

Deltek People Planner
RESTful API Developer Guide

July 1, 2022

RESTful API Developer Guide ii

While Deltek has attempted to verify that the information in this document is accurate and complete,
some typographical or technical errors may exist. The recipient of this document is solely responsible for
all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is subject to
change without notice.

This publication contains proprietary information that is protected by copyright. All rights are reserved. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, or translated into another language, without the prior written consent of Deltek, Inc.

This edition published July 2022.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and proprietary
information of Deltek, Inc. and its licensors. The Deltek software, and all related documentation, is
provided for use only in accordance with the terms of the license agreement. Unauthorized reproduction
or distribution of the program or any portion thereof could result in severe civil or criminal penalties.

All trademarks are the property of their respective owners.

RESTful API Developer Guide iii

Contents
Introduction.. 1

REST ... 1

Naming Conventions ... 1

Entities ... 1

Logging .. 1

Enabling Verbose Logging ... 1

Reference Documentation ... 2

Further Reading ... 2

Basics .. 3

Authentication .. 3

Media types and API versions ... 3

Languages ... 4

OpenAPI Specification ... 4

Swagger Documentation ... 4

Entity Specification .. 4

Actions ... 5

Fields.. 6

Foreign Keys .. 8

Data Types .. 11

Integer .. 11

Float ... 11

Double .. 11

Boolean .. 12

String .. 12

DateTime ... 12

Color... 12

GUID .. 12

Enum .. 12

Default Values .. 14

Hyperlinks .. 14

Link Relations .. 15

HTTP Response Status Codes and Error Messages .. 15

Status Codes ... 15

RESTful API Developer Guide iv

Error Messages .. 15

Filtering .. 16

Create, Update and Delete ... 17

Creating an entity .. 17

Concurrency control .. 17

E-tag... 18

If-Match request header ... 18

Updating an entity .. 19

Deleting an entity ... 20

References .. 21

Introduction

RESTful API Developer Guide 1

Introduction
The People Planner RESTful Web Service API (the REST API or the API) is a programmatic interface
that provides access to data and business functionality in the Deltek People Planner product.

REST
REST is a specific design of a web service and stands for REpresentational State Transfer. A web service
that is built on REST principles is said to be RESTful.

It is useful to know a little about what REST is, and the concepts and terminology associated with it. Two
important concepts for a RESTful web service are entities and hyperlinks.

Naming Conventions
A resource is a central concept in a RESTful web service. However, there already exists a concept in the
People Planner domain with the same name. Therefore, the term entity is often used in this guide. The
meaning of the entity term is identical to that of a resource, only the word is different.

Entities
An entity is a domain object that is uniquely identified by a URL. For example, each booking in a People
Planner system has a unique URL. When you access the URL for an entity, you get a representation of
the current state of that entity. For a booking, this representation contains properties such as start date,
finish date, and value.

Entities are manipulated (read, updated, deleted, and so on) by a fixed set of HTTP verbs. The verbs
used in the People Planner REST API are GET, POST, and DELETE.

Each entity has a landing page with general information related to that entity, such as metadata and
hypermedia links.

Logging
Base configuration can be found in the appSettings.json file. Normally, you do not need to make

changes to this file, but should instead use the appSettings.Production.json file.

Configuring logging in the People Planner REST API consists of two parts: configuring what the
application logs and configuring the PP file logging provider.

Configuring what the application logs is specified in the Root→Logging→PPFileLogger section. This

follows standard .NET (Core and later) logging syntax1.

Configuration of the PP file logging provider is specified in the Root→PPFileLogger section. This

section controls what is actually writing to the log file and the location of the log file.

Enabling Verbose Logging
To enable verbose logging, set Root→Logging→PPFileLogger→LogLevel to Debug and

Root→PPFileLogger→LogSourceLevel to Verbose.

1 https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/#configure-logging-1

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/#configure-logging-1

Introduction

RESTful API Developer Guide 2

The appSettings.Production.json file should look something like this:

{

 "Logging": {

 "PPFileLogger": {

 "LogLevel": {

 "Default": "Debug"

 }

 },

 "IncludeScopes": false,

 "LogLevel": {

 "Default": "Error"

 }

 },

 "PPFileLogger": {

 "LogSourceLevel": "Verbose",

 "Filename": "..\\logs\\REST.log"

 },

 "AppConfiguration": {

 "DataConnectionFileName": "..\\DataConnection.xml",

 "IgnoreETags": false

 }

}

Reference Documentation
Refer to the section on Swagger Documentation.

