or 1) and MPL 3 print

handles. See the"M-Script Maconomy API Reference" for more information.

Font Path Setup

The method for making additional fonts available in MPL 3 has changed slightly from MPL 2. See
"Font Administration in Maconomy" in the Maconomy System Administrator's Guide.

MPL Version 4

Maconomy Printing Language (MPL) 158

MPL Version 4

MPL 4 is a new major version of MPL, which is a direct successor to and replacement for MPL 3.
It introduces some new features, most notably custom database queries and expressions, both
defined directly in an MPL layout. Because the concept of an expression is just a generalization

of variable/field reference, the <var> and <field> tags have been replaced by a more general

<eval> tag, which is used in MPL 4 for evaluating expressions. Note that this change breaks the

backward compatibility of MPL 4 with respect to version 3. However, the TPUs as of M16sp0
(Maconomy 2.1) include a tool for automatic migration of MPL 3 layouts to version 4, so this
should not be a problem in practice.

You can find the conversion tool in a TPU in ..\JavaMPL\MPL3To4MigrationTool.jar. Run it with
the –help option to see the example usage.

This section describes in detail these new features in MPL 4, as well as possible backward
compatibility issues with respect to MPL 3.

New Features

This section provides a closer look at expressions, standard functions, and custom database
queries using MQL.

Expressions

In MPL 3, there were several ways of printing data on a layout. You could reference:

 A variable in the print environment, by means of the <var> tag.

 A cursor field in the print environment, by means of the <field> tag.

 A text literal.

In most programming languages these are just examples of atomic expressions, which can be
combined with other expressions by means of arithmetic/relational operators, functions, and so
on.

This uniform treatment of expressions is now enabled by embedding into MPL 4 the Expression
Language, which is also used in other Maconomy specification languages like MDML or MWSL.
For a detailed reference of the Expression Language, see “Functions and Expressions” in the
Deltek Maconomy 2.1. MDML Language Reference Guide.

Expressions in MPL are always delimited by curly braces, that is, an opening bracket “{” and a
closing bracket “}”. Here are a few examples of valid expressions:

 return a currency symbol for known currency names, otherwise use the currency name:

{ if currencyName = "USD" then "$"

 else if currencyName = "EUR" then "€"

 else if currencyName = "GBP" then "£"

 else currencyName }

Note that the if-then-else construct is an expression, which means that it always

returns a value.

 calculate an average of two variables, x and y, and turn them into a string that represents a
percentage value:

MPL Version 4

Maconomy Printing Language (MPL) 159

{(x + y) / 2.0 * 100 + "%"}

 using standard function (evaluates to "Monday"):

{stringWeekday(date(2013,9,30))}

Every expression has a type, which can be determined while compiling an MPL 4 layout. It can be
one of the following primitive types: BOOLEAN, INTEGER, REAL, AMOUNT, DATA, TIME,
STRING, or an instance of a pop-up type, for example, GenderType.

You can use expressions as attribute values in the following tags:

 conditional — where the expression attribute of type EXPRESSION denotes a condition

guarding the conditional tag, for example:

<conditional expression={overtime > 10.0}>, or just

<conditional {overtime > 10.0}>

 image — where the expression attribute of type EXPRESSION denotes a path to the image

to be printed, for example:

<image expression={"MyLogos\Logo_" + VenderNoVar + ".png"}>

or just
<image {"MyLogos\Logo_" + VenderNoVar + ".png"}>

In addition to these tags, MPL 4 introduces a number of tags that enable you to perform custom
calculations and bind their results to variables/values/ parameters. These include:

 val — where the value attribute of type EXPRESSION denotes a value to be bound to this

value (that is, value or constant), for example:

<val name=workingDayTime value={8}>, or just
<val workingDayTime {8}>

 var — where the value attribute of type EXPRESSION denotes an initial value to be bound to

this var (variable), for example:

<val name=sum value={0}>, or just
<val sum {8}>

 assign — where the value attribute of type EXPRESSION denotes a new value to be

assigned to the given var (that is, variable), for example:

<assign var=sum value={x + 42}>, or just
<assign sum {x + 42}>

 eval — where the expression attribute of type EXPRESSION denotes an expression to be

evaluated and printed out, for example:

<eval expression ={upperCase(s)}>, or
<eval {upperCase(s)}>

 or in the short and in most cases preferred form:

^{upperCase(s)}

 parameter — where the expression attribute of type EXPRESSION represents an actual

parameter value to which a query parameter in question will be bound when instantiating the
query to a cursor, for example:

<cursor name=DraftInvoiceEntry query=DraftInvoiceEntryQuery>

 <parameter JobNumberPar {InvoiceEditingHeader.JobNumber}>

<end cursor>

MPL Version 4

Maconomy Printing Language (MPL) 160

For a more in-depth discussion of these tags and how the expression attribute is used in them,

see the respective sections describing the tag in question.

Literal Values for Different Types

When declaring a var or a val or just using literals as values in expressions, it is useful to know

how the different literals look for values of different types:

Type Comma separated example values

INTEGER 457, 77, -123

REAL 41.789, 99.4

AMOUNT AMOUNT(99.74), AMOUNT(6.45)

BOOLEAN true, false

DATE DATE(2013, 12, 25), DATE(1987, 2, 15)

TIME TIME(12, 23, 58), TIME(23, 15, 33)

STRING "Text”, "example string”

POPUP GenderType'Male, CountryType’France

Standard Functions

Along with the Expression Language, MPL 4 enables some of the Maconomy standard functions
that are also available in other Maconomy Layout languages like MDML. This section lists all of
the functions that are enabled in MPL 4, with an example use for each of them. For a more
detailed reference on these functions, see the “MDML and Expression Language Standard
Functions” document.

Let us first define some values to be used in the examples.

