

Deltek Costpoint® 8.2
Extensibility Designer Coding Guide

October 2, 2023

Extensibility Designer Coding Guide ii

While Deltek has attempted to verify that the information in this document is accurate and complete,
some typographical or technical errors may exist. The recipient of this document is solely responsible for
all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is subject to
change without notice.

This publication contains proprietary information that is protected by copyright. All rights are reserved. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, or translated into another language, without the prior written consent of Deltek, Inc.

This edition published October 2023.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and proprietary
information of Deltek, Inc. and its licensors. The Deltek software, and all related documentation, is
provided for use only in accordance with the terms of the license agreement. Unauthorized reproduction
or distribution of the program or any portion thereof could result in severe civil or criminal penalties.

All trademarks are the property of their respective owners.

Extensibility Designer Coding Guide iii

Contents
Chapter 1: Standards .. 1

Java Standards .. 1
Package Structure ... 1
Class .. 2
Method ... 3
Variable .. 3
Constant ... 3
Comments .. 4
Indentation ... 4

Java Logging ... 4
Imports ... 4

Chapter 2: system.applicationinterface Package .. 5
system.applicationinterface.DEException ... 5
system.applicationinterface.ResultSetInterface .. 5
system.applicationinterface.RowSetInterface ... 8
system.applicationinterface.AppInterface .. 8

Global Constants ... 9
List of Global Constants ... 10
Using Constants as Variable in the Designer .. 10
Automatic Constant .. 10

Creating your own application constants ... 11
system.applicationinterface.LoggerInterface ... 12

How to Add Logging in Your Class: ... 13
CPlog4j.properties ... 13

system.applicationinterface.CPConstants ... 13
system.applicationinterface.SqlManager ... 14

Rules .. 14
Using DbF functions ... 16
Using other key words ... 16

system.applicationinterface.FileHandlerInterface ... 17
File Uploading .. 17
File Uploading UI ... 18
Alternate location ... 18

Extensibility Designer Coding Guide iv

FileHandlerInterface ... 18
Chapter 3: system.utils Package .. 21

system.utils.Numbers .. 21
System.utils.UIFormat ... 21

Chapter 4: Plug In Events ... 23
Plug-in Classes Are Stateless ... 23
RS Population Event ... 23

RS Populate Event ... 23
Caching Scheme .. 23

Validation event ... 25
Types of Validation Events .. 25
Rowset definition .. 25
Object Validation .. 25
Row Validation ... 27
RS Validation ... 29
Connection Mode Summary .. 30
Validations Handled by System ... 31

Before & After Save ... 31
BeforeRSSave ... 32
AfterRSSave .. 33

Order on Save ... 35
Validation sequence (intra result set) .. 35
Validation sequence (inter result sets)... 36
Save sequence .. 36

Actions ... 36
ActionInterface ... 36

Web Services .. 37
Extending a Standard Deltek Action .. 37
Adding a new extensibility action ... 39
Action Progress Meter ... 41
Maintenance Action ... 43

Chapter 1: Standards

Extensibility Designer Coding Guide 1

Chapter 1: Standards
Standards are necessary for ease of reference, maintenance and collaboration. This section provides
standards to be followed for Java coding for Costpoint application and extensibility.

Java Standards
Costpoint development adopts the Java Naming Standards as the starting point for all coding conventions
and standards.

This section provides specific details that apply to Costpoint development. If the details are absent in this
document, Java Naming Standards should be followed.

Package Structure
All package names are in lower case.

All Costpoint packages start with com.deltek.enterprise. There are four top branches underneath. They
are core, system, tools and application. Packages for your extensibility will form the fifth branch named
extensions.

Package Description

com.deltek.enterprise.core Private framework code. Extensibility developer may not use
any of these packages.

com.deltek.enterprise.system Private framework code except two packages in this branch
that extensibility developer can use: applicationinterface and
utils (see details later).

com.deltek.enterprise.tools Private framework code. Extensibility developer may not use
any of these packages.

com.deltek.enterprise.application Private common or specific application code containing
business rules. Extensibility developer may use this package.

com.deltek.enterprise.extensions All code developed for application extensibility must reside
under this package.

Attention: For more information, visit the following web page:

http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html

Chapter 1: Standards

Extensibility Designer Coding Guide 2

The diagram above shows that code in the extensions branch should only use packages from
system.applicationinterface, and system.utils (not shown).

com.deltek.enterprise.extensions.<extensibility project id>
Under extensions package, the next level must be named the same as the extensiblity project ID (created
in the Extensibility Designer)

For example

com.deltek.enterprise.extensions.xt_project_y

We only enforce the structure up to this level.

Under the project level, we recommend you sub package this further into branches for ease of reference.

For example

 com.deltek.enterprise.extensions.xt_project_y.common (to be shared by all code under this
project)

 com.deltek.enterprise.extensions.xt_project_y.unit1.common (to be shared by all code under
unit1)

 com.deltek.enterprise.extensions.xt_project_y.unit1.symusr (specific code for extending the
SYMUSR app under unit 1)

Class
The class name should always start with an upper case letter. Class names should be nouns, in mixed
case with the first letter of each internal word capitalized. Keep your class names simple and descriptive.
Do not use hyphen for class name.

system tools

core

application extensions

application.common

system.applicationinterface

system.utils

Chapter 1: Standards

Extensibility Designer Coding Guide 3

For app specific java classes, developers should follow the below naming pattern:

<App ID> [Optional ChildRSName]<eventType>

Where eventType can be RsPolulate, ObjValidation, LineValidation, RSValidation, BeforeSave, or
AfterSave. (see event plug in section).

For example:

 com.deltek.enterprise.extensions.xt_project_y.unit1.symusr.SymusrRsPopulate.java

 com.deltek.enterprise.extensions.xt_project_y.unit1.symusr.SymusrObjValidation.java

App common helper file can be named as <App ID>common.

For example:

 com.deltek.enterprise.extensions.xt_project_y.unit1.symusr.SymusrCommon.java

Method
Methods should be verbs, in mixed case with the first letter lowercase and the first letter of each internal
word capitalized.

For example

 validateHdrInfo

 computeExchgRates

Variable
Variable names should be short yet meaningful. The choice of a variable name should be mnemonic- that
is, designed to indicate to the casual observer the intent of its use. One-character variable names should
be avoided except for temporary "throwaway" variables.

Similar to method name, variable names are in mixed case with the first letter lowercase and the first
letter of each internal word capitalized. Do not use underscores.

Variable holding value from a database column should assume the name of the database column (without
the underscores).

For example:

 projId for column PROJ_ID

 vchrKey for column VCHR_KEY

Constant
The names of variables declared class constants and of ANSI constants should be all uppercase with
words separated by underscores ("_").

For example:

 public static final short OPEN_APP

 public static final short CLOSE_APP

Chapter 1: Standards

Extensibility Designer Coding Guide 4

Comments
Comments for classes and for methods should follow the Javadoc guidelines.

Indentation
All source code should be properly indented for ease of reading.

Java Logging
Avoid using System.out and use LoggerInterface to enable more flexibility and extensibility in logging
information.

Imports
When developing application java code, only two packages can be imported from the system branch:

 import com.deltek.enterprise.system.applicationinterface.*;

 import com.deltek.enterprise.system.utils.*;

You can import any packages from any common code that you create for your extensions packages.

 import com.deltek.enterprise.extensions.xt_project_y.common.*

 import java.util.*

 import java.lang.*

 import java.text.*

You can import these standard Java packages if you need them for development.

 import java.sql.SQLException;

Import this class if your class accesses the database (via SqlManager class – discussed later)

If you configuring Java IDE or compiling Java source files with javac command, you would need to point it
to or add it to your classpath main Costpoint classes folder in order to import other Costpoint classes.
This folder is located under the main Costpoint folder: \deltek\costpoint\82\applications\enterprise\APP-
INF\classes and most classes that are deployed with Costpoint are located in this folder. Your Extension
classes should be placed in the same folder after they are compiled for Weblogic in order to load them at
run-time. Please note that if you are making changes and recompiled your classes, you would need to
restart the Weblogic nodes for the changes to become effective. That is also why it is required to restart
the Weblogic nodes after you deploy extension(s) that have java classes in them.

Attention: For more information, please refer to the following site:

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Attention: For more information, please refer to the LoggerInterface section.

Note: If you are developing an Extension for Deltek’s Cloud, those are the only packages/classes that
you can import. If you would like to import other classes, please discuss it and get permission from
Cloud Operations team.