Further Reading
It is recommended for developers working with RESTful web services to read the book “REST in Practice:
Hypermedia and Systems Architecture”.

Basics

RESTful API Developer Guide 3

Basics

Authentication
The People Planner RESTful API only supports bearer token authentication, originally created as part of
the OAUTH2 described in RFC67502. The token representation used is JSON Web Token (JWT) as
described in RFC75193.

The JWT token must be sent by the client in, and only in, the Authorization HTTP request header

using the Bearer authentication scheme, described in RFC26174.

Token validation configuration, such as issuer and audience, can be found and configured in the REST

API appSettings.json configuration file. The token must be signed using HMAC SHA-256 with a

private key using the Silent Sign In (SSI) Maconomy Secret Key from the People Planner

settings, which must be padded (by repeating it) to 256 bits in length. The token must match the

configured issuer and audience. The token must have a subject claim (sub) with a People Planner

network username and network domain name in the form networkusername@networkdomainname.

When integrating with Deltek Maconomy, the Maconomy RESTful API can issue a People Planner JWT
token. The URL for the People Planner JWT authorization endpoint can be found by navigating to the

auth endpoint for the desired Maconomy shortname and following the auth:people-planner-jwt

link relation.

OAUTH2, OIDC, and other authorization protocols and flows are currently not supported.

Media types and API versions
The REST API uses both standard and custom media types in the responses to provide the client with
information on the data representation in the payload. The API only uses JSON serialization, so all
content types reflect that. The response content types for the different endpoints in the API can be found

in the Swagger . The Content-Type HTTP response header also contains the API version number of

the representation returned.

The API supports multiple versions of endpoints and actions. A client can request a specific version of an
endpoint by providing the version number in the Accept HTTP request header, for example:

Accept: application/json; v=1.0

Endpoints that use versioning also reply with an api-supported-versions custom HTTP response

header, listing the supported versions for the endpoint. If you request an unsupported or incorrect version
value, the API returns an error.

For more details about the supported media types and versions, please refer to the Swagger that can be
found at http://<server>:<port>/RestApi/api-doc/index.html.

2 https://datatracker.ietf.org/doc/html/rfc6750
3 https://datatracker.ietf.org/doc/html/rfc7519
4 https://datatracker.ietf.org/doc/html/rfc2617

Note: Currently, it is not mandatory to send a request version, but that will change in later versions of
the API—always send a request version.

Basics

RESTful API Developer Guide 4

Languages
The REST API supports a number of different languages, used to provide localized phrases for actions,
entity fields, and so on.

You can specify the preferred language using the Accept-Language HTTP request header, for

example:

Accept-Language: da-DK

At the moment, there is no programmatic way of getting a list of supported languages from the REST API.
This will be included in a future versions.

OpenAPI Specification
The OpenAPI Specification5 (OAS) is an open standard, technical specification that describes a REST
API. The OAS is maintained by the OpenAPI Initiative and they describe OAS like this:

The OAS defines a standard, programming language-agnostic interface description for REST APIs, which
allows both humans and computers to discover and understand the capabilities of a service without
requiring access to source code, additional documentation, or inspection of network traffic. When properly
defined via OAS, a consumer can understand and interact with the remote service with a minimal amount
of implementation logic. Similar to what interface descriptions have done for lower-level programming, the
OAS removes guesswork in calling a service.

In the People Planner REST API, the OAS is automatically generated based on what capabilities exists
and are available at run-time. For more information, please refer to the following online resources:
https://oai.github.io/Documentation and https://openapi.tools.

Swagger Documentation
The People Planner REST API uses the OpenAPI specification to generate a run-time web user interface
using Swagger UI.

This user interface can be used to read the documentation and explore the different endpoints and data
types exposed by the API. It also serves as a basic interactive tool for interacting with the API.

The Swagger documentation URL is: http://<server>:<port>/restapi/api-doc/index.html.

Entity Specification
Every entity in the People Planner RESTful web service interface has a specification resource endpoint.

5 https://www.openapis.org

Note: One limitation in the current version of the People Planner REST API is that, we do not have
hypermedia navigation links in the specification (HATEOAS, see https://restfulapi.net/hateoas).