<val d {date(2013, 10, 11)} >

<val d2 {date(2012, 12, 20)} >

<val t {time(12, 0, 45)} >

<val t2 {time(10, 1, 18)} >

<val s {"hello world!"}

Generally applicable functions

Name Example Result Value Result type

isNullOrEmpty ^{ isNullOrEmpty (t)} No Boolean

MPL Version 4

Maconomy Printing Language (MPL) 161

Time Functions

Name Example Result Value Result type

hour ^{hour(t)} 12 INTEGER

minute ^{minute(t)} 0 INTEGER

second ^{second(t)} 45 INTEGER

addHours ^{addHours(t, 5)} 5:00:45 PM TIME

addMinutes ^{addMinutes(t, 10)} 12:10:45 PM TIME

addSeconds ^{addSeconds(t, 1)} 12:00:46 PM TIME

secondsBetween ^{secondsBetween(t2, t)} 7167 INTEGER

minutesBetween ^{minutesBetween(t2, t)} 119 INTEGER

hoursBetween ^{hoursBetween(t2, t)} 1 INTEGER

Date Functions

Name Example Result Value Result type

year ^{year(d)} 2013 INTEGER

month ^{month(d)} 10 INTEGER

day ^{day(d)} 11 INTEGER

intWeekday ^{intWeekday(d)} 5 INTEGER

stringWeekday ^{stringWeekday(d)} friday STRING

addDays ^{addDays(d, 7)} 2013-10-18 DATE

addMonths ^{addMonths(d, 20)} 2015-6-11 DATE

addYears ^{addYears(d, 10)} 2023-10-11 DATE

addPeriod ^{addPeriod(d, 1, 12, 12)} 2015-10-23 DATE

daysBetween ^{daysBetween(d2, d)} 295 INTEGER

monthsBetween ^{monthsBetween(d2, d)} 9 INTEGER

yearsBetween ^{yearsBetween(d2, d)} 0 INTEGER

MPL Version 4

Maconomy Printing Language (MPL) 162

String Functions

Name Example Result Value Result type

length ^{length(s)} 12 INTEGER

startsWith ^{startsWith(s, "hello")} Yes BOOLEAN

endsWith ^{endsWith(s, "ape")} No BOOLEAN

firstIndexOf ^{firstIndexOf(s, "ll")} 2 INTEGER

indexOf ^{indexOf(s, "ll", 1)} 2 INTEGER

lastIndexOf ^{lastIndexOf(s, "ll")} 2 INTEGER

contains ^{contains(s, "world")} Yes INTEGER

substring ^{substring(s, 4)} o world! STRING

trim ^{trim(s)} hello world! STRING

upperCase ^{upperCase(s)} HELLO
WORLD!

STRING

lowerCase ^{lowerCase(s)} hello world! STRING

replaceFirst ^{replaceFirst(s,"ll","dd")} heddo world! STRING

replaceAll ^{replaceAll(s, "l", "X")} heXXo worXd! STRING

replaceFirstRegE
x

^{replaceFirstRegEx(s,"\\w","X")} Xello world! STRING

replaceAllRegEx ^{replaceAllRegEx(s,"\\w","X")} XXXXX
XXXXX!

STRING

matchRegEx ^{matchRegEx(s,"\\w+")} No BOOLEAN

format ^{format(123456.78, "##0.#####E0")} 123,45678E3 STRING

charAt ^{charAt("MPL4", 1)} P STRING

MPL Version 4

Maconomy Printing Language (MPL) 163

Conversion Functions

Name Example Result Value Result type

toInteger toInteger(8.2) 8 INTEGER

toAmount toAmount(1) 1.00 AMOUNT

toReal toReal(amount(12.34)) 12.34 REAL

In Maconomy, mathematical functions are polymorphic; that is, their return types depend on the
types of the arguments that the function takes. As mentioned earlier, every expression in MPL 4
must have a well-defined type; therefore, in case of mathematical functions you must wrap them
in a conversion function that indicates to the compiler the expected return type.

Mathematical Functions

Name Example Result Value Result type

max ^{toReal(max(8.2, 8.3))} 8.3 REAL

min ^{toInteger(min(-1, -2))} -2 INTEGER

abs ^{toReal(abs(-amount(6.6)))} 6.6 REAL

sig ^{toReal(sign(-7))} -1.0 INTEGER

floor ^{toAmount(floor(-7.4))} -8.00 AMOUNT

ceiling ^{toAmount(ceiling(123.4))} 124.00 AMOUNT

Database Queries

MPL 4 allows for defining custom database queries against the standard Maconomy universes
using MQL. For a detailed description, see “Database Queries.”

Backward Compatibility Issues

MPL 4 is not entirely backward-compatible with its immediate predecessor, MPL 3. This section
describes the small incompatibilities between MPL 3 and 4. Note that the TPUs as of M16 SP0
(Maconomy 2.1) include a tool for the automatic migration of MPL 3 layouts to version 4, so this
should not be a problem in practice.

You can find the conversion tool in a TPU in ..\JavaMPL\MPL3To4MigrationTool.jar. Run it with
the –help option to see the example usage.

Field and Variable Reference Tags Desupported in MPL 4

As mentioned, in MPL 4 there existed separate tags that represent certain types of values to be
printed, that is, field and variable references as well as static text. For completeness reasons, you

could use these tags in their full forms, that is, <field> (see “Fields”), <var> (see Variables”),

and <text> (see “Texts”). These long forms were, however, discouraged as overly verbose, and

MPL Version 4

Maconomy Printing Language (MPL) 164

short forms were recommended to be used instead (that is, varName, .fieldName, and "text

literal"). In fact, in the entire standard application there was not a single use of these tags in

their full form.

In the context of expressions, all of these tags were just particular examples of evaluating an

expression and printing out its result. For this reason, <field> and <var> tags were

desupported, and their short forms are now treated as any other instance of the short form for the

<eval> tag, used for evaluating and printing out expressions. The <text> and <text2> tags,

however, still exist in MPL 4 to account for the static text localization that they support. After text
localization is implemented in the Expression Language and enabled in MPL 4 expressions,

these tags will be desupported as well, and their short forms will be merged with the <eval> tag.

Since the full versions of <field> and <var> tags are very unlikely to occur in any layout, the

only problem that you might encounter in practice is when you use their names in the <default>
tag, for example:

<default tag=field attribute=justification value=right>

<default tag=var attribute=fontsize value=10>

In MPL 4, you would use the <eval> tag instead to set a default for field/variable references as

well as other expressions to be printed out:

<default tag=eval attribute=justification value=right>

<default tag=eval attribute=fontsize value=10>

Note that the arguably error-prone distinction that allowed for setting different defaults for field
and variable references has now been droppe; the default setting applies uniformly to all printable
expressions apart from the old-style text literals that are still treated differently.

<var> Tag Means Variable Declaration in MPL 4

Because the old use of the <var> tag is desupported in MPL 4 and hence the name var became

available, it has been used to denote a different concept in MPL 4, namely a variable definition.
See “Variable Definitions” for a detailed description of the variable definition tag.

Tags Cannot Contain Spaces before the Tag Name

In MPL 3 it was legal to have a number of whitespaces in between the opening angle bracket “<”

and the following tag name. For instance, it was legal to write < skip>. MPL 4 is stricter in this

respect, and white spaces are not allowed. Therefore, you must write, for example, <skip>.

Errors and Warnings

Maconomy Printing Language (MPL) 165

Errors and Warnings

This section contains a list of all of the error messages and warnings that the MPL compiler can

display. Error messages and warnings are saved to the file PrintLayoutErrors.txt in the

Maconomy client folder when the layout is imported.