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 5

Chapter 2: system.applicationinterface Package
Upon certain events triggered by the user, the framework will call the plug-in java classes registered by
the developer in the Designer tool for that event.

For example, on Query, the framework will call the App Populate event plug-in. On tabbing out of a field
(and user login with Field mode), the framework will call object validation event plug-in. On leaving a line
to the next line (and user login with Field mode or Line mode), the framework will call line validation plug-
in event (See plug-in event section for more details).

When calling the plug-in method, the framework will pass the handle to current screen (result set) the
ResultSetInterface. From this handle, application code can access and manipulate data contained in that
result set and perform calculation or validation as necessary. Data on the screen can be manipulated via
the RowsetInterface while data in the database can be directly updated via the SqlManager interface.

system.applicationinterface.DEException
This class is a wrapper class for the root class java.lang.Exception. All application method must throw this
exception instead of various types of java exception. The system will catch this exception and handle it
gracefully without bringing down the entire session or even the application server.

system.applicationinterface.ResultSetInterface
ResultSetInterface is the most common interface between the system and the application java classes.

Note: There are exceptions when the framework passes AppInterface and ActionInterface (discussed
later).

AppInterface

ResultSetInterface

RowSetInterface

Data on the row

SqlManager

Database

Framework App

Events

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 6

This interface is passed to the result set each time a plug-in method is called from the system.

This interface provides methods to get to objects on the current result set, the parent’s or children result
set.

Here are some commonly used methods provided by the interface (see javadoc for more explanations)

 getRowSet(): Returns the RowSetInterface to the row in context. You always need to get
RowSetInterface before you can get to the data on the row.

 getApplication(): Returns the AppInterface to the app user is in.

 getSqlManager(Object o): Returns an instance of SqlManager which is used to access the
database via SQL.

 getParentRS(): Returns the ResultSetInterface of the parent RS when the application contains
more than one result set. Always check for null before using the returned ResultSetInterface (if
user does not open the subtask screen, ResultSetInterface of the subtask may be null).

 getChild(String rsId): Returns the ResultSetInterface of the specified child RS. Always check for
null before using the returned ResultSetInterface.

 findInit(int flagsOn,int flagsOff,boolean setContext): Returns an iterator so you can loop
through rows in the result set.

 findFirstRow(int flagsOn,int flagsOff): Returns the number of the first row (each row has a
number) found in the search.

 addObjectMessage(String objectId,String msgId, short msgType): Add a message and its
severity. Set focus to the indicated object in the UI.

Overload method:

addObjectMessage(String objectId,String msgId, short msgType, String parms[]): Add a
tokenized message and its severity and associate with an object.

 addLineMessage(String msgId, short msgType): Add a message and its severity. Set focus to
the entire line in the UI.

Example: Validate a project ID and issue a error message for invalid project id
/***/
package com.deltek.enterprise.extensions.xt_project_y.mypjmbasic;

import com.deltek.enterprise.system.applicationinterface.DEException;

import com.deltek.enterprise.system.applicationinterface.CPConstants;

import com.deltek.enterprise.system.applicationinterface.ResultSetInterface;

import com.deltek.enterprise.system.applicationinterface.RowSetInterface;

public class MyPjmbasicObjectValidation {

 public short validateProjId (ResultSetInterface rsI) throws DEException {

 /* Initialize return code to OK */

Note: In some instances, appInterface or actionInterface is passed instead – explained later.

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 7

 short retCode = CPConstants.CP_OK;

 /* Get to RowSetInterface from ResultSetInterface */

 RowSetInterface roI = rsI.getRowSet();

 /* Get data on the row */

 String projID = roI.getStringValue(“PROJ_ID”);

 /* Call some method to validate the value of project ID */

 if (!checkProjID(projID)) {

 /* Return an error if project ID is not validated */

 rsI.addObjectMessage(“PROJ_ID”,”CP_PROJ_INVALID”, rsI.ERROR);

 retCode = rsI.ERROR;

}

return retCode;

 }

}

/***/

Message severity
INFORMATION = 1 = Info message only.

WARNING = 2 = Warning (OK/Cancel)

ERROR = 3 = Error (Error but continue validation to find more error)

FATAL = 4 = Fatal (Error and stop validation)

Message methods
 addObjectMessage (String objectId, String msgId, short severityCode): Return a message

with the severity code and set focus on the object Id specified when user clicks on the message
link on the UI. ObjectID is the object ID specified in the Designer. Message ID identifies the
message stored in the message table in the database.

 addLineMessage (String msgId, short sevType): Same as addObjectMessage but return focus

to the entire line when user clicks on the message link on the UI

 addRSMessage (String msgId, short sevType): Same as addObjectMessage but return focus
to the entire result set when user clicks on the message link on the UI

Example: Looping through result set
/***/
private void loopMyResultSet(ResultSetInterface rsI) throws DEException {

 RowSetInterface roI = rsI.getRowSet();

Attention: See Javadoc for additional overloading addObjectMessage methods that passes
additional parameters.

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 8

 // loop and find row that are new but exclude those marked deleted

 RsIterator rsT = rsI.findInit(roI.ROW_New, roI.ROW_MarkDeleted, true)

 while (rsT.next()!=roI.UNDEFINED_CONTEXT) {

 (do your logic here)

 }

}

/***/

system.applicationinterface.RowSetInterface
This interface provides methods to get and put data (columns) onto a row, inspect row flags (new,
updated, markdeleted, etc), add rows to result set, get original value selected for an Object Id, and so on.

Here are some commonly used methods provided by the interface (see javadoc for more explanations)

 getStringValue(String sColumnName): Return the value in the column specified with Object ID. If
the value is blank or null in the database, an empty string will be returned (not a null).

 setStringValue(String value,String sObjectId): Set a value into the column specified with Object ID

Example: Getting and setting data with RowSetInterface
/***/
private void loadSettings (ResultSetInterface rsI) throws DEException {

RowSetInterface roI = rsI.getRowSet();

/* get a value */

String sMethod = roi.getStringValue(“S_PO_AUTO_NUM_TYPE“);

/* set a value */

 if (sMethod.trim().equals(“”))

 roi.setStringValue(“S”,”S_PO_AUTO_NUM_TYPE”);

 }

}

/***/

system.applicationinterface.AppInterface
Provide methods to get various global settings independent of the result set you are in such as current
App Id, System Name, Language No and User Id.

AppInterface is obtained via the ResultSetInterface’s getApplication method.

Here are some commonly used methods provided by the interface (see javadoc for more explanations)

 getSystemName(): Return system name selected by user when login.

 getUserId(): Return ID of login user.

 getConstant(String constId): Return the object containing the application constant identified in
the ID

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 9

Example: Getting User Id with AppInterface
/***/
private String getUserId (ResultSetInterface rsI) throws DEException {

 AppInterface appI = rsI.getApplication();

 String sUserId = appI.getUserId();

 return sUserId;

}

/***/

Example: Getting the current application ID
/***/
private String getAppId (ResultSetInterface rsI) throws DEException {

 AppInterface appI = rsI.getApplication();

 String appId = appI.getAppName();

 return appId;

}

/***/

Global Constants
The framework stores data that are set in setting tables (such GL Setting, PO Setting, and so on) as
global constant. Data is retrieved once by the framework from the database and stored in static
hashtables by framework.

Application does not have to use SQL to get the value. Application can simply get the value via the
getConstant method.

Example: Getting the Validate Social Security Number Flag in Labor Settings

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 10

/***/
private String getLabSettingSSNFl (ResultSetInterface rsI) throws DEException {

 AppInterface appI = rsI.getApplication();

 String valSSNFl = (String) appI.getConstant(“CP_LABSETTINGS_SSNVALFL”);

 return valSSNFl;

}

/***/

Example - Get Project Control’s top level length
/***/
private short validateSomeObjects (ResultSetInterface rsI) throws DEException {

 // get app interface from ResultsetInterface

 AppInterface api = rsI.getApplication();

 // get top level len

 Integer nTopLvlLenNo = (Integer) api.getConstant(“CP_PROJCNTL_TOPLVLLENNO”);

}

/***/

List of Global Constants
In the Designer, go to Constant and filter with ID starting with CP only. Open the constant. Any constant
that does not have an entry in the Class and Method fields is a global constant.