Note: This specification is similar to what is used in the Maconomy RESTful API. More information
can be found in the specifications section of the Deltek Maconomy Web Services Programmers
Guide.

https://oai.github.io/Documentation
https://openapi.tools/
https://restfulapi.net/hateoas

Basics

RESTful API Developer Guide 5

The specification is used to programmatically determine the following

1. The names, titles, and data types of the fields exposed by the entity

2. The names and titles of the actions supported by the entity

To correctly interpret and manipulate records of a specific entity, a client program must read the
specification resource to obtain the field names and their data types.

An example of an entity specification link:

"specification": {

"href": "http://server/api/bookings/time/specification",

"rel": "specification"

}

By looking at the rel property and discovering that the relation “specification” is present, a client program

can determine that this particular hyperlink points to the specification resource of that entity. The link
relation is simply an identifier that tells client programs about the meaning of a particular hyperlink. When
writing client applications, you should only rely on the link relations and consider the links as opaque.

If you follow the specification link, you acquire the specification for the entity.

{

 "entityName": "timebookings",

 "actions": {...},

 "fields": {...},

 "foreignKeys": {...}

}

The preceding example shows the high-level structure of the specification resource for the timebookings
entity. If you try this request yourself, you will see that the full response is substantially larger. The omitted
parts are discussed in the following sections.

This JSON object holds the specification for the entity named timebookings and it contains actions,

fields and foreign keys for the entity.

Actions
This is an example of the actions property omitted in the previous example:

"actions": {

 "action:init": {

 "title": "Init timebookings",

 "rel": "action:init"

 },

 "action:read": {

 "title": "Read timebookings",

 "rel": "action:read"

 },

Warning: You should not attempt to guess the pattern for particular kinds of entities because only the
link relation is guaranteed to be stable between People Planner releases.

Basics

RESTful API Developer Guide 6

 "action:create": {

 "title": "Create new timebookings",

 "rel": "action:create"

 },

 "action:delete": {

 "title": "Delete timebookings",

 "rel": "action:delete"

 },

 "action:update": {

 "title": "Update timebookings",

 "rel": "action:update"

 }

}

Each action is represented by an object that contains a rel property. The value of this property uniquely

identifies the action within the entity. The object also contains a language specific title property,
appropriate for displaying in a user interface.

The list of actions found in a specification is the full list of actions. When interacting with a particular
entity, the client program can determine if an action can be invoked, in the current state of the entity, by

examining whether a hyperlink with the link relation corresponding to the action’s rel property is present.

For example, if the currently authenticated user does not have the required privileges for deleting a
specific entity, the action:delete link relation is not present in the actions list.

Fields
The following is an example of some of the contents of a fields property:

"fields": {

 "subject": {

 "name": "subject",

 "title": "Subject",

 "type": "string",

 "mandatory": false,

 "key": false,

 "update": true,

 "create": true,

 "maxLength": 200,

 "multiLine": false,

 "references": []

 },

 "start": {

 "name": "start",

 "title": "Start",

 "type": "datetime",

 "mandatory": true,

Basics

RESTful API Developer Guide 7

 "key": false,

 "update": true,

 "create": true,

 "references": []

 },

 "resourceid": {

 "name": "resourceid",

 "title": "Resource ID",

 "type": "guid",

 "mandatory": false,

 "key": false,

 "update": false,

 "create": true,

 "references": [

 "resourceid_resource"

]

 },

 ...

}

These are examples of field objects that contain metadata for the subject, start, and resourceid fields.

The field objects describe all the fields that are present in a record of an entity. An important property of a
field object is its type. The type determines how client programs must interpret and represent values for
that field when interacting with an entity. The specifics of each format are detailed in Data Types.

The following table provides a description of each of the properties of a field object in a specification:

Property Description

name [string] The identifier used to refer to the field in representations. This is intended for
use by the software, and is normally not visible in a user interface.

title [string] The human-readable language specific name for the field. The title is an
appropriate, localized label for the field in a user interface.

type [string] The data type of the field. The data type is one of the types described in the
section Data Types, where there is also a description of each type.

enumType [string] This property is defined for fields that have the enum data type and it
contains the name of the enumeration type.

mandatory [bool] Indicates whether the field is mandatory. Mandatory fields are always
included in entity representations sent by the server, even if the field is not part of a
filtered request.

key [bool] Indicates whether the field is a primary key field.