Some messages can be either an error or a warning. If the MPL layout is used in connection with
running a Universe report, the interpretation of the layout is less strict, and a number of messages
that in standard MPL are treated as errors are instead treated as warnings. This means that the
layout in question can be compiled and run, and that output will be displayed when the layout is
used for a Universe report. When the same layout is used in standard MPL, however, the layout
will not be compiled, and no output will be printed.

During the import of standard layouts (either during installation or when running

MaconomyServer -UP), all layouts with warnings will be compiled and installed.

An explanation of the individual error messages is given below each message, including any
problem-solving suggestions. If a message can appear as a warning, it is noted also. Furthermore,
a section of the messages below (under the heading “Warnings”) can only appear as warnings.

Basic Errors

 (#100) Only version 1 of MPL is supported.

A version number different from 1 has been specified in the mpl tag. This message only

appears on servers that do not support MPL 2.

 (#102) Syntax Error.

The MPL definition is not coherent with the MPL syntax. The error messages only tell you
that the error has been detected; the error itself can occur on a previous line.

 (#103) File 'ss' does not exist.

The referenced file does not exist.

 (#104) Wrong original print name 'ss'.

The name specified in the print attribute in the layout tag does not match the name of

the layout that you are to which you are trying to create/import the MPL layout.

 (#105) Unknown original layout name 'ss'.

The name specified in the originallayout attribute in the layout tag does not exist or

is not an original layout name.

 (#108) Wrong layout name 'ss'.

The name specified in the title attribute in the layout tag does not match the name of

the layout that you are trying to import the MPL layout to.

 (#109) Layout name length cannot exceed 51 characters.

The name specified in the title attribute in the layout tag is longer than 51 characters.

 (#110) Original layout 'ss' is a Layout Designer layout.

The layout that you are trying to use as the original layout is not one of the layouts that are
created in the system, but have been designed using the Maconomy Layout Designer.

 (#111) Access to original layout 'ss' is denied.

Errors and Warnings

Maconomy Printing Language (MPL) 166

The originallayout attribute in the layout tag exists but the user trying to compile the

layout does not have access to the layout.

 (#112) Layout shadows an original layout. In tag 'layout' the attribute 'original- layout' must refer
to this layout.

An MPL layout has been imported into an original layout. In this case the

originallayout attribute must have the same value as the title attribute.

 (#113) Layout name cannot be empty.

The value of the layout attribute name cannot be an empty string. In MPL 3, this error

message has changed to "Layout title cannot be empty."

 (#114) Tag ’page’ is missing.

The page tag has not been specified.

 (#115) Tag 'ss' is not allowed in standard prints.

A tag that is only allowed in MPL for Universe Reporting has been specified for a standard
print.

 (#116) MPL version dd and above is not supported by this compiler.

The version of MPL specified in the layout is newer than the version that the MPL compiler
supports.

In MPL 4, the message associated with this error has slightly changed to:

“Only MPL version 4 is supported by this compiler. Migrate all print layouts starting with

<mpl 3> using the MPL3to4MigrationTool which is found in the TPU. Ask your system

administrator for help.”

 (#117) Structure layout 'ss' was not found in the database.

When you install Maconomy, every print layout exports its Structure layout (used for
structure check comparison. See “Print Structure”) to the Maconomy database. If the
structure layout for a particular layout was not found in the database, you should contact
your system administrator because it is most likely a system set-up error.

 (#118) Invalid syntax of expression 'ss1'. Details: 'ss2'

This message denotes a syntax error in the given expression. The detailed error
message from the Expression Language compiler is given.

Lexical Errors

 (#200) Name is too long. Truncated to dd characters.

Names longer than 100 characters are not allowed in MPL. A name can be a cursor, a
database name, a variable name, an attribute name, or an attribute value of the type ID.

 (#201) Text is too long. Truncated to dd characters.

Attribute values of the type STRING longer than 255 characters are not allowed in MPL.

 (#202) Incomplete text.

A string has not been finished; that is, the string starts with “ or ‘, but has not been finished
by “ or ‘. Maconomy will try to read on, but naturally cannot guess where the string should
have been finished. This may cause confusing error messages later in the layout. Simply
insert “ or ‘, and try to import the layout again.

Errors and Warnings

Maconomy Printing Language (MPL) 167

 (#203) Error in integer 'ss'.

ss is an integer that is too big. Integers cannot exceed 21474836467.

 (#204) A real number must have between 1 and 3 digits after the decimal point.

A real number of more than three decimals has been specified. Note that this is a syntax
error (and is displayed as one) if no decimals are specified (as in ‘32’).

 (#205) Error in real 'ss'."

ss is a real number that is too high or too small (the number is VERY high!).

Structure

 (#300) The script structure is invalid.

The script structure of the MPL printout is not identical with the script structure of the
original layout. See also ““Script Structure” in “Print Structure.“

 The error message in MPL 4 has been changed to:

The script structure of the layout is not identical to the script structure of the original
layout. Expected script structure 'ss.’ Actual script structure: 'ss2.'

 (#301) The stackless structure is invalid.

The stackless structure of the MPL printout is not a subtree of the stackless structure of
the original layout. See “Stackless Structures” in “Print Structure.“

 The error message in MPL 4 has been changed to:

'ss' violates the cursor structure of the original layout , as the corresponding
repeating/paper with the same values of attributes does not exist in the original layout.
This cursor block is valid only embedded in the following sequence of repeating/paper
blocks 'ss'2.

Definitions

 (#400) Unknown paper name 'ss' or orientation 'ss' given.

Either a paper name (the name attribute) has been specified in the page tag, which is not

defined in the Maconomy client window Paper Formats, or the orientation attribute

has been set to a different value than landscape or portrait. MPL distinguishes

between capitals and regular characters in the paper name.

 (#401) Unknown paper name 'ss' given.

A paper name (the name attribute) has been specified in the page tag, which is defined in

the Maconomy client window Paper Formats. MPL distinguishes between capitals and
regular characters in the paper name.

 (#402) Grid used but not defined.

The length unit grid has been used, but a grid tag has not been specified in the

heading as a definition of grid lengths.

 (#403) Grid defined in terms of grid.

You cannot use the length constant grid to define a grid.

 (#405) Unknown parent 'ss'.

Errors and Warnings

Maconomy Printing Language (MPL) 168

The parent attribute in the subruler tag refers to an unknown ruler. This can be due to

one of following reasons:

 Misspelling of the parent ruler

 The scope defining the ruler is left

 The subruler has been defined in an indented tag, for example, an island with a fixed

inner margin or a tag with a fixed indent. It is not necessarily the closest surrounding tag

that is indented.

 (#406) The specification of the subruler is not ordered.