Using Constants as Variable in the Designer
To use these constants as variable in the Designer, you must assign the constant to the application in the
Designer. Then you can use it as part of the formula for Editable, Visible, Value, and so on. You can also
use it as part of the text for labels or status text.

Automatic Constant
Automatic constant is a subset of global constant that is always available for use. You do not have to
assign them to your application. These are:

 CP_USER_ID = ID of the user who currently logs in.

 CP_LANG_NO = Language No being used by the current login session.

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 11

 CP_COMPANY_ID = Company the user is working on in the current login session.

 CP_APP_ID = App ID the user is working on in the current login session.

 CP_CURRENT_DATE = Date time of the server when user logins to an application

 CP_SESSION_ID = Station ID assigned to the user when login to Costpoint Web.

 CP_GLCONFIG_REFSTRUC1LBL = Ref1 Label

 CP_GLCONFIG_REFSTRUC2LBL = Ref2 Label

 CP_WUSERCOMPANY_SUPPRESSCSTFL = User Company Cost Suppression Flag

 CP_WUSERCOMPANY_SUPPRESSLABFL = User Company Labor Suppression Flag

 CP_WUSERCOMPANY_SUPPRESSPRCFL = User Company Price Suppresion Flag

 CP_WF_KEY

 CP_WF_CASE_KEY

 CP_WF_ACTIVITY_KEY

 CP_WF_OPTIONAL_KEY

Creating your own application constants
In addition to the global constants, you can create your own constants via your own java class. Once it is
created, you can use it in your application by assigning it to your app in the Designer. It will be then
available to your server code as well as client code (formula, label, status text set in Designer).

The object returned can be String object, or a Date, Integer or Double.

If you return a String containing a date, then you must format the string with the system date format (yyyy-
MM-dd). Using other format will interfere with the system trying to reformat the date to the correct locale
of the user. Generally, we suggest that you return a Date instead. The system will automatically convert
the date to the proper format for presentation and you do not need to know how what format to use if you
do it yourself. In addition, you can also use the Date object at the server for other purposes.

To create your own application constant:
1. In the Designer: Create a new constant Id. Specify the java class and method used to populate

the value of this constant. Then assign constant to your application

2. Create the java class and method to return the value. Class can be an existing class in your
extensions package.

3. The java method must have this signature

public Object xxxx (AppInterface appI) throws DEException {}

4. Use the AppInterface.getSqlManager method to get an instance of SqlManager.

Example: Create constant Ship Name from the Default Ship ID in the PO_SETTINGS
/***/

Designer:

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 12

Java class:
/***/
package com.deltek.enterprise.extensions.xt_project_y;

import java.sql.*;

import com.deltek.enterprise.system.applicationinterface.*;

public class MyConstants {

 public String defaultShipId;

 public String defaultShipName;

 public Object getPODefaultShipName (AppInterface appI) throws DEException, SQLException {

 SqlManager sqlMgr = appI.getSqlManager("DATA",this);

 String sysName = appI. getSystemName();

 /* Get global constant Default Ship ID */

 defaultShipId = (String) appI.getConstant("CP_POSETTINGS_DFLTSHIPID");

 /* Select ship name from ship id */

 String Select = "SELECT SHIP_NAME FROM SHIP_ID “ +

 “WHERE SHIP_ID = :defaultShipId INTO :defaultShipName";

 sqlMgr.SqlExecuteQuery(Select);

 return defaultShipName;

 }

}

/***/

system.applicationinterface.LoggerInterface
All logging in Java code should be done using the provided LoggerInterface. Avoid using System.out. Use
LoggerInterface to enable more flexibility and extensibility in logging information. The advantages of using
the Logger are:

 It is possible to print to the console or some log files by changing properties in the config file.

 No need to comment/uncomment System.out.println in the code

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 13

 The logging messages from a particular package or a particular dir can be filtered for
analysis/debugging purpose

How to Add Logging in Your Class:
 Import com.deltek.enterprise.system.applicationinterface.LoggerInterface

 Get a LoggerInterface from AppInterface

 Use the logging methods from the LoggerInterface.

Example: Using the LoggerInterface
/***/
import com.deltek.enterprise.system.applicationinterface.LoggerInterface;

import com.deltek.enterprise.system.applicationinterface.DEException;

import com.deltek.enterprise.system.applicationinterface.ResultSetInterface;

import com.deltek.enterprise.system.applicationinterface.AppInterface;

public class myClass {

 public short validateMyEntity (ResultSetInterface rsI) throws DEException {

 AppInterface appI = rsI.getApplication();

 LoggerInterface logger = appI.getAppLogger();

 logger.debug(“This a debug message”);

 logger.info("This is a info message");

 logger.warn(“This is a warning message”);

 logger.error(“This is an error message”);

 logger.fatal(“This is a fatal message”);

 }

}

/***/

CPlog4j.properties
At run time, the system will read the default configuration file CPlog4j.properties located in the classpath
(currently located at \applications\enterprise\properties). This file contains the specified output, severity
level and layout of messages.

Severity levels are (from lowest to highest): Debug, Info, Warn, Error, Fatal. The severity level set in the
configuration file indicates the lowest to be output. For example, if the level is set at Warn, then only
Warn, Error and Fatal level messages are output.

system.applicationinterface.CPConstants
The CPConstants interface contains constants that are used system wide. These are java constants. Do
not confuse this with Costpoint global constants that were discussed in the AppInterface section.

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 14

For example, CP_OK, which corresponds to 0, can be returned from the validation when no errors are
encountered. Other constants in this interface include CP_ACCT_DELIM, CP_MAX_PROJ_LVLS, and
CP_MAX_NUM_SUB_PDS.

To use CPConstants, import com.deltek.enterprise.system.applicationinterface.CPConstants. If your class
implements CPConstants, you can use the constants such as CP_OK without the qualifier. Otherwise,
you need to use them with the interface CPConstants as the qualifier, for example, CPConstants.CP_OK

Example: Class using CPConstants
/***/
import com.deltek.enterprise. system.applicationinterface.CPConstants;

public class PjmbasicMyClass {

 public short retcode = CPConstants.CP_OK;

}

/***/

system.applicationinterface.SqlManager
SqlManager class is used to perform SQL operation on the database. You request an instance of
SqlManager from ResultSetInterface (or AppInterface or ActionInterface). With it, you can use it’s method
to execute SQL statement.

Rules
 Avoid excessive request of SqlManager instances. For example, do not request SqlManager in a

loop. Request one instance and then use it in the loop. When writing common validation method,
use a passed in SqlManager as a parameter instead of creating a new SqlManager.

The system will throw an application error if more than 20 SqlManager instances are requested
within one single plug-in call (an application method called by the system for a single event). This
includes all SqlManagers requested from functions invoked from the plug-in class.

 Never add table owner in front of table name. Owner is assumed by the name setup in the server
connection pool.

 DbF functions are provided to cover cross DBMS SQL syntax. Use them in SQL statement like a
SQL function (see an example below).

Some commonly used methods in SqlManager are:

 SqlPrepareAndExecute(String): prepares and executes SQL statement.

 boolean SqlFetchNext(): fetches next row from result set.

 SqlExecSP(sExpectedVersion,bCheckOnly,sSPName,sParams,bCommit): invokes stored
procedure.

 SqlGetModifiedRows: Get the number of rows affected by the last SQL statement.

 boolean SqlExecuteQuery(String): executes select statement and fetchs first row.

Example: SqlExecuteQuery using class variables for bind and into variables
/**/

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 15

/* Bind variables are declared as class variables. SqlManager uses reflection to read and
write values back to your object. All bind variables are preceded with the colon (:) in
the SQL statement.