Basics

RESTful API Developer Guide 8

Property Description

update [bool] Indicates whether the field can be updated after the record is created. Some
fields are immutable after the record is created in the system.

create [bool] Indicates whether the field is editable when a record is created. If this value is
false, the service ignores any value provided by client program. Thus, the field need
not be part of entity representation on create action.

maxLength [bool] Indicates the maximum length of a string field.

multiLine [bool] Indicates if a string field is considered multi-line. This is useful when
generating user interfaces.

references [string array] Indicates which foreign keys this field participates in.

Foreign Keys
The following is an example of the foreignKeys property:

"foreignKeys": {

 "assignmentid_assignment": {

 "name": "assignmentid_assignment",

 "title": "Assignment",

 "incomplete": false,

 "rel": "data:key:assignmentid_assignment",

 "entity": "assignments",

 "fieldReferences": [

 {

 "field": "assignmentid",

 "foreignField": "id",

 "supplement": false

 },

 {

 "field": "assignmenttext",

 "foreignField": "assignmenttext",

 "supplement": true

 }

],

 "links": {}

 },

 "resourceid_resource": {

 "name": "resourceid_resource",

 "title": "Resource",

 "incomplete": false,

Basics

RESTful API Developer Guide 9

 "rel": "data:key:resourceid_resource",

 "entity": "resources",

 "fieldReferences": [

 {

 "field": "resourceid",

 "foreignField": "id",

 "supplement": false

 },

 {

 "field": "resourcename",

 "foreignField": "name",

 "supplement": true

 }

],

 "links": {

 "data:search": {

 "href":
"http://server/restapi/api/bookings/time/search?foreignkey=resourceid_resourc
e",

 "rel": "data:search"

 }

 }

 },

 ...

}

Each foreign key describes an association between entities in the system. In this example, the foreign key

resourceid_resource is a reference between a timebooking and a People Planner resource (planning

resource). Foreign keys are used to search for a value for one or more fields and for navigating between
related entities.

A foreign key has a number of field references, for example the field resourceid on the timebookings

entity references to the field id on the resource entity. If a field reference is marked as supplement it

does not directly participate in the foreign key relationship, but is included as a signal to a client program
to assign the value back during a foreign key search. In this example, the client program should assign

the name from the resource back to the resourcename on the booking entity when performing a search

for the resourceid_resource foreign key relation.

The link with the link relation data:search is used to perform the foreign key search.

A foreign key can be either complete or incomplete as indicated by the incomplete property.

Incomplete foreign keys can only be used for searching. If the foreign key is complete, then the
combination of the values of the fields that participates in the foreign key (excluding supplement fields)
uniquely identifies another resource. A client program can navigate a complete foreign key. For example,

a client program can follow a link from the timebooking to the resource. The property rel indicates to the

client that links on booking entities with the link relation data:key:resourceid_resource is a link to

the resource of that booking. The rel will only be present for complete foreign keys.

Here is an example of the links that will be available on a timebookings entity record:

Basics

RESTful API Developer Guide 10

{

 "meta": {

 "entityName": "timebookings"

 },

 "data": {

 "id": "8b18291a-6ebd-49ab-a3c8-f1ee313c4e1f",

 "subject": "Solution construction",

 "start": "2017-08-14 00:00:00",

 "finish": "2017-08-20 23:59:59",

 "value": 7.0,

 "description": "",

 "eventkindcolor": "#FF008000",

 "approvalstatus": "none",

 "assignmentid": "b80be9de-9c46-4c47-add6-0526454a32b8",

 "assignmenttext": "",

 "resourceid": "10c226d6-744e-43a2-9048-fe4d11b5fd61",

 "resourcename": "Gina Ford",

 "eventid": "1d2089d5-7c88-4111-b695-43c25f21a2d7",

 "eventname": "Solution construction",

 "eventerp": 100.0,

 "bookingcategoryid": "00000000-0000-0000-0000-000000000000",

 "bookingcategoryname": "",

 "bookingcategorydisplaywarningbeforechange": false,

 "bookingcategorywarningmessage": "",

 "bookingcategorycolor": "#00000000",

 "lastmodified": "2021-05-26 08:39:06"

 },

 "links": {

 "self": {

 "href": "http://server/api/bookings/time/8b18291a-6ebd-49ab-a3c8-
f1ee313c4e1f",

 "rel": "self"

 },

 "action:update": {

 "href": "http://server/api/bookings/time/8b18291a-6ebd-49ab-a3c8-
f1ee313c4e1f",

 "rel": "action:update"