The specification of the ruler in a subruler tag is invalid. The reason is that the referrals

to the columns of the parent ruler are not increasing from left to right (see also “Subrulers”
in “Arrays“).

 (#407) Subruler not allowed in 'array'.

The ruler attribute defined in an array has been assigned a valid subruler value. This is

not allowed. Subrulers must be named using the subruler tag.

 (#408) Unknown ruler identifier 'ss'.

An array tag refers to an unknown value. This can be due to one of the following reasons:

 Misspelling of the ruler

 The execution of the scope defining the ruler is left

 The array has been defined in an indented tag, for example, an island with a fixed inner

margin or a tag with a fixed indent. It is not necessarily the closest surrounding tag that is

indented.

 (#409) Invalid format for ruler value.

The ruler specified using the value attribute in the ruler tag is not correctly formatted.

In other words, one or more columns have been specified as intervals (as in subruler
values).

 (#410) Invalid format for subruler value.

The value attribute in a subruler tag has been set to a value that is not recognized as a

subruler. The reason for this is that there is a missing range in a column (INTEGER or

INTEGER:INTEGER) or that stretch or width has been specified in one of the

columns.

 (#411) Cannot set default values for tag 'ss'.

The value specified in the tag attribute in the default tag is not recognized. Either the

tag does not exist or you have specified a standard value for one of the tags grid,

layout, margins, page, or paper. You cannot specify a standard value for these tags

as they should all be specified in the root of the structure. The default statement must

be specified in a stacking tag.

 (#412) Unknown attribute 'ss1' in tag 'ss2'.

The attribute name ss1 specified in the attribute attribute in the default tag does not

match the tag name ss2 specified in the tag attribute. In other words, the ss2 tag does

not have an attribute with the name ss1. Check the attribute list or the section about the
tag in question to find out which attributes are allowed in the tag. This message is a
warning if it occurs in MPL for Universe Reports.

 (#413) Attribute 'ss1' in tag 'ss2' has type 'ss3'. The given value had type 'ss4'.

Errors and Warnings

Maconomy Printing Language (MPL) 169

You have attempted to define a default value for the attribute ss1 in the tag ss2. The

specified value (in the value attribute) does not have the correct type for this attribute.

The specified value has the type ss3, but should have had the type ss4.

 (#414) Attribute 'ss1' is mandatory in tag 'ss2'. Therefore it cannot be set.

You have attempted to define a default value for the attribute ss1 in the tag ss2. This
attribute is mandatory and you are therefore not allowed to set a default value. This
message is a warning if it occurs in MPL for Universe Reports.

 (#415) Negative paper width.

The margins set using the margins tag are so large that the paper width minus the left and
right margin have become less than 0.

 (#416) Negative paper height.

The margins set using the margins tag are so large that the paper height minus the top
and bottom margin have become less than 0.

 (#417) Interval specifiers cannot be zero.

A range (or possibly just an integer) in a subruler definition contains the number 0.

 (#418) Interval specifiers must be less than or equal to the length of the parent ruler (nn).

A range (or possibly just an integer) in a subruler definition refers to a column in the parent
ruler that does not exist. This is true for r3 and r4 in the following example:

<ruler r1 [[][][][]]>

<subruler r2 parent=r1 [[1][2:3][4]]>

<subruler r3 parent=r1 [[1][2][4:5]]>

<subruler r4 parent=r2 [[1][4]]>

The reason for this is that r1 has four columns, but r3 refers to column #5. Similarly, r2
only has three columns, but r4 refers to column #4.

Incorrect Use of Tags

 (#500) Header already defined in this 'ss'.

Each parenthetical tag (paper, repeating, conditional, or stack) can only be

assigned one header.

 (#501) Footer already defined in this 'ss'.

Each parenthetical tag (paper, repeating, conditional, or stack) can only be

assigned one footer.

 (#502) The tag 'ss1' is not allowed in 'ss2'.

An invalid ss1 tag has been specified in the ss2 parenthetical tag. This error message
may be the result of one of the following situations:

 A header or footer has been specified in another tag than paper, conditional,

repeating, or stack.

 The span tag has been specified in another span tag.

 The newpage tag has been specified in a row (possible deep within) - this is only allowed if

newpage has been specified as the only tag in the row.

 (#503) The tag 'ss' is not allowed in canvases.

Errors and Warnings

Maconomy Printing Language (MPL) 170

A tag of the type skip, newpage, repeating, or conditional has been specified in a

canvas. This is not allowed.

 (#504) The tag 'ss' is not allowed in islands.

An illegal tag (for example, repeating) has been specified in an island.

You cannot use repetitions, tables, pie charts, and so on, in islands, because these
constructions make it impossible for the MPL compiler to determine the size of the island.

 (#505) The tag 'ss' is not allowed in stacking environments.

The tags span and vline cannot be used in stacking tags.

 (#506) The tag 'ss' is not allowed in headers or footers.

You cannot use the following tags in headers and footers:

 header

 footer

 repeating

 conditional

 newpage, or

 stack with scripts, headers, or footers.

 (#507) The tag 'ss' is not allowed in frontpage.

The tags border, newpage, field, repeating, and conditional cannot be

specified in a frontpage.

 (#508) The tag 'ss' can only be used in ss.

Lines can only be used in canvas, and border can only be used on paper.

 (#509) nn1 elements in row: nn2 was expected.

The compiler has encountered a row with nn1 elements where it expected nn2 elements.
The reason for this is either that the array has a ruler with nn2 columns or that all previous
rows have had nn2 columns.

 (#510) The tag 'ss' in arrays should contain rows.

This error is displayed if the MPL compiler expects that a header or footer contains rows
(and not elements). The reason for this might be that the header or footer is specified in a
stack, repetition or condition, which should contain rows.

 (#511) Tag 'stack' in ss cannot contain scripts, headers or footers.

If the script attribute has been specified in a stack or a header or footer has been

assigned to the stack, the stack cannot occur in rows, canvases, or frontpages.

 (#512) At most one conditional can appear in a row.

A maximum of one condition can be specified in a row. Note that all conditions in the row
are counted, regardless of whether or not they are embedded.

 (#513) No repeating tags can appear in a row.

Repetitions cannot be specified in rows.

 (#514) Rulers are not allowed in 'ss' containing rows.

Errors and Warnings

Maconomy Printing Language (MPL) 171

You can only define rulers (using the ruler tag) in stacking tags that contain elements- not
in stacking tags that contain rows.

 (#515) Rulers are not allowed in canvases.

You cannot define rulers (using the ruler tag) in canvases.

 (#516) Attribute '%s' cannot be set in tag 'hline' appearing in stacking environments.