 If your class has been extended and the SQL is being done on the subclass, do not use
class variables as bind variables. Use the local hashmap approach (see next example)

*/

public String sShipId;

public String sShipName;

public void posettingsGetShipDesc (ResultSetInterface rsI) throws SQLException, DEException {

SqlManager sqm = rsI.getSqlManager(this);

RowSetInterface roI = rsI.getRowSet();

sShipId = roI.getStringValue("PO_SETTINGS___DFLT_SHIP_ID");

String sSelect = new StringBuffer()

 .append("SELECT SHIP_NAME FROM SHIP_ID WHERE SHIP_ID = :sShipId")

 .append(" INTO :sShipName").toString();

sqm.SqlExecuteQuery(sSelect);

roI.setStringValue(sShipName,"SHIP_NAME");

}

/**/

Example: SqlExecuteQuery using a local hashmap to hold bind/ into variables
/**/
public void posettingsGetShipDesc (ResultSetInterface rsI) throws SQLException, DEException {

SqlManager sqm = rsI.getSqlManager(this);

RowSetInterface roI = rsI.getRowSet();

String sShipId = roI.getStringValue("PO_SETTINGS___DFLT_SHIP_ID");

String sShipName = null;

// put variables into a local HashMap

HashMap bindHash = new HashMap();

bindHash.put("sShipId", sShipId);

bindHash.put("sShipName", sShipName);

// Put HashMap in SqlManager

sqlMgr.setBindClasses(bindHash);

String sSelect = new StringBuffer()

 .append("SELECT SHIP_NAME FROM SHIP_ID WHERE SHIP_ID = :sShipId")

 .append(" INTO :sShipName").toString();

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 16

sqm.SqlExecuteQuery(sSelect);

// Get the value out of hashmap

HashMap outHash = sqlMgr.getBindsTable();

sShipName = (String) outHash.get(“sShipName”);

roI.setStringValue(sShipName,"SHIP_NAME");

}

/**/

Using DbF functions
If your customer runs Costpoint on multiple DMBS platform, your SQL statement must work for all
platform. DbF functions are provided to avoid different syntax for different DBMS platform. For example,
outer join syntax is different for SQL Server versus Oracle. Costpoint provides the DbF_OuterJoin
function to avoid having to write different SQL. Alternatively, you can write SQL in ANSI syntax which
would work for all platform.

DbF function is used like a SQL function (not a java function). Therefore, do not concatenate your SQL
statement with DbF function java calls. Include such function inside the SQL statement. The system will
parse the DbF function inside the statement to the appropriate back end syntax.

For a complete list of DbF functions, open the Sql Editor in the Designer and select the drop down box
for DbF functions.

Example: Using DbF_Outerjoin function
DbF_Outerjoin automatically converts to ANSI outerjoin syntax after the system parses the statement.

/**/
String select = “SELECT T1.USER_ID, T1.EMPL_ID, T2.LAST_NAME FROM USER_ID T1, EMPL T2 WHERE
DbF_OuterJoin(T1.EMPL_ID,T2.EMPL_ID)”

/**/

Example: Using DbF_OptionalString to insert NULL when field is empty
SqlManager will insert a blank string if the value passed in is empty. Use DbF_OptionalString for column
that needs to be NULL if the value is blank.

/**/
String sInsert = “INSERT INTO PO_HDR_DFLT (PO_ID, PO_RLSE_NO,RQ_ID,SHIP_ID,……) “ +

“ VALUES (:sPoId, :nPoRlseNo, DbF_OptionalString(:DfltShipId), …..)

sqlMgr.SqlPrepareAndExecute(sInsert);

/**/

Using other key words
 Key word CP_USER_ID can be used to substitute the value of the User Id in SQL statement. Use

it for MODIFIED_BY column (see example below)

 Key word CP_COMPANY_ID can be used to substitute the value of the current company id the
user is working with in the current session.

 Key word CP_APP_ID can be used to substitute the value of the current app id the user is
working with in the current session.

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 17

 Key word CP_CURRENT_DATE can be used to substitute the value of the current database
server date and time. Alternatively, you can also use the DbF_DateCurrent function.

Example: Using key word: CP_USER_ID and DbF functions
/**/
sProjId = rowsetI.getStringValue("PROJ_ID");

sOldOrgId = rowsetI.getStringValue("ORG_HIST___OLD_ORG_ID");

String sSql = new StringBuffer()

.append("UPDATE PROJ SET ORG_ID = :sOldOrgId,”)

.append(“MODIFIED_BY = :CP_USER_ID,TIME_STAMP = DbF_DateCurrent()”)

.append(“ WHERE PROJ_ID LIKE :sProjId DbF_ConcatChar() '%'").toString();

sqlMgr.SqlPrepareAndExecute(sSql);

/**/

Example: Checking for concurrency
Concurrency error should be captured as a FATAL error.

/**/
sqlMgr.SqlExecute();

if (sqlMgr.SqlGetModifiedRows() == 0)

{ // NO row updated by last UPDATE statement

 String tableName = “xxxxx”;

 String dbOperation = “xxxx”

 String[] msg = { tableName, dbOperation }; //table name, operation

 rsI.addRSMessage("XT_PROJECT_Y_NO_ROWS_UPDATED",rsI.INFO, msg);

 return rsI.INFO;

}

/**/

system.applicationinterface.FileHandlerInterface

File Uploading
For files that must be processed by Costpoint (for example, preprocessor input files), the user can upload
the file using the File Upload Manager via the Process->File Upload option on the menu. This uploads the
file to the Costpoint database table W_USER_FILE_CATLG. Files can also be placed in an alternate file
location (see next section).

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 18

File Uploading UI

A dialog appears when clicking on the File Upload option on the menu bar.

 Enter the file name or Browse to the file (located in your drive or a network drive).

 Enter a brief description.

 Enter the expiration date. A purge process can be scheduled to remove these files from the
database based on the expiration date.

 Check Overwrite box if you want to overwrite a previous version. (Otherwise, an error message
may be returned if a duplicate file is found).

The file will be saved in the table W_USER_FILE_CATLG with the same file name. The following are
stored as key for this table: User ID, Company ID, App ID and file name

Alternate location
To process a file, the file must either be uploaded in the database or uploaded in an alternate location
(disk file).

An alternate location is a folder where the application server can access/read/write disk files. Once the
folders are created on disk, you associate the URL with a logical name inside Costpoint. An alternate file
location is specified in the Manage Alternate File Locations application. After a file is placed in that
location, it can be used in the application if the application screen provides input fields for entering file
location ID and file name.

FileHandlerInterface
To access files already uploaded for processing, use the FileHandlerInterface in
com.deltek.enterprise.system.applicationinterface package.

Common methods in FileHandlerInterface include:

 boolean fileOpen(java.lang.String fileName, int nStyle): Open a DB file uploaded in database

 boolean fileOpen(java.lang.String fileName, int nStyle, String altLocation): Open a file uploaded
in alternate location

 String fileRead(int len): Read a buffer of characters from a file to a string starting with the current
position to the new position (current plus len passed in).

 String getGetStr():Read next line as String from an opened file.

 void fileClose (): Close an opened file.

Example: Coying a file uploaded in DB to a new file in DB
/***/

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 19

import com.deltek.enterprise.system.applicationinterface.FileHandlerInterface;

public class TFileMgr {

 public short copyFile (ActionInterface aci) throws DEException {

 FileHandlerInterface fi = aci.getFileManager();

 ResultSetInterface rsi = aci.getResultSet();

 RowSetInterface roi = rsi.getRowSet();

 String fileName = roi.getStringValue("MY_RS_FILE_NAME");

 fi.fileCopy(fileName,fileName+"_copy",true);

 return 0;

 }

}

/***/

Example: Reading a file uploaded in DB
/***/
import com.deltek.enterprise.system.applicationinterface.FileHandlerInterface;

public class TFileMgr {

 public short copyFile (ActionInterface aci) throws DEException {

 FileHandlerInterface fi = aci.getFileManager();

 ResultSetInterface rsi = aci.getResultSet();

 RowSetInterface roi = rsi.getRowSet();

 String fileName = roi.getStringValue("MY_RS_FILE_NAME");

 if (!fi.fileOpen(fileName,fi.OF_Read)) {

rsi.addMessage(....);

return rsi.ERROR;

 }

 String tempStr = null;

/* read one line at a time */

 while ((tempStr = fi.fileGetStr()) != null) {

 ... process data in tempStr...