 },

 "action:delete": {

 "href": "http://server/api/bookings/time/8b18291a-6ebd-49ab-a3c8-
f1ee313c4e1f",

 "rel": "action:delete"

 },

Basics

RESTful API Developer Guide 11

 "data:key:assignmentid_assignment": {

 "href": "http://server/api/assignments/b80be9de-9c46-4c47-add6-
0526454a32b8",

 "rel": "data:key:assignmentid_assignment"

 },

 "data:key:resourceid_resource": {

 "href": "http://server/api/resources/10c226d6-744e-43a2-9048-
fe4d11b5fd61",

 "rel": "data:key:resourceid_resource"

 },

 "data:key:eventid_event": {

 "href": "http://server/api/events/1d2089d5-7c88-4111-b695-
43c25f21a2d7",

 "rel": "data:key:eventid_event"

 }

 }

}

Data Types
Integer6, float7, and double8 data types are represented as a JSON number and must conform to the
number grammar rule. String, DateTime, color, GUID, and enum values are represented as JSON string
values and must conform to the string grammar rule9.

Integer
The integer is a signed 32-bit integer, which allows values in the following range: -2,147,483,648 to
2,147,483,647.

Examples of acceptable values are 1000, 0, and -549.

Float
The float represents a 32-bit floating-point value, which allows the following precision and approximate
range: ±1.5 x 10-45 to ±3.4 x 1038. Therefore, the C# constants Single.PositiveInfinity,
Single.NegativeInfinity, and Single.NaN are not allowed.

Examples of acceptable value are 100, 0.892, 314159e16, and -2e-3

Double
The double represents a 64-bit floating-point value, which allows the following precision and approximate
range: ±5.0 × 10-324 to ±1.7 × 10308. Double values are represented as a JSON number and must conform
to the number grammar rule. Therefore, the C# constants Double.PositiveInfinity, Double.NegativeInfinity
and Double.NaN are not allowed.

6 https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
7 https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/float
8 https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/double
9 (ECMA-404: the json data interchange format)

Basics

RESTful API Developer Guide 12

Examples of acceptable value are 100, 0.892, 314159e64, and -2e3

Boolean
The boolean data type consists of the values true and false. JSON Booleans are represented as the
JSON values true and false.

String
The string data type is used to represent text. The character set UTF-8 is the default. Note that Unicode
characters may be escaped using \uXXXX where X is a hexadecimal digit, for example, \u0066 for the
letter ‘f’.

The API supports string values up to 3.0 × 105 characters in length.

Examples of acceptable values are "" and "Hello world".

DateTime
The DateTime data type is used to represent a date and a time. DateTime values are stored without any
information about the timezone. That is, a client creating a DateTime for 1st of January 00:00:00, will
appear as 1st of January 00:00:00 regardless of where the DateTime is later requested from. Therefore,
no time zone indication should be part of the serialized date time format, which is: "yyyy-MM-dd
HH:mm:ss".

Examples of acceptable values are "2000-01-01 00:00:00" and "2000-12-24 00:00:00".

Color
The color data type is used to represent colors. The color is declared in the generic ARGB format in
hexadecimal values: #AARRGGBB. AA – alpha component, RR – red component, GG – green
component, BB – blue component.

JSON: Color values are encoded in strings using the above format. Examples of acceptable values are
“#0014AA88” and “#883273FF”.

GUID
The GUID data type is a Globally Unique IDentifier. A GUID is represented as 16 bytes in hexadecimal
format, separated by hyphens: “XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX”. A new GUID is
always created by the server, e.g. when creating a new entity. GUID values can still be submitted by a
client, for example, when pointing to an existing entity in an entity relation.

Enum
Enum is an enumerated type that defines a set of named constants. To obtain a list of the used enums in
the API and the possible values for each enum, the enum_overview link can be followed from the entities
endpoint, for example:

{

 "meta": {

Note: GUID value are encoded in strings. Example of acceptable values are "65d7a983-32d4-4d17-
aa41-dd980ae32a54" and "97df0be7-acaa-4663-bb03-ba4e462b7467".

Basics

RESTful API Developer Guide 13

 "version": "1.0"

 },

 "links": {

 "enum_overview": {

 "href": "http://server/resapi/api/enums",

 "rel": "enum_overview"

 },

 ...

}

The enum endpoint responds with a JSON document containing a single JSON object (enums) which has

references to all enums (for example, eventkind) and its possible values (project, amount, and so on).