Hline with spanning is not allowed in stacking environments. The %s attribute may be

columns, left, and right.

 (#517) The tag 'ss' is already defined in 'ss'.

A tag which can only be defined once in a context has been defined twice (for example,

the fields tag has been specified twice in a table).

 (#518) Tag 'newpage' can only have orientation in paper.

The orientation attribute of the newpage tag can only be used in the paper tag.

Fields, Variables, Cursors, and Expressions

 (#600) Variable 'ss' is unknown.

The specified variable ss is not recognized in this printout.

 (#601) Cursor 'ss' is unknown.

The specified cursor ss is not recognized in this printout.

 (#602) Field 'ss' is unknown.

The specified field ss has not been recognized in the position specified. A field is defined
in a cursor. It can therefore only occur in the repetition or paper to which the cursor is
assigned.

 (#603) Field 'ss1' is unknown in cursor 'ss2'.

A field with an explicit cursor name has been specified (that is, either ss2.ss1 or <field

title=ss1 cursor=ss2>). The field ss1 is not recognized in cursor ss2.

 (#604) Variable 'ss' cannot be used in conditionals as its type is wrong.

A variable which is not of the type BOOLEAN, INTEGER or ENUMERATION (or STRING
for MPL 3) has been specified as the condition in a conditional.

 (#605) Ruler column index 'nn' out of bounds

Too many elements were added to the ruler. Remedy: reduce the number of elements,
change the definition of the ruler to include more elements, or use another ruler.

 (#606) Duplicate var/val definition: 'ss'.

It is not allowed to define a new var/val with the same name as another val/var in the
same scope.

 (#607) Error(s) found in expression {ss}. 'Detailed error message'.

An error occurred while compiling the given expression. A detailed description of the error
issued by the Expression Language compiler is given.

 (#608) Assignment to an unknown var 'ss'.

The variable ss used in the <assign> tag is not defined in the current scope.

Errors and Warnings

Maconomy Printing Language (MPL) 172

 (#609) Incompatible types. Cannot assign 'ss1' to 'ss2'.

MPL is a strongly typed language, which means that every value in MPL has one of the
following primitive types: BOOLEAN, INTEGER, REAL, AMOUNT, DATA, TIME, STRING
or an instance of a popup type, for example, GenderType.

Generally speaking, you can only assign to a variable a new value of the same type as
the variable’s type. The only exception to this rule is when assigning AMOUNT and
REALvalues to a variable of type INTEGER.

When trying to assign a value of incompatible type to a variable, it usually denotes a
semantic error in your code. There are, however, some corner cases when one has to
convert between various numeric types. To this end, MPL 4 provides the following

conversion functions: toReal, toInteger, and toAmount, taking a value of numeric

type as a parameter and converting it to a value of the type specified in the name of the
function. Note that these conversions might lose precision, for example, when converting
a REAL to an INTEGER.

 (#610) Expression 'ss' cannot be used in conditionals as its type is wrong. Expected
BOOLEAN, INTEGER or STRING. Got: 'ss2'.

A condition defined for an MPL conditional must evaluate to a BOOLEAN, INTEGER or
STRING value.

 (#611) Duplicate query definition 'ss'.

A query with the same name 'ss' is already defined in the given scope. Consider
renaming your query.

 (#612) Syntax error: invalid query body.

The query tag is expected to contain a valid MQLquery body.

 (#613) Cursor 'ss' requires a parameter 'ss2'.

The MQL query that the cursor 'ss' refers to declares a parameter 'ss2'. Cursor 'ss' must

supply an actual value of this parameter using the <parameter> tag.

 (#614) Duplicate cursor definition 'ss'.

A cursor with the same name 'ss' is already defined in the given scope. Consider
renaming your cursor.

 (#615) "Cursor 'ss' refers to an unknown query 'ss1."

The query 'ss1' is not defined in the scope of cursor 'ss.’

 (#616) "Query 'ss' does not expect a parameter 'ss2.'

The query that the current cursor refers to does not take a parameter named 'ss2.'

 (#617) "Invalid parameter type. Expected type: 'ss'. Got: 'ss2'.

The parameter in question is expected to be of type 'ss', whereas the type of the given
actual parameter value is 'ss2.'

 (#618) Duplicate parameter binding definition: 'ss.'

The parameter 'ss' has been already supplied with a value.

 (#619) Error validating MQL query. Details: 'Detailed error message'.

An error occurred while validating the MQL query. A detailed error message from the
MQL compiler is given.

Errors and Warnings

Maconomy Printing Language (MPL) 173

 (#620) Cursor name 'query' is reserved for a default top level MQL cursor name. Please use
another name.

As explained above, the cursor name “query” has a special meaning in MQL and hence
is reserved.

Warnings

 (#650) Variable 'ss' is unknown.

The specified variable ss is not recognized in this printout.

 (#651) Cursor 'ss' is unknown.

The specified cursor ss is not recognized in this printout.

 (#652) Field 'ss' is unknown.

The specified field ss has not been recognized in the position specified. A field is defined
in a cursor. It can therefore only occur in the repetition or paper to which the cursor is
assigned.

 (#653) Field 'ss1' is unknown in cursor 'ss2'.

A field with an explicit cursor name has been specified (that is, either ss2.ss1 or <field

title=ss1 cursor=ss2>). The field ss1 is not recognized in cursor ss2.

 (#776) Attribute 'zerosuppression' can only be used with fields of type 'Amount', 'Integer' and
'Real'.

The attribute zerosuppression has been specified for a field that is not a value field

(that is, has the type Amount).

Attributes

 (#700) In 'ss1': no nameless attributes of type 'ss2'.

You have attempted to specify a nameless attribute of the type ss2 in the tag ss1. The
error is displayed because the there are no nameless attributes of the type in question.

 (#701) In 'ss1': no nameless shortattributes of type 'ss2'.

The tag ss1 has been specified in short form combined with an attempt to specify a
nameless attribute of the type ss2. The error is displayed because there are no name-
less short attributes of the type in question.

 (#702) In 'ss1': attribute 'ss2' is mandatory.

The mandatory attribute in the tag ss1 has been left out.

 (#703) In 'ss1': unknown attribute 'ss2'.

An unknown attribute, ss2, has been specified in the tag ss1.

 (#704) Attribute 'ss' is defined more than once.

The same attribute ss has been used more than once. Note that it can be specified as a

nameless attribute or as a short form. In the following three examples the title attribute

to the text tag has been specified more than once:

<text "Hello" "Hello"> "Hello":title="Hello"

<text "Hello" title="hello">

 (#705) Attribute 'ss' in 'ss' cannot be given with unit 'ss'.

Errors and Warnings

Maconomy Printing Language (MPL) 174

You have attempted to define a grid using lengths with the unit grid. This is not allowed as

grid has not been defined at this point.