 }

 fi.fileClose();

 return 0;

 }

}

/***/

Example: Copying a file in db and write out to a disk file in alternate location
/***/

Chapter 2: system.applicationinterface Package

Extensibility Designer Coding Guide 20

public void copyFileToAltLocation(ActionInterface action) throws DEException {

 RowSetInterface row = action.getResultSet().getRowSet();

 String altLocation = row.getStringValue("ALT_LOCATION");

 String fileName = row.getStringValue("FILE_NAME");

 String newFileName = row.getStringValue("ALT_FILE_NAME");

 // open file

 FileHandlerInterface fileHandler = action.getFileManager();

 if (fileHandler.fileOpen(fileName, fileHandler.OF_Read)) {

 String content = fileHandler.fileRead(fileHandler.length());

 fileHandler.fileClose();

 // create new file

 newFileName = (newFileName == null) ? fileName : newFileName;

 if (fileHandler.fileOpen(newFileName, fileHandler.OF_Create, altLocation)) {

 fileHandler.fileWrite(content);

 fileHandler.fileClose();

 // Ok

 String[] s = {newFileName};

 action.addMessage("XT_PROJECT_Y_FILE_CREATE_OK", action.INFORMATION, s);

 }

 else {

 // cannot create new file

 String[] s = {newFileName};

 action.addMessage("XT_PROJECT_Y_FILE_CREATE_FAILED", action.ERROR, s);

 }

 }

 else {

 // existing file is not found

 String[] s = {fileName};

 action.addMessage("XT_PROJECT_Y_FILE_NOT_FOUND", action.ERROR, s);

 }

}

/**/

Chapter 3: system.utils Package

Extensibility Designer Coding Guide 21

Chapter 3: system.utils Package
In addition to system’s applicateinterface package, application can also import and use classes in the
system’s utils package.

system.utils.Numbers
Provides methods to do rounding, compare, truncate, and so on.

Here are some commonly used methods provided by the class.

 public static int compare(double number1, double number2): returns 1 if number1 > number2, 0 if
number1=number2, else return -1

This method will help avoid errors caused by floating point arithmetic and will allow reliable
comparison of two double values

For example, the number in regular, decimal, format 123.45 is stored as 1.2345E02; one is stored
as 1.0E01. This means that java uses quite different rules (floating point arithmetic) to do any
arithmetic operation. Rounding errors can happen when you use two or more double variables or
just add some number to the double variable.

For example:

 double d1=1.1233357

 double d2=4.165

 double d=d1-d2

 double d3=d1-d2-d

We would expect d3 to equal zero. However, d3 is actually = 2.220446049250313E-16.

Use this method compare instead of doing your own arithmetic for comparison.

 public static double round(double value, int scale)

Round a number to the scale specified.

System.utils.UIFormat
Provide methods to format number or date to string for presentation purposes.

Here are some commonly used methods provided by the class.

 public static String numberToStr(AppInterface appI, double amount, int nScale, boolean
bThousSep,boolean bPadDec)

 public static String dateTimeToStr(AppInterface appI,Calendar datetime, boolean bDate,boolean
bTime, boolean bFourDigitYear)

Example: Formatting a currency amount in an error message
/***/
import com.deltek.enterprise.system.applicationinterface.*;

import com.deltek.enterprise.system.utils.UIFormat;

public class MyRowValidation {

Chapter 3: system.utils Package

Extensibility Designer Coding Guide 22

 public short validateRow (ResultSetInterface rsi) throws DEException {

 RowSetInterface roi = rsi.getRowSet();

 double parentAmt = roi.getdouble("RQ_LN_TOT_CALC_AMT");

 double childTotAmt = roi.getdouble("RQ_LN_TOT_AMT");

 if (parentChangeAmt != childChangeAmt) {

 AppInterface app = rsi.getApplication();

 String parAmt = UIFormat.currencyToStr(app, parentAmt,true,true,true);

 String childAmt = UIFormat.currencyToStr(app, childAmt,true,true,true);

 rsi.addObjectMessage("TOT_AMT_OBJ_ID","XT_PROJECT_Y_AMT_INVALID",rsi.ERROR,

 new String[] {parAmt,childAmt});

 return rsi.ERROR;

 }

 return 0;

 }

/**/

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 23

Chapter 4: Plug In Events

Plug-in Classes Are Stateless
Application plug-in classes invoked by the framework (such as object/cell/line validations, actions, etc) are
stateless objects. Between method calls, class variables can be of any state since the framework does
not clear its cache. Therefore, class variables should be initialized inside the method when the method is
called as a plug in entrance.

For example: You have two object validation methods implemented in the same class. These two
methods will be invoked independently. Do not set class variables in one method that will be used for the
other method.
Note: If one method in the plug-in class is invoking other private method in the same class, no re-
initialization is necessary in the other private methods since this is still within the plug-in lifetime.
Initialization should happen only at the beginning of those public methods, which are called by the
framework.

RS Population Event

RS Populate Event
 RS Populate event happens when the framework executes the data retrieval for a result set. This

can be initiated by user selects Query on the result set or the result set auto populates its data on
opening.

 On this event, the framework will select the data based on the SQL statement entered in the
Designer for result set. If you register a class for the RS Populate event, the class will be called
by the framework before the data is sent to the client.

 RS Populate class is used to manipulate the data beyond the Select statement. For example,
getting additional data (such as description or name from another table) where additional table
join in the select SQL is costly for performance or not possible. It is also used to populate or add
rows to the result set that are not coming from the database.

Caching Scheme
The framework is optimized to retrieve the rows from the database only as needed. It uses cache and
buffering mechanism to retrieve only enough data to fill the UI screen. Each time the system needs to
fetch additional rows (on user scrolling at the client), it will go to the database and fetch more. The size is
indicated in DB_FETCH_SIZE setting in enterprise.properties. As user scrolls for more data, the server
will check its cache before going to the database to get more.

The cache size is indicated by the RS_CACHE_SIZE setting. Once the rows reached the
RS_CACHE_SIZE, old rows will be discarded to make room for new rows. New rows entered by user or
rows that have been edited are stored separately and not included in this cache size limit.

Due to this scheme, RS populate plug-in class may be called more than one time. So do not use class
variables in the method unless they are initialized each time.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 24

Extensibility

 Enter a descriptive name for the plug-in. Select After RS Populate. Your class will be executed

after the standard Deltek RS Populate plug-in.

 Enter the fully qualified package and class name. Your java class must implement
PopulateRSInterface interface and the method populateRS.

 Use method nextBufferRow() from the ResultSetInterface to loop through rows retrieved by the
framework. The system sets context automaticaly so you do not need to call method
setRowSetContext in the loop.

Example: Looping through rows selected by framework and set field values
/**/
package com.deltek.enterprise.extensions.xt_project_y;

import com.deltek.enterprise.system.applicationinterface.*;

public class MyPjmBasicRSPopulate implements PopulateRSInterface {

 public void populateRS(ResultSetInterface rsI) throws DEException {

 RowSetInterface rowSetI = rsI.getRowSet();

 int i;

 while ((i= rsI.nextBufferRow())!=rowSetI.UNDEFINED_CONTEXT){ {

 rowSetI.setStringValue("","CURRENT_FISCALYEAR");

 if (rowSetI.getStringValue("REV_LBL").equals("N/A")) {

 rowSetI.setStringValue(null,"REV_LBL");

 rowSetI.setDouble(null,"REV_AMT");

 }

 }

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 25

 }

}

/**/

 Validation event

Types of Validation Events
Validations are plug-in events fired by the framework so the application will have a chance to validate the
data.

There are three types of validations: Object validation, Line (or Row) Validation, and RS Validation. The
timing of the events at the server depends on the Validate Frequency mode on login.

Rowset definition
A rowset is a group of rows within a result set having the same parent row. Thus, top-level result set in an
application will always contain only one rowset. A non top-level result set can have multiple rowset if there
are multiple parent rows.

For example:

Two voucher headers A and B each having two voucher lines: A1, A2 and B1, B2 respectively. In such
example, there are two result sets: Voucher Header and Voucher Line. Since Voucher Header is a top-
level result set, there is only one rowset with two rows A and B. For the Voucher Line result set, there are
two rowsets: A1 and A2 with parent A, and B1 & B2 with parent B.

This explanation will help you understand the discussion in the rest of this chapter.

Object Validation
Object Validation should be used to validate a single object.

Timing

In Field mode, Object Validation is invoked when value in the object has changed and user tabs out of it.
Once validation is done, it is not called again when user just tabs through it again unless the value is
changed again. If the field’s value is changed programmatically by the application java code, no Object
Validation is fired.

In Line mode, Object Validation is delayed and called when user leaves the current line to another line
and the object value has been changed. So while user keep changing the value but still stay on the same
line, it is not yet called.

In Application mode or web service mode, Object Validation is only called on Save.

Rules

 Object validation is never invoked if the value is changed to a blank or null. It is only invoked if the
value has been changed to a non-blank value. Therefore, you should never have Object
Validation code that checks if the field is empty because the plug-in code would never be
executed. If you need to check that the field is empty to do something, do this check in the Row
Validation plug-in class.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 26

 Object validation should be written to look at the value of a single object only. If the validation
depends on the value of other objects on the screen, it must be done in Row validation or RS
validation when user has completed the input for the dependent fields.