An enum object contains a property for each possible value. The name of the property represents the
fixed name of the property. The value of the property is the language specific title of the enum property.

{

 "enums": {

 "eventkind": {

 "project": "Project",

 "milestone": "Milestone",

 "task": "Task",

 "summary": "Summary",

 "absence": "Absence",

 "amount": "Amount"

 },

 ...

 }

}

For example, the enum eventkind is used by the event entity. Thus, the specification of an event entity

references this particular enum type:

{

 "entityName": "events",

 "actions": {

 "action:read": {

 "title": "Read events",

 "rel": "action:read"

 }

 },

 "fields": {

 "kind": {

 "name": "kind",

 "title": "Kind",

 "type": "enum",

 "enumType": "eventkind",

Basics

RESTful API Developer Guide 14

 "mandatory": false,

 "key": false,

 "update": false,

 "create": false,

 "references": []

 },

 ...

 },

 ...

}

An entity enum field is always paired with an enumType parameter. More information about the

enumType can be retrieved from the enum_overview endpoint as described above.

JSON: Enum values are encoded in strings. Examples of acceptable values for an enum of type

eventkind is: are "project” and “task”.

Default Values
The default values for the data types (listed in Data Types) are defined in the following table.

Data type Default value Comment

Integer 0 (zero)

Float 0 (zero)

Double 0 (zero)

Boolean false

String “” / null Internally ‘null’ but always formatted during de/serialization
as an empty string “”.

DateTime 0001-01-01 00:00:00 Serialization formatting depends on settings.

Color #00000000

GUID 00000000-0000-0000-0000-000000000000

Enum (E)0 The value produced by casting 0 to the Enum type E.

For more details regarding default values of .NET data types, see https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/keywords/default-values-table.

Hyperlinks
Hyperlinks work just like links on a web page and point to related entities or actions available.

Hyperlinks are also used to represent available state transitions. For example, to update a booking, the
client application needs to follow a specific hyperlink. Entities have hyperlinks for all available state

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/default-values-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/default-values-table

Basics

RESTful API Developer Guide 15

transitions. Each link has an associated link relation, which is a value that defines what the link can be
used for (like updating or deleting an entity).Hyperlinks are used for two purposes in the REST API

1. Referencing related entities, for example, a booking that has a link to the assigned resource.

2. State transitions, for example, a booking can have a link to its delete action.

Link Relations
self: The self-link relation indicates a hyperlink to the context resource (the resource related to
the current endpoint you are interacting with). This is useful when a client program interacts with one
resource and the web service responds with the state of another resource.

specification Indicates a reference to the specification resource for the context resource (an entity).

action:init Indicates a link that is used to get a “blank record” of the context resource.

action:create Indicates a link that is used to create a new resource (entity). Clients must use the HTTP
POST method with an entity record structure as the request payload.

action:update Indicates a link that is used to perform the update state transition. This state transition
changes the values of one or more fields in a record. Clients must the HTTP POST method with an
(updated) entity record structure as the request payload.

action:delete Indicates a link that is used to perform the delete state transition. This state transition
deletes a record. Clients must use the HTTP DELETE method. Note that deleting some entities might
cascade delete associated entities.

HTTP Response Status Codes and Error Messages
For a detailed guide to response status codes returned by the different endpoints, refer to the Swagger
reference documentation provided by the REST API.

Status Codes
Each response from the REST API has a HTTP status code. The status code indicate whether the
request was successful or failed. If the request was unsuccessful, the status code indicates what kind of
failure occurred which is used by client applications to decide how to proceed. The People Planner REST
API uses the common10 HTTP response status codes.

Error Messages
An error response from the REST API is sent a JSON object in the body of the HTML response. The API
uses the standard Problem Details format11.

10 https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
11 https://datatracker.ietf.org/doc/html/rfc7807

Note: POST is used instead of PUT; this is to align with the way the Maconomy REST API works.
Also notice that, only a full entity update is supported for now. Partial updates, using the HTTP
PATCH method, might be implemented in future releases.

Filtering

RESTful API Developer Guide 16

Filtering
Entity Landing Pages contain a link to a filter resource. The filter endpoint can be used to make queries
for multiple entities and supports paging, sorting, field selection and data restrictions.

Remember to never rely on the URL structure, but always rely on link relations.

The filter responds with appropriate payload using default parameters. It is possible to use custom
parameters by specifying those in the URL (query string parameters).