 (#706) In attribute 'ss1': type 'Real' expected. Got 'ss2'.

The attribute ss1 has the type REAL, but a value of the type ss2 has been specified.

 (#707) In attribute 'ss1': type 'Boolean' expected. Got 'ss2'.

The attribute ss1 has the type BOOLEAN, but a value of the type ss2 has been specified.

 (#708) In attribute 'ss1': type 'Integer' expected. Got 'ss2'.

The attribute ss1 has the type INTEGER, but a value of the type ss2 has been specified.

 (#709) In attribute 'ss1': type 'String' expected. Got 'ss2'.

The attribute ss1 has the type STRING, but a value of the type ss2 has been specified.

 (#710) In attribute 'ss1': type 'ID' expected. Got 'ss2'.

The attribute ss1 has the type ID, but a value of the type ss2 has been specified.

 (#711) In attribute 'ss1': type 'Length' or 'ID' expected. Got 'ss2'.

The attribute ss1 has the type LENGTH (meaning that you should specify a length or a
name of a length constant), but a value of the type ss2 has been specified.

 (#712) In attribute 'ss1': type 'Interval' expected (format 'Integer' or 'Integer:Integer'). Got 'ss2'.

This error message is displayed if you have specified the interval attribute (in the

named version) with an incorrect value of the type ss2 in a column or a subcolumn.

 (#713) In attribute 'ss1': type 'Position' expected. Got 'ss2'.

The attribute ss1 has the type POS, but a value of the type ss2 has been specified.

 (#714) In attribute 'ss': type 'List' expected. Got 'ss'.

The groupby attribute to the repeating tag has been incorrectly specified.

 (#715) In attribute 'ss': type 'Ruler' or 'ID' expected. Got 'ss'.

A value of an incorrect type has been specified for the attribute ss1 (either the ruler

attribute to array or the value attribute to ruler or subruler). The attribute must be a

ruler or an ID that refers to a defined ruler.

 (#716) Unknown justification 'ss'.

An invalid value for the justification attribute, ss, has been specified. The value must

be either left, center, or right. Note that justification is nameless in some

tags, meaning that if you specify a nameless value of the type ID, this may be interpreted

as a justification value.

 (#717) Unknown length identifier 'ss'.

An unknown value for an attribute of the type LENGTH, ss, has been specified. The
reason for this is that the name has been misspelled (the MPL compiler is case sensitive)

or that the constant has not been defined using define.

 (#718) Conflicting orientations: identifier 'ss' specifies a horizontal length, but is used in a
vertical context.

The length constant ss is horizontal but is used in a context where only vertical lengths
can occur. The length constant ss is horizontal either because that it is so defined, or
because it has been used previously in a horizontal context. Furthermore, length

constants, as defined using textwidth, are horizontal.

Errors and Warnings

Maconomy Printing Language (MPL) 175

 (#719) Conflicting orientations: identifier 'ss' specifies a vertical length, but is used in a horizontal
context.

The length constant ss is vertical but is used in a context where only horizontal lengths
can occur. The length constant ss is vertical either because that is so defined, or because
it has been used previously in a vertical context. Furthermore, length constants, as

defined using textheight, are vertical.

 (#720) The first coordinate of the pair is a vertical unit.

A pair of coordinates (x,y) has been specified in which the first coordinate x is not

horizontal as expected. The reason for this can be that a length with a textheight unit

has been specified, or that a vertical length constant has been used (see the description
of error message #719 for further information about vertical constants).

 (#721) The second coordinate of the pair is a horizontal unit.

A pair of coordinates (x,y) has been specified in which the second coordinate y is not

vertical as expected. The reason for this can be that a length with a textwidth unit has

been specified, or that a horizontal length constant has been used (see the description of
error message #718 for further information about horizontal constants).

 (#722) Attribute 'orientation' is mandatory for grid length definitions.

If the length unit for the value specified in a define tag is grid, an orientation has to be

specified. The rule only applies to the redefine tag if the redefined length constant has

not already been assigned an orientation.

 (#723) Unknown orientation 'ss'.

This error message is displayed if a different value than horizontal or vertical has

been specified in the orientation attribute to a define or redefine tag.

 (#726) Attribute 'zerosuppression' can only be used with fields of type 'Amount', 'Integer' and
'Real'.

The attribute zerosuppression has been specified for a field which is not a value field

(that is, has the type Amount).

 (#728) Attribute 'columns' in tag 'span' must be greater than 0.

The attribute columns in the span tag has been set to 0.

 (#729) Attribute 'columns' in tag 'hline' must be greater than 0.

The attribute columns in the hline tag has been set to 0.

 (#730) Unknown alignment: 'ss'

If the align attribute is specified in the row tag, it should be assigned one of the values

base, top, center, or bottom.

 (#731) Unknown baseline: 'ss'

If the baseline attribute is specified in one of the tags array, stack, conditional,

or repeating, it should be assigned one of the values top or bottom. If the attribute has

been specified in the island tag, the allowed values are title, top, or bottom.

 (#732) Unknown script name 'ss' (or script is empty).

An unknown script name has been specified using the script attribute.

 (#733) Attribute 'indent' cannot be greater than zero in 'ss' containing rows.

Errors and Warnings

Maconomy Printing Language (MPL) 176

The indent attribute cannot be used in conditions, repetitions, stacks, and islands
containing rows. Only a zero length is allowed (this is only relevant if you have set the
standard values differently).

 (#734) Attribute 'height' can only be used in 'ss' if it contains no repetitions

The height attribute cannot be used in stacks, conditions, or repetitions if the MPL

compiler cannot determine the height of the contents. This error message is displayed if
the block contains repetitions, conditionals or wrapped fields and variables.

 (#735) Attribute 'stretch' cannot be false in 'island' containing rows.

The stretch attribute cannot be set to false in islands containing rows.

 (#736) If 'indent' attribute is set, 'justification' cannot be 'ss'.

You can only use the indent attribute if the element (field, variable, text, or

island) is left-adjusted. Note that islands are centered unless otherwise specified, and

that certain fields and variables are right-adjusted (depending on type). In this case, it is

thus necessary to set the justification attribute.

 (#737) Attribute 'baseline' cannot be set to 'title' unless a title is given.

The baseline attribute in an island tag has been set to the value title, which means

that the island’s baseline is inherited from the island title. This error message is displayed
if no island title has been specified.

 (#738) Horizontal margins cannot be greater than zero in 'island' containing rows.

You cannot set the leftmargin and rightmargin attributes in the island tag if the

island contains rows, because these rows share the ruler with the rows outside of the
island. Only a zero length is allowed (this is only relevant if you have set the standard
value differently).