Extensibility

 When extending existing Deltek standard Object Validation, you can create the plug-in class to be

executed before or after the standard Deltek Object Validation is fired.

 Enter the full package name of the plug-in class. Enter the method name.

 Select Before or After execution of the standard Deltek Object Validation.

 Implement the class and the method.

Example: Object validation
/**/
package com.deltek.enterprise.extensions.xt_project_y;

import com.deltek.enterprise.system.applicationinterface.*;

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 27

public class MyPjmbasicValidateObjects {

 public short ValidateAcctGrp(ResultSetInterface rsI) throws SQLException, DEException {

 sqlMgr = rsI.getSqlManager(this);

 RowSetInterface rowsetI = rsI.getRowSet();

 /* In object validation, rsi.getObjectId() method

 returns the object Id of the object being validated */
 String sAcctGrpObjId = rsI.getObjectId();

 String sAcctGrpCd = rowsetI.getStringValue(sAcctGrpObjId);

 short nReturn = CP_OK;

 String sSql = new StringBuffer()

 .append("SELECT ACCT_GRP_CD FROM ACCT_GRP_CD ")

 .append("WHERE ACCT_GRP_CD = :sAcctGrpCd ")

 .toString();

 if (!(sqlMgr.SqlExecuteQuery(sSql))) {

 String sMsgId = “CP_ACCTGRP_INVALID”;

 rsI.addObjectMessage(sAcctGrpObjId, sMsgId ,rsI.ERROR);

 nReturn = rsI.ERROR;

 }

 return nReturn;

 }

}

/**/

Row Validation
Row Validation should be used to validate each row found in a result set (RS).

Timing

In Field mode and Line mode, Row Validation is invoked when at least one field on the row has changed
and user moves the focus to another row.

In Application mode or web service mode, Row Validation is delayed and is only called on Save.

Rules

 Row Validation is never called when the row is marked deleted. Therefore, you should never
have Row Validation code that checks if the line is marked deleted because the code would never
be executed. If you need to check this, do this check in the RS Validation plug-in class.

 Row validation should be written to validate objects’ relationship within a line. If the validation
logic depends on the value of other objects on other lines (like getting a total, checking for
duplicate value, and so on), you should put this logic in RS validation.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 28

 If you have parent and child RS relationship and parent ID or key columns needs to be
cascaded/copied down to the child RS on insert of new rows, you need to do this in places other
than in the row validation of the child RS.

The reason is in Field or Record mode, row validation of the child RS may occur and then user
decides to change the parent column value (for example, PROJ_ID, VEND_ID, etc,). Since child
row is already validated, it will not get validated again when the user changes the value in the
parent RS

Extensibility

 When extending existing Deltek standard Row Validation, you can create the plug-in class to be

executed before or after the standard Deltek Row Validation is fired. If you need to do both,
create two plug-in classes, one for each.

 Enter a descriptive name for the plug-in. Select Before Line Validate or After Line Validate.

 Enter the full package and name of the plug-in class. Note that the method name is always
“validateRS”.

 The class must implements RSValidation interface with the method validateRS.

Example: Row Validation
/***/
package com.deltek.enterprise.extensions.xt_project_y;

import com.deltek.enterprise.system.applicationinterface.*;

public class MyPjmbasicProjValidateRow implements RowValidation {

 public short validateRow(ResultSetInterface rsI) throws SQLException, DEException {

 RowSetInterface rowSetI = rsI.getRowSet();

 String sProjId = rowSetI.getStringValue("PROJ_ID");

 String sOrgId = rowSetI.getStringValue("ORG_ID");

 String sAcctId = rowSetI.getStringValue("ACCT_ID");

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 29

 return validatePOA(sProjId,sOrgId,sAcctId,rsI);

 }

}

/***/

RS Validation
RS Validation should be used to validate across the rows within a RS or across multiple RS.

Timing

In all mode (Field, Row, Application or web service) RS Validation is called only on the Save event.

Rules

 RS Validation is not called if there is no change to any row on that result set.

 RS Validation should be written to validate objects relationship across lines. For example, when
totaling amounts or percents across the lines or when checking for unique value of certain
column.

 You must always iterate through the RS since the event is fired once for each RS, not each row.

Extensibility

 When extending existing Deltek standard RS validation, you can create the plug-in class to be

executed before or after the standard Deltek RS validation is fired. If you need to do both, create
two plug-in classes, one for each.

 Enter a descriptive name for the plug-in. Select Before RS Validate or After RS Validate.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 30

 Enter the full package name of the plug-in class. Note that the method name is always
“validateRS”.

 The class must implements RSValidation interface with the method validateRS.

Example: RS Validation

/***/
package com.deltek.enterprise.extensions.xt_project_y;

import com.deltek.enterprise.system.applicationinterface.*;

public class MyPjmbasicValidateRS implements RSValidation {

 public short validateRS(ResultSetInterface rsI) throws DEException {

 short nReturn = CP_OK;

 RowSetInterface rowSetI = rsI.getRowSet();

 /* Looping is necessary in RS Validate */

 RSIterator rsT = rsI.findInit(rowSetI.ROW_New,rowSetI.ROW_MarkDeleted,true);

 int nNextLvlNo = 1;

 while (rsT.next() != rowSetI.UNDEFINED_CONTEXT) {

 rowSetI = rsI.getRowSet();

 int nLvlNo = rowSetI.getInt("PROJ_LVL___LVL_NO");

 if (nLvlNo != nNextLvlNo) {

 rsI.addLineMessage("PJMBASIC_LVL_NUMBERING", rsI.ERROR);

 nReturn = rsI.ERROR;

 }

 nNextLvlNo += 1;

 }

 return nReturn;

 }

}

/***/

Connection Mode Summary
In Field mode:

 Object and Row validation occur during data entry when user leaves the field or the line.

 RS validation occurs when you save a record.

In Record mode:

 Row validation occurs during data entry when user leaves the line. Catch up Object validation for
all objects occur right before row validations occur.

 RS Validation occurs when you save a record.

In Application mode and web service mode:

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 31

 No validation occurs during data entry. Same for web service as the whole data stream is
submitted all at once.

 All validations are done when the record is saved.

 Catch up Row Validation for all rows occur right before RS validation occurs. Within Row
Validation, catch up Object Validation for all objects occur before row validation occurs.

Frequency Mode Instant Field Validation Instant Row Validation

Field Mode Y Y

Record Mode N Y

Application Mode N N

Web Service Mode N N

Validations Handled by System
There are validations that are automatically handled by the system that you should be aware of before
you start coding your validation:

 System will check for nulls in required columns.

 Validates the max length for each data field submitted and that the data matches the field type
(for example, string, number, date).

 Validate for entries in a combo box (in case the data is being sent from a non browser client)

 If validated lookups were defined for the result set, then the system does the lookup validations
before invoking app-specific validations.

 Other system validation built in to templates (such as X >0 template, and so on)

Before & After Save
During the save transaction, there are three basic events: BeforeSave, Standard Save and AfterSave.

Standard Save is done by the framework on ‘saveable’ tables represented in the RS (saveable means RS
is checked for standard save and PK is present for the table). These are set in the Designer for the result
set. There is no plug in for Standard Save. It is done entirely by the framework.

If you need to update other tables not represented in the RS, you can utilize the “beforeRSSave” or the
“afterRSSave” event. For example, update inventory after a purchase order is saved on the Manage
Purchase Order application.

If there is more than one result set in an application, beforeRSSave are issued first to the top result set
and then down until the last result set at the bottom of the tree.

After BeforeRSSave for all result set are completed, Standard Save of the result set(s) will take place.
Again, if there are more than one result set in an application/tree, Standard Save are done first to the top
result set and then down until the last result set at the bottom of the tree. Within the standard Save for a
single result set, Delete happens first, then Update and then Insert.

After standard Save for all result set are completed, AfterRSSave will take place. Again, if there are more
than one result set in an application, afterRSSave are done first to the top result set and then down until
the last result set at the bottom of the tree.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 32

BeforeRSSave

Timing

 BeforeRSSave is invoked only during a save transaction. It is never invoked during data entry
regardless of connection mode.

 After all the validations are done, the system will start the database transaction. Then it calls the
BeforeRSSave plug-in class.

Rules

 BeforeSave is used to save data to tables other than the main table (if these tables are needed
before the main table can be saved).