Parameter Description

Skip [integer] The number of records to skip in the result set. This can be used, in
combination with the ‘take’ parameter, for implementing paging.

Take [integer] The number of records to return in the result set. This can be used, in
combination with the ‘skip’ parameter, for implementing paging.

Sort [array] Specifies the sorting of the record in the result set.

Filter [array] Specifies a restriction. Only records matching the filter restriction are
included in the result set.

Select [array] Specifies which fields are included in the records of the result set. Note, that
some fields are always included, such as “ID”.

An example of a filtering query looks like this:

http://server/restap/api/bookings/time/filter?take=3&skip=1&filter=["resource
name","=","Jean-Luc Picard"]
&select=["id","value","resourceid",”resourcename”]

This query skips the first record, retrieves subsequent three time booking entity records with the specific
resource name, and only returns the fields id, value, resourceid and resourcename.

For more information on how to construct sorting and filter parameters, refer to the Swagger
documentation found at http://<server>:<port>/RestApi/api-doc/index.html.

You can also refer to the following:

https://js.devexpress.com/Documentation/Guide/Data_Binding/Data_Layer/#Reading_Data/Sorting

https://js.devexpress.com/Documentation/Guide/Data_Binding/Data_Layer/#Reading_Data/Filtering/Binar
y_Filter_Operations

https://js.devexpress.com/Documentation/Guide/Data_Binding/Data_Layer/#Reading_Data/Sorting
https://js.devexpress.com/Documentation/Guide/Data_Binding/Data_Layer/#Reading_Data/Filtering/Binary_Filter_Operations
https://js.devexpress.com/Documentation/Guide/Data_Binding/Data_Layer/#Reading_Data/Filtering/Binary_Filter_Operations

Create, Update and Delete

RESTful API Developer Guide 17

Create, Update and Delete

Creating an entity
Creating a new entity record is accomplished by sending an HTTP POST request to the endpoint

specified by the action:create link relation. This link can be obtained from the entity landing page of

the current resource context.

For example, the following is part of the JSON response from the entity landing page of the
“timebookings” resource context:

{

 "meta": {

 "entityname": "timebookings"

 },

 "links": {

 ...

 "action:create": {

 "href": "http://server/restapi/api/bookings/time",

 "rel": "action:create"

 },

 ...

 }

}

The payload of the create request should contain JSON serialization of the entity which should be
created, for example:

{

 "subject": "New Booking",

 "start": "2021-01-28 09:00:00",

 "finish": “2021-01-28 10:00:00",

 "value": 1,

 "description": "This is my booking”

 "eventid" : "878aed6a-ad19-461e-b4d7-517651b61df0",

 "resourceid" : "b35f6dec-7ddb-4d6c-b3fd-3fd43e1ec969"

}

If the resource was successfully created, the API returns with an HTTP response status code 200 OK

and the full entity representation in the body. The response also includes an HTTP Location response

header with an URL to the newly created resource.

Concurrency control
To ensure that the API can resolve possible conflicts when concurrent users attempt to modify or delete

the same entity at the same time, the API supports e-tags and If-Match request headers.

Create, Update and Delete

RESTful API Developer Guide 18

E-tag
For every mutable entity, the representation includes an e-tag in the response.

When looking at a single entity, the e-tag is found as the ETag HTTP response header variable.

However, when using the filter endpoint, the e-tag is transferred in the meta data section of the JSON
serialized response, for example:

"records": [

 {

 "meta": {

 "rowNumber": 0,

 "etag": "1991524367c441559f0b0015932d06e0-63757615140577…"

 },

 "data": {

 "id": "19915243-67c4-4155-9f0b-0015932d06e0",

 ...

 },

 ...

 }

]

The e-tag is updated on the server side each time a change is made. For example, User A and B obtains
e-tag “X” from the server. User A makes an update and the e-tag is updated to “Y” on the server. When
user B tries to commit changes, the server rejects the changes, since user B is trying to commit changes
with e-tag “X” and the current state of the resource is e-tag “Y”.

If user B still wants to update the entity, user B must first obtain a new representation of the entity (which
contains the updated e-tag: “Y”). The user is now able to determine which previous changes they wants
to keep and which it wants to override. By using the new e-tag, the user should be able to update the
entity (assuming no other has changed it again in the meanwhile).

If-Match request header
To enforce this behavior, the server only accepts conditional requests for updating and deleting entities.