 (#739) Length identifier 'ss' already defined.

You cannot use the define tag to define a length constant already defined. Instead you

should use redefine. Note that the MPL compiler is case-sensitive.

 (#740) Length identifier 'ss' not known.

You have attempted to redefine a length constant, ss, using redefine, but the constant

is unknown. Note that the MPL compiler is case sensitive.

 (#741) Exactly one of 'top' and 'bottom' attributes must be given in tag 'ss'.

The border or goto tag should contain one of the attributes top (the distance to the top

edge of the page) or bottom (the distance to the bottom edge of the page).

 (#742) The 'ss' attribute value cannot begin or end with blanks.

The attributes title, print, and originallayout in the layout tag cannot begin or

end with a space.

 (#743) The 'ss' attribute value cannot contain 'cc' characters.

The title attribute in the layout tag cannot contain underscores, question marks or

punctuation marks.

 (#744) Unknown color 'ss'.

The color attribute has been defined with an unknown color value.

 (#745) RGB values must be between 0 and 100.

Errors and Warnings

Maconomy Printing Language (MPL) 177

The values in an rgb must be between 0 and 100.

 (#746) Exactly one of 'title', 'varname' and 'fieldname' must be defined for tag 'image'.

The image tag should contain one of the attributes varname (variable name),

fieldname (field name) or title (string containing image document reference).

 (#748) Exactly one of 'varname' and 'fieldname' must be defined for tag 'title'.

The title tag should contain one of the attributes varname (variable name) or

fieldname (field name).

 (#749) Style attributes are not allowed on images.

The image tag does not allow any of the style attributes : justification, fontname,

fontsize, bold, italic, underline, color, rgb.

 (#750) Exactly one of attributes 'href', 'component', 'report' and 'script' must be given.

A link should contain exactly one of the stated attributes.

 (#751) In attribute 'ss': type 'PARAMLIST' expected. Got 'ss’.

An attribute value of another type than PARAMLIST has been specified for the attribute.

 (#753) Justification attribute is only allowed on images if a width is defined.

To use justification on images the width must be defined.

 (#754) Attributes indent, keeptogether and stop are not allowed on stacks in tables.

You cannot use these attributes on the stack tag if it is defined within a table.

 (#755) Unknown target '%s' (only 'self', 'new' and 'rightside' allowed).

The target attribute on links only supports the listed targets.

 (#756) Format attribute 'ss' does not match the type 'ss' of 'ss'.

The type of the field/variable is not the same as the format specified (for example, an

amountformat has been specified on a field of type DATE). This message is a warning if

it occurs in MPL for Universe Reports.

 (#757) The content of format attribute 'ss' in tag 'ss' is not valid.

The format specification is invalid. This message is a warning if it occurs in MPL for
Universe Reports.

 (#758) In attribute 'rgb': type 'Triple' expected. Got 'ss'.

The attribute rgb has the type TRIPLE, but a value of type ss has been specified.

 (#759) In tag 'ss': attribute 'pos' and 'indent' cannot be set together.

Both attribute pos and attribute indent have been specified together in the same tag.

This occurs if you specify the indent attribute on. Note: in the old engine specifying

indent on, for example, a text tag in a canvas would result in this error "(#703) In 'text':

unknown attribute 'indent'.

 (#760) Exactly one of 'variable' and 'field' must be defined for tag 'conditional'.

When using the conditional tag, either the (possibly nameless) variable attribute

must be set or the (non-nameless) field attribute (and possibly also the cursor

attribute) must be set. The variable attribute cannot be specified together with the

field and cursor attributes or vice-versa.

Errors and Warnings

Maconomy Printing Language (MPL) 178

 (#761) In tag 'ss': attributes 'height' and 'lines' cannot be set together.

When setting the height attribute on a text, field, or var tag, the lines attribute

cannot be set at the same time (and vice-versa). Use only one of them to specify the
desired height of the tag.

 (#762) In attribute 'ss': type 'Subruler' expected. Got 'ss'.

When declaring a subruler, the value must be a SUBRULER type.

Sizes

 (#800) Tag 'ss' too wide: element and indentation was l1, stacking environment only allows
l2.

An element, ss, was wider than the width allowed by the surrounding elements. The width
of the element including its indent was l1, whereas the surrounding elements only allowed
the total element width l2. This message is a warning if it occurs in MPL for Universe
Reports.

 (#801) Tag 'ss' too wide: element was l1, stacking environment only allows l2.

An element, ss, was wider than the width allowed by the surrounding elements. The width
of the element was l1, whereas the surrounding elements only allowed the total element
width l2. This message is a warning if it occurs in MPL for Universe Reports.

A common reason for this error is text that was added to a ruler that does not fit the field
size allocated on the ruler. In response to this, MPL3 extends the ruler, thus making it too
large for the page. The solution is to adjust the ruler to accommodate for the size of the
text, or to reduce the size of the added text. Note that the line number that prefixes the
error message points to the added text, not the ruler definition.

 (#802) Contents of 'ss' too high: content was l1, 'height' attribute only allows l2.

The contents of the tag ss is higher than the height allowed by ss in its height attribute.

This error message may also be displayed for the frontpage attributes, if the contents of

frontpage is higher than the height allowed by the paper format. It could also be

because the required row height is greater than the available height. This message is a
warning if it occurs in MPL for Universe Reports.

 (#803) Contents of 'array' too wide: content was l1, 'width' attribute only allows l2.

The width attribute has been specified as l2 for an array, but the sum of the columns is l1,
which is too wide. This message is a warning if it occurs in MPL for Universe Reports.

 (#804) Tag 'ss' too wide: its far right was at l1, canvas only allows l2.

The positioning and width of the tag ss results in a right margin edge of ss extending
beyond the right side of the canvas ss is placed in. This message is a warning if it occurs
in MPL for Universe Reports.

 (#805) Tag 'ss' too high: its bottom was at l1, canvas only allows l2.

The positioning and height of the tag ss results in a bottom edge of ss below the bottom of
the canvas ss is placed in. This message is a warning if it occurs in MPL for Universe
Reports.

 (#806) The 'height' l1 given in 'footer' cannot hold its content (height l2).

A footer height has been specified using the height attribute, but the contents of the

footer is higher than allowed.

Errors and Warnings

Maconomy Printing Language (MPL) 179

 (#807) The height of 'footer' (l1) is greater than the height of the page (l2).

A footer height has been specified using the height attribute, which is larger than the

page size of the current paper format.

 (#808) The 'height' l1 given in 'header' cannot hold its content (height l2).

A header height has been specified using the height attribute, but the contents of the

header is higher than allowed.

 (#809) The height of 'header' (l1) is greater than the height of the page (l2).