 There should be no commit in this method since transaction has begun.

 BeforeRSSave can also be used to assign parent keys/ID to the children RS if the ID are not
assigned in validation for fear of having gaps in ID when validation fails. If BeforeRSSave fails for
some reason, all update in it will be rolled back.

 Although not recommended, you can perform validation in this plug-in and if error severity
message is added to the message container (via method addObjectMessage or
addRowMessage, and so on) the framework will rollback all updates done so far in the save
event.

Extensibility

 Enter a descriptive name for the plug-in. Select Before RS Save.

 Enter the full package and class name of the plug-in class. Note that the method name is always
“beforeRSSave”.

 The class must implements BeforeRSSave interface with the method beforeRSSave.

 Since this method is fired once for each rowset, looping is necessary to loop through the rowset.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 33

Example: BeforeRSSave
/***/
package com.deltek.enterprise.extensions.xt_project_y;

import com.deltek.enterprise.system.applicationinterface.*;

public class MyPjmbasicBeforeRSSave implements BeforeRSSave{

 public String sProjId = "";

 /* Never commit in a beforeRSSave plug-in */

 public short beforeRSSave(ResultSetInterface rsI) throws DEException {

 SqlManager sqlMgr = rsI.getSqlManager(this);

 RowSetInterface roI = rsI.getRowSet();

 /* Looping is necessary */

 RSIterator iT = rsI.findInit(roI.ROW_New, roI.ROW_MarkDeleted,true);

 while (iT.next() != roI.UNDEFINED_CONTEXT) {

 sProjId = roI.getStringValue("PROJ___PROJ_ID");

 if (roI.isRowNew()) {

 ..call some private method……

 }

 }

 return CP_OK;

 }

}

/***/

AfterRSSave

Timing

 AfterRSSave is invoked only during a save transaction. It is never invoked during data entry
regardless of connection mode.

 After the BeforeRSSave and standard Save are executed, the system calls the AfterRSSave
plug-in class.

Rules

 AfterRSSave is used to save data to tables other than the main table (if these tables are needed
after the main table is saved). For example: Saving a new PROJ requires saving a new
PROJ_EDIT.

 There should be no commit in this method since it is still within the transaction.

 Although not recommended, you can perform validation in this plug-in and if error severity
message is added to the message container (via method addObjectMessage or
addRowMessage, and so on) the framework will rollback all updates done so far in the save
event.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 34

 Tip: AfterRSSave can be used to select data updated in BeforeRSSave and standard Save if the
it is more efficient with SQL than with java code. This is possible since the connection is within
the same transaction. For example, select amount from header table and compare with total from
all its children line.

Extensibility

 Enter a descriptive name for the plug-in. Select After RS Save.

 Enter the full package and class name of the plug-in class. Note that the method name is always
“afterRSSave”.

 The class must implements AfterRSSave interface with the method afterRSSave.

 Since this method is fired once for each rowset, looping is necessary to loop through the rowset.

Example: AfterRSSave
/***/
package com.deltek.enterprise.extensions.xt_project_y;

import com.deltek.enterprise.system.applicationinterface.*;

public class MyPjmbasicAfterSave implements AfterRSSave {

 public String sProjId = "";

 public String sActiveFl = "";

 private String sOrigActiveFl = "";

 public short afterRSSave(ResultSetInterface rsI) throws Exception {

 /* Never commit in a afterRSSave plug-in */

 SqlManager sqlMgr = rsI.getSqlManager(this);

 RowSetInterface roI = rsI.getRowSet();

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 35

 sProjId = roI.getStringValue("PROJ___PROJ_ID");

 sActiveFl = roI.getStringValue("PROJ___ACTIVE_FL");

 /* Looping is necessary */

 RSIterator iT = rsI.findInit(roI.ROW_New, roI.ROW_MarkDeleted,true);

 while (iT.next() != roI.UNDEFINED_CONTEXT) {

 if (roI.isRowModified()) {

 sOrigActiveFl = roI.getStringValue("ORIG_ACTIVE_FL");

 if (!(sActiveFl.equals(sOrigActiveFl))) {

 String sSql = "UPDATE PROJ_ORG_ACCT SET ACTIVE_FL = :sActiveFl " +

 "WHERE PROJ_ID = :sProjId";

 sqlMgr.SqlPrepareAndExecute(sSql);

 }

 }

 }

 sqlMgr.close();

 return CP_OK;

 }

}

/***/

Order on Save
Since there are many validation and save plug-in events, it is worthwhile to review the sequence.

Validation sequence (intra result set)

 For each line in a rowset, object validation is done first (in the order the objects are displayed in

the DESC tab, unless overridden by the validation sequence).

 Row validation is done next.

 System checks for all required fields on that line

 Go to next row in rowset.

 When a rowset is done, system performs RS validation

 Then move to the next rowset until all the rowset for the RS is finished

 Example: Top level Result set has two rows: Row 1 and Row 2. Object Validation will be done for
row 1, then Line Validation for row 1, and then Required fields for row 1. Moving to Row 2: Object

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 36

will be done for row 2, then Line Validation for row 2, then Required fields for row 2. When both
rows are validated, then RS validation will be called.

Validation sequence (inter result sets)
 If there is more than one result set in an application, the system traverses down the tree and

completes the intra RS validation (described above) one result set at a time.

 The order of the children selected (when they are at the same level) is not determinate. That is,

there is no significance to choose Child RS A or Child RS B first.

Save sequence
 Once validation for all result sets is completed, the save transaction starts.

 Extensibility Before RS Save plug in is executed. If there are more than one result set, the inter
result set set sequence is the same as described above.

 Then standard Deltek Before RS Save is executed (for all result sets).

 Then standard RS Save is executed. Delete is done first, then Update, then Insert.

 Then After RS Save is executed

 Then Extensibility After RS Save is executed.

 Save transaction completes.

Actions
An Action is a set of logic that is executed on the request of the user. It is in addition to the stadard event
such as RS Populate, Validation or Save.

Usually action is triggered via application specific buttons on the application screen or via the drop down
from the Gear icon on the main menu.

ActionInterface
Unlike other events where the plug-in class receives the handle to the ResultSetInterface, all action plug-
in class receives the handle to the ActionInterface. From ActionInterface, you can obtain

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 37

ResultSetInterface and from there do your normal data retrieval logic. ActionInterface contains additional
methods to handle long running process such as displaying progress meter dialog, controlling database
transaction, and so on.

Here are some commonly used methods provided by the interface (see javadoc for more explanations)

 getResultSet(): Return the ResultSetInterface of the screen the action is assigned to in the
Designer. For a process, this is usually the parameter screen.

 getApplication(): Return the AppInterface for the application this action was invoked from.

 getSqlManager(): Return an instance of SqlManager

 getFileManager(): Return an instance of FileManager to access disk file

With Extensibility, you can extend an existing Deltek action or add a brand new action.

Web Services
If you are interested in invoking Costpoint Web Services from Extensibility plug-ins, refer to “Appendix C:
Example of Invoking Generated Web Service from inside Costpoint Extensibility Code” in the Deltek
Costpoint Integration Overview guide.

Extending a Standard Deltek Action

 In the Designer, select Project » Unit » Extend Action, and select action to extend.

 Select Extensibility Plug Ins tab and create the Java extension for the action.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 38

 Enter a descriptive name for the plug-in. Select Before Action or After Action to be executed

before or after the standard Deltek action logic.

 Enter the full package and class name of the plug-in class. Note that the method name can be

any name since we are not implementing any required interface like with RowValidation ,
RSValidation or Before or AfterRSSave. The method is public and return a boolean.

Example: Using FileHandlerInterface
/***/
package com.deltek.enterprise.extensions.xt_project_y;

import com.deltek.enterprise.system.applicationinterface.*;

public class ImportPO {

 public boolean removeFiles (ActionInterface actI) throws DEException {

 ResultSetInterface rsI = actI.getResultSet();

 RowSetInterface roI = rsI.getRowSet();

 String fileName = roI.getStringValue("INPUT_FILE_NAME");

 FileHandlerInterface fileI = actI.getFileManager();

 if (!fileI.deleteFile(fileName)) {

Note: If you add a Message with a Severity ERROR or FATAL inside your Before Action
plug-in, all the subsequent Before Action plug-ins and main Action will be canceled. After
Action plug-ins will be executed, regardless of the severity of the messages in the container.
You can use the method isProcessCanceled in ActionInterface to check if the main
process was canceled or not.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 39

 rsI.addObjectMessage("INPUT_FILE_NAME", "XT_PROJECT_Y_UNIT1__DEL_FILE_ERR",
rsI.ERROR);

 return false;

 }

 return true;

 }

}

/***/

Adding a new extensibility action
The steps to add new action to an existing application are very much the same as extending an existing
Deltek action.