A conditional request is a request containing an If-Match HTTP request header. For example, the

following is an example of the headers in an update request:

POST /restapi/api/bookings/time/19915243-67c4-4155-9f0b-0015932d06e0 HTTP/1.1

Host: server:80

Content-Type: application/json

If-Match: 1991524367c441559f0b0015932d06e0-637576151405770000

Accept: application/json; v=1.0

If no e-tag is supplied the API responds with a 428 Precondition Required HTTP response status

code. If an incorrect or outdated e-tag is supplied, the API responds with a 412 Precondition

Failed status code.

After a successful update, the API returns with a status code 200 OK result containing a full

representation of the updated entity and its corresponding new e-tag.

After as successful delete, the API returns with a 204 No Content result, and no e-tag

Create, Update and Delete

RESTful API Developer Guide 19

Updating an entity
Updating an existing entity record is accomplished by sending an HTTP POST request to the endpoint

specified by the action:update link relation. This link can, for example, be obtained from a specific

entity resource endpoint.

For example, the following is part of the JSON response from the entity resource endpoint of a
“timebookings” resource:

{

 "meta": {

 "entityName": "timebookings"

 },

 "data": {

 "id": "19915243-67c4-4155-9f0b-0015932d06e0",

 "subject": "New Booking",

 "start": "2021-01-28 09:00:00",

 "finish": "2021-01-28 10:00:00",

 "value": 1,

 "description": "This is my booking"

 "eventid" : "878aed6a-ad19-461e-b4d7-517651b61df0",

 "resourceid" : "b35f6dec-7ddb-4d6c-b3fd-3fd43e1ec969"

 },

 "links": {

 ...,

 "action:update": {

 "href": "http://server/restapi/api/bookings/time/19915243-67c4-
4155-9f0b-0015932d06e0",

 "rel": "action:update"

 },

 ...

 }

}

The payload of the HTTP POST request should be the full entity representation. If possible, any fields

omitted in the request payload might be reset with the default for the datatype. The specification of

the entity contains meta data on what fields are mandatory and not.

For example, to update the finish time and value of a booking, the following request payload could be
sent:

{

 "subject": "New Booking Updated",

 "start": "2021-01-28 09:00:00",

 "finish": " 2021-01-28 11:00:00",

 "value": 2,

 "description": "This is my updated booking"

 "eventid" : "878aed6a-ad19-461e-b4d7-517651b61df0",

Create, Update and Delete

RESTful API Developer Guide 20

 "resourceid" : "b35f6dec-7ddb-4d6c-b3fd-3fd43e1ec969"

}

When making an update request, remember that it must be in the form on a conditional request as
described in concurrency section.

Deleting an entity
Deleting an existing entity is accomplished by sending an HTTP DELETE request to the endpoint

specified by the action:delete link relation. This link can, for example, be obtained from a specific

entity endpoint.

{

 "meta": {

 "entityName": "timebookings"

 },

 "data": {

 "id": "19915243-67c4-4155-9f0b-0015932d06e0",

 ...

 },

 "links": {

 ...,

 "action:delete": {

 "href": "http://server/restapi/api/bookings/time/19915243-67c4-
4155-9f0b-0015932d06e0",

 "rel": "action:delete"

 },

 ...

 }

}

When making a delete request, remember that it must be in the form of a conditional request as
described in concurrency section.

References

RESTful API Developer Guide 21

References
ECMA-404: the json data interchange format. December 2017. <http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-404.pdf>.

About Deltek
Better software means better projects. Deltek delivers software and information solutions that enable
superior levels of project intelligence, management and collaboration. Our industry-focused expertise
makes your projects successful and helps you achieve performance that maximizes productivity and
revenue. www.deltek.com

http://www.deltek.com/

	Introduction
	REST
	Naming Conventions
	Entities
	Logging
	Enabling Verbose Logging

	Reference Documentation
	Further Reading

	Basics
	Authentication
	Media types and API versions
	Languages
	OpenAPI Specification
	Swagger Documentation
	Entity Specification
	Actions
	Fields
	Foreign Keys

	Data Types
	Integer
	Float
	Double
	Boolean
	String
	DateTime
	Color
	GUID
	Enum
	Default Values

	Hyperlinks
	Link Relations

	HTTP Response Status Codes and Error Messages
	Status Codes
	Error Messages

	Filtering
	Create, Update and Delete
	Creating an entity
	Concurrency control
	E-tag
	If-Match request header

	Updating an entity
	Deleting an entity

	References