A header height has been specified using the height attribute, which is greater than the

page size of the current paper format.

 (#810) The border 'ss' is placed outside the margins of the page.

A border or goto position has been specified using the top or bottom attribute, which

has resulted in positioning of the border/goto outside the paper margin (possibly

outside the paper). This message is a warning if it occurs in MPL for Universe Reports.

 (#811) Canvas element is overlapping with another element (%s).

%s is a line number. This error message is given to help you identify too long localization

strings, and can occur when running MaconomyServer -ULP. The ULP parameter

localizes MPL layouts before they are installed on the server. This message is a warning if
it occurs in MPL for Universe Reports.

 (#812) Position of 'goto' in 'ss' was above previous element.

When using goto in a header you cannot go to a position above a previous element in the

header, because that would imply a page break, which cannot occur in a header.

 (#813) Position of 'goto' in footer did not make room for ensuing elements.

When using goto in a footer, there has to be room for the elements following the goto on

the same page.

 (#814) Tag 'goto' is not allowed in 'ss' with attribute 'ss'.

In headers and footers, goto is not allowed if attribute atstart or atend is set.

 (#815) The height of a frontpage must be fixed.

When using a field or var tag with the wrap attribute set to true, or when using a

concat tag, the height is not fixed. The frontpage must have a fixed height, so you must

specify either the height or the lines attribute on those tags when used in the

frontpage.

 (#817) A stack with movepos=false cannot be larger than the page height.

When using a stack tag with the attribute movepos set to false, this stack’s height cannot

be larger than the available page height.

 (#818) Tag 'ss' must specify height when used in a canvas.

When using a field or variable tag with the attribute wrap set to true, or when using

the concat tag, the height or line attribute must be specified as we cannot calculate

the height of these tags. Note that if the width attribute is not specified for these tags,

they will fill the amount of horizontal space available for the canvas.

MDL and MPL Preprocessor

Maconomy Printing Language (MPL) 180

MDL and MPL Preprocessor

This document describes the preprocessor functionality in MDL and MPL. This was introduced in
TPU 53.

The preprocessor functionality is also available from M-Script. For more information see the M-
Script Language Reference Manual.

Introduction

The MDL and MPL preprocessor functionality allows code sections of MDL and MPL (both in
standard prints and universe reports) to be dependent on add-ons as well as system parameters
and system information. This means that you can, for example, define a dialog that only shows a
certain island if a certain system parameter has been marked, or a printout that only shows certain
information if a certain add-on has been installed.

The main reason for using this is to leave out parts of layouts that are irrelevant in certain setups.
This functionality may be used mostly by the Deltek R&D department, but can be used by any
layout and MRL report developer.

Versions

The preprocessor is available in MDL and MPL as of TPU 53.

To be able to import MDL layouts using preprocessor directives, a Maconomy Windows client
version 4.3.0 is necessary. The preprocessor will, however, work correctly on older clients, and
MPL with preprocessor directives can be imported with older clients as well.

Application version 8.0SP11 is necessary for automatic recompilation of MPL after changes to
system parameters and system information. This application version also renames all system
parameters such that pseudo localization tags (@) are removed.

Preprocessor Options

The preprocessor is applied to MDL and MPL before the relevant compiler is invoked. This means
that the preprocessor directives can occur anywhere in the MDL or MPL syntax.

Syntax

The syntax for preprocessor options is as follows:

#if <expression>

...

#endif

and

#if <expression>

#else

#endif

The # directives must occur as the first token on a line.

<expression>

is one of

addon(<number>)

MDL and MPL Preprocessor

Maconomy Printing Language (MPL) 181

systemparameter.<systemparametername>

systeminformation.<systeminformationfield>

For systems that run with Danish kernel language, this last option would be:

systemoplysning.<systeminformationfield>.

Note that a number of system parameters have an “@” as the first character. If this is the case,
you must enclose the entire system parameter in a pair of backslashes, as illustrated in the
following examples.

WRONG:

#if systemparameter.@AllowChangeofVATOnInvoiceLines

...

CORRECT:

#if systemparameter.\@AllowChangeofVATOnInvoiceLines\

...

The system parameter or the system information field must be of the type Boolean. Otherwise, an

error message is produced (this can be viewed in the LayError.txt resp.

PrintLayoutErrors.txt file, which is placed in the Maconomy client folder). If an add-on, a

system parameter, or a system information field does not exist, it is treated as false.

Examples

Write a Text if an Add-On is Set

<island "Add-on">

#if addon(65)

"Add-on 65 is set"

#endif

<end island>

Write a Text if an Add-On is Set, Otherwise Another

<island "Add-on">

#if addon(65)

"Add-on 65 is set"

#else

"Add-on 65 is not set"

#endif

<end island>

Write in Italics if an Add-On is Set

The preprocessor directives can be used everywhere in the layout.

"Hi"

#if addon(65)

:italic+

#endif

Write a Text if a System Parameter is Set

#if systemparameter.UseDailyTimeSheets

"We use daily time sheets"

#endif

MDL and MPL Preprocessor

Maconomy Printing Language (MPL) 182

Write a Text if a System Information Field is Set

#if systeminformation.DifferentialVAT

"We use differential tax"

#endif

Negate a Boolean Criterion

There is no syntax for negating a Boolean criterion. Instead, you write:

#if systemparameter.UseDailyTimeSheets

#else

"We don’t use daily time sheets"

#endif

Warning

You should be aware that using the preprocessor functionality increases the risk of introducing
illegal MDL/MPL layouts in the system. Consider the following fragment:

#if systemparameter.UseDailyTimeSheets

"Add-on 65 is set"

#else

<island "title> .unknownfield <end stack>

#endif

The fourth line contains three errors: Missing " after title, reference to an unknown field, and an

attempt to match <island> with <end stack>.

Nevertheless, if the system is set up to use daily time sheets, this MDL will be validated with no
problems. This is because the preprocessor is invoked prior to invoking the MDL compiler, which
would otherwise detect the problems.

Now suppose that the system parameter “Use Daily Time Sheets” is changed to false. Now the

layout will suddenly be invalid, and users will not be able to open the window for which the layout
is defined.

It is therefore recommended that you test all MDL/MPL thoroughly before any preprocessor
directives are inserted.

Deltek is the leading global provider of enterprise software and information solutions for professional
services firms, government contractors, and government agencies. For decades, we have delivered
actionable insight that empowers our customers to unlock their business potential. Over 14,000
organizations and 1.8 million users in approximately 80 countries around the world rely on Deltek to
research and identify opportunities, win new business, optimize resource, streamline operations, and deliver
more profitable projects. Deltek – Know more. Do more.®

deltek.com

http://www.deltek.com/