 In the Designer, select Project » Unit » New » Action.

 Define the action.

 Add Java plug-in for the action and specify the class name and method.

Attention: See Extensibility Designer User Guide for explanation of fields on this screen.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 40

 Notice that is no selection for Execute mode. There is no before or after selection. Your java class

plug-in executes by itself without any standard Deltek action class since the action is created by
you.

 Once you have the new action defined, the java class is implemented normally like you have for
extended action.

Example: Using FileHandlerInterface
/***/
package com.deltek.enterprise.extensions.xt_project_y;

import com.deltek.enterprise.system.applicationinterface.*;

public class MyPOImport {

 public boolean cleanUpImportFiles (ActionInterface actI) throws DEException {

 ResultSetInterface rsI = actI.getResultSet();

 RowSetInterface roI = rsI.getRowSet();

 String fileName = roI.getStringValue("INPUT_FILE_NAME");

 FileHandlerInterface fileI = actI.getFileManager();

 if (!fileI.deleteFile(fileName)) {

 rsI.addObjectMessage("INPUT_FILE_NAME", "XT_PROJECT_Y_UNIT1__DEL_FILE_ERR",
rsI.ERROR);

 return false;

 }

 return true;

 }

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 41

}

/***/

Action Progress Meter
To show the action progress meter when an action is executed, the “Show Progress Meter” must be
checked.

Text for Progress Meter

To enable internationalization of text shown on the progress meter, text must be entered in the Resource
Message in the Designer. Then in application java code, use the appropriate method from ActionInterface
to set the text by passing the Message ID (see below).

Methods for Progress Meter

Common methods for manipulating progress dialog are available from ActionInterface:

 void setDlgMeterLimit(int meterLimit): Sets the status meter limit

 void SetDlgMeterValue (int meterValue): Sets the status meter value

 void setDlgCountText(java.lang.String sText): Sets the action status count text property

 void setDlgCount(int nCount): Sets the action status count

 void setDlgMeterTextLine(int lineNo, java.lang.String meterTextID): Sets the status text line to
the text ID in Resource Messages.

LineNo = ActionInterface. DLG_TOP_LINE or ActionInterface.DLG_ BOTTOM_LINE

Use DLG_TOP_LINE for major steps and DLG_ BOTTOM_LINE for minor steps.
actionI.setDlgMeterTextLine (ActionInterface.DLG_TOP_LINE,
"XT_PROJECT_X_UNIT1_TOP_TEXT");

actionI.setDlgMeterTextLine (ActionInterface.DLG_BOTTOM_LINE,
"XT_PROJECT_X_UNIT1_BOT_TEXT");

 boolean checkUserCancel(): Checks if the action is being cancelled by user. Returns TRUE if
the action was cancelled, FALSE otherwise. Call this function as often as necessary to check if
user has tried to cancel.

 public void setDlgCancelText(int optionNo): Set the confirm message to display when user
cancels the action. Set optionNo to either CANCEL_TXT_HARD to display a stronger warning
that some table have been updated or to CANCEL_TXT_SOFT for a normal confirmation text.

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 42

 void addMessage(String msgId,short msgType): Add messages to be displayed at the end of the
action (or when action fails). These messages will be displayed at the bottom similar to validation
messages. If any of the messages has severity of ERROR or higher, the system treats the
process as un-successful.

Example: Using progress meter
/***/
public class MyAction {

 private SqlManager sqm;

 private ActionInterface actI;

 public short processWithDialog (ActionInterface actionI) throws DEException,SQLException {

 actI = actionI;

actI.setDlgMeterLimit(100);

 actI.setDlgMeterTextLine (actI.DLG_TOP_LINE, “CP_YDLG_PREPROC_DATA”);

actI.setDlgMeterTextLine (actI.DLG_BOTTOM_LINE, CP_YDLG_CREATE_WRK_TBL);

sqm = actI.getSqlManager(this);

if (!doStep1())

 return false;

if (!doStep2())

 return false;

… more steps …

actI.setDlgMeterValue(100);

 return true;

 }

 private boolean doStep1() throws DEException, SQLException {

actI.setDlgMeterValue(10);

if (funcCheckUserCancel())

 return false;

… do Step 1 …

sqm.SqlCommit();

return true;

 }

 /* Check for user cancelling */

 private boolean funcCheckUserCancel() throws DEException{

if (actI.checkUserCancel()) {

 actI.setDlgMeterTextLine (actI.DLG_TOP_LINE, “CP_YDLG_PROC_CANCEL”);

actI.setDlgMeterTextLine(actI.DLG_BOTTOM_LINE,"");

 return true;

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 43

}

return false;

 }

}

/***/

Maintenance Action
Action can be used on a maintenance / transaction application to aid in faster data entry. These generally
do not process or update data in the database. They are mainly used for defaulting or setting values to
the data user has on the screen. These are considered maintenance action. They are not long running
action.

Single Row is usually checked for long running action and generally is not checked for a maintenance
action. When it is not checked, the code needs to loop through the rows in the result set.

Example: Loop through rows selected by user and change Requisition status to Approved
/***/
package com.deltek.enterprise.xt_project_y.req;

import com.deltek.enterprise.system.applicationinterface.*;

public class RqLineAction {

 public boolean setStatus (ActionInterface acI) throws DEException {

 /* get ResultsetInterface from ActionInterface */

 ResultSetInterface rsI = acI.getResultSet();

 RowSetInterface roI = null;

 /* Create iterator that looks for row selected and exclude row mark deleted */

 RSIterator rst = rsI.findInit(roI.ROW_Selected,roI. ROW_MarkDeleted, true);

Chapter 4: Plug In Events

Extensibility Designer Coding Guide 44

 roI = rsI.getRowSet();

 /* Loop through rows and set values */

 while (rst.next()!= roI.UNDEFINED_CONTEXT) {

 roI.setStringValue("A","S_RQ_STATUS_CD");

 }

 return true;

 }

}

/***/

About Deltek
Better software means better projects. Deltek delivers software and information solutions that enable
superior levels of project intelligence, management, and collaboration. Our industry-focused expertise
makes your projects successful and helps you achieve performance that maximizes productivity and
revenue. www.deltek.com

http://www.deltek.com/

	Chapter 1: Standards
	Java Standards
	Package Structure
	Class
	Method
	Variable
	Constant
	Comments
	Indentation

	Java Logging
	Imports

	Chapter 2: system.applicationinterface Package
	system.applicationinterface.DEException
	system.applicationinterface.ResultSetInterface
	system.applicationinterface.RowSetInterface
	system.applicationinterface.AppInterface
	Global Constants
	List of Global Constants
	Using Constants as Variable in the Designer
	Automatic Constant

	Creating your own application constants
	system.applicationinterface.LoggerInterface
	How to Add Logging in Your Class:
	CPlog4j.properties

	system.applicationinterface.CPConstants
	system.applicationinterface.SqlManager
	Rules
	Using DbF functions
	Using other key words

	system.applicationinterface.FileHandlerInterface
	File Uploading
	File Uploading UI
	Alternate location
	FileHandlerInterface

	Chapter 3: system.utils Package
	system.utils.Numbers
	System.utils.UIFormat

	Chapter 4: Plug In Events
	Plug-in Classes Are Stateless
	RS Population Event
	RS Populate Event
	Caching Scheme
	Extensibility

	Validation event
	Types of Validation Events
	Rowset definition
	Object Validation
	Timing
	Rules
	Extensibility

	Row Validation
	Timing
	Rules
	Extensibility

	RS Validation
	Timing
	Rules
	Extensibility

	Connection Mode Summary
	Validations Handled by System

	Before & After Save
	BeforeRSSave
	Timing
	Rules
	Extensibility

	AfterRSSave
	Timing
	Rules
	Extensibility

	Order on Save
	Validation sequence (intra result set)
	Validation sequence (inter result sets)
	Save sequence

	Actions
	ActionInterface

	Web Services
	Extending a Standard Deltek Action
	Adding a new extensibility action
	Action Progress Meter
	Text for Progress Meter
	Methods for Progress Meter

	Maintenance Action

