

Deltek Maconomy®
Maconomy Reporting for Report

Developers

May 28, 2019

Maconomy Reporting for Report Developers ii

While Deltek has attempted to verify that the information in this document is accurate and complete,
some typographical or technical errors may exist. The recipient of this document is solely responsible for
all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is subject to
change without notice.

This publication contains proprietary information that is protected by copyright. All rights are reserved. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, or translated into another language, without the prior written consent of Deltek, Inc.

This edition published May 2019.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and proprietary
information of Deltek, Inc. and its licensors. The Deltek software, and all related documentation, is
provided for use only in accordance with the terms of the license agreement. Unauthorized reproduction
or distribution of the program or any portion thereof could result in severe civil or criminal penalties.

All trademarks are the property of their respective owners.

Maconomy Reporting for Report Developers iii

Contents
MRL Language Reference .. 1

Concepts.. 1

Universe reports ... 1

Report collections .. 1

Generic reporting ... 1

Installing reports ... 2

Reading this manual .. 2

Definitions.. 3

Universe report .. 3

Report collections .. 16

Layouts .. 17

Report M-scripts ... 18

Getting Started with Universe Reports .. 24

Introduction to universe reports ... 24

What’s in a universe?... 24

Concepts.. 25

Queries .. 25

Parameters .. 26

Layout .. 26

Report example 2 .. 31

Enabling the report .. 36

Report stamper (MStamper) .. 37

Report installer (MBuilder) ... 37

Portal Designer .. 37

Where to go from here ... 39

Maconomy Report Designer ... 40

User’s guide ... 40

Procedure .. 40

Using the Report Designer .. 40

SQL .. 43

Important concepts .. 44

Levels .. 46

Report levels .. 46

Maconomy Reporting for Report Developers iv

Basic RGL elements .. 50

Variables .. 50

Expressions ... 51

Arithmetic expressions ... 51

Logical expressions ... 52

Statements ... 52

Functions ... 53

Selection criteria .. 53

Selection criteria specification ... 53

Hints ... 54

Style ... 54

Report designer reference ... 55

Audience .. 55

Notation .. 55

Lexical items .. 56

Characters ... 56

Comments .. 57

Special symbols and reserved words .. 57

Literals ... 58

Literals, syntax ... 58

Literals, semantics ... 58

Separators ... 59

Types ... 59

Integer type .. 59

Real type .. 60

Amount type ... 61

String type .. 62

Date type .. 63

Time type ... 63

Boolean type .. 64

Enumeration types ... 65

Array type ... 66

Variables .. 67

Variables, syntax .. 67

Variables, semantics .. 67

Predefined variables .. 69

Maconomy Reporting for Report Developers v

Variables for output of tab separated files ... 69

Standard values ... 70

Statements .. 70

Statements, syntax .. 70

Statements, semantics... 71

Structured statements .. 71

Print statements ... 73

Print Statements, syntax .. 73

Print statements, semantics ... 73

Expressions ... 75

Expressions, syntax ... 75

Expressions, semantics ... 76

Preference specification .. 76

Preferences, syntax ... 76

Preferences, semantics ... 77

Cursor declarations ... 77

Cursors, syntax .. 77

Cursors, semantics .. 78

Target group specification ... 80

Target group, syntax .. 80

Target group, semantics .. 80

Levels .. 81

Levels, syntax .. 82

Levels, semantics .. 82

HEADER, TRAILER, and LINES ... 83

GROUP BY .. 83

Report structure ... 85

Report structure, syntax ... 85

Report structure, semantics ... 86

Language ... 86

Visibility and scope .. 86

Variables .. 87

Cursor fields ... 87

Predefined functions .. 88

Mathematical functions .. 88

Date functions .. 89

Maconomy Reporting for Report Developers vi

Time functions .. 90

String functions .. 91

Miscellaneous functions ... 93

Error Messages ... 93

MRL Language Reference

Maconomy Reporting for Report Developers 1

MRL Language Reference
The Maconomy Report Language (MRL) is a language for developing reports based on the Maconomy
system. This manual describes the syntax and usage of MRL.

This manual describes MRL version 1.3.

Concepts
The Maconomy Report Language (MRL) is a language for developing reports based on the Maconomy
system. Currently, two kinds of reports are supported by MRL: universe reports and report collections.

Universe reports
A Universe Report is made up of three elements: parameters, queries, and links.

Element Description

Parameters Report parameters are the interface to a report. The user enters parameter values
before running a report.

Parameters can be used for controlling the queries, e.g. in restrictions that limit the
rows retrieved by the query, or for controlling the layout.

Queries A Universe Report consists of one or more queries using MQL syntax – see “MQL
Language Reference”. A query defines all values that need to be calculated for use
in the layout, i.e. row values and aggregate values. Aggregate values are used in
totals and subtotals.

Links Reports support hypertext linking. This provides the user with the ability to switch
between reports, Web pages and Portal components simply by a clicking a link. Links
may be parameterized, allowing data to be shared between the linked resources.

Report collections
Report collections are—as the name suggests—collections of universe reports. Report collections allow
report developers to unify a group of related reports, thus reducing the need for code reuse.

Generic reporting
A report may be associated with layouts and a report M-script allowing report developers to customize its
appearance and functionality.

Layout

The layout defines what the report will look like when printed (either to the screen or to a printer). The
layout is defined in a separate file using MPL syntax – see the manual “Printout Design Using MPL”. If no
layout file is specified, a default layout matching the structure of the defined queries is generated.

MRL Language Reference

Maconomy Reporting for Report Developers 2

Report M-Script

By embedding references to M-scripts within the report, a report developer can give parameters generic
values and validate data entered by a user. The report M-script is defined in a separate file using M-Script
syntax—see the manual “M-Script Language Reference”.

Installing reports
Reports and their associated layouts and report M-scripts must be installed on the server using the
MBuilder tool. See the manual “MBuilder Reference”.

Reading this manual
The formal syntax of MRL is presented in a variant of BNF (Bachus Naur Form). In the descriptions of
attributes, optional attributes are listed in [square brackets].

Definitions

Maconomy Reporting for Report Developers 3

Definitions
This section describes the syntax of the language elements in the current version of MRL. A version
history of MRL is supplied in section 3 on page 24.

MRL is a tag-based language, and it consists of elements and attributes just like XML. Unlike XML, every
attribute in MRL has an associated type, and can have a short form.

BNF mrl ::=

 (<MRL 1.3> | MRL 1.3)

 universereport | reportcollection

Universe report
The universereport element defines a universe report.

BNF universereport ::=

 <universereport (name = module|module) [title = string|string] > [help]

 parameter* queries [links] [fieldlinks]

 <end universereport>

Attributes of the universereport element:

Name Type Description

Name module The name of the universe report. The name is used when referring
to the report

[title] string The title of the report.

In the following example, a very simple universe report is defined. The name is reference::R001 and the

title is “Reference Manual Report 001”. It defines the parameter ParEmployeeNumbers that is used in

the query for restricting rows. The special semantic of the MQL in operator ensures that if the user

supplies the value “10..20”, only employees matching this restriction are shown, and it ensures that when
the user does not supply a value for the parameter, no restriction is used, and all employees are shown.

<MRL 1.2>

<Universereport reference::R001 "Reference Manual Report 001">

 <Parameter ParEmpolyeeNumbers type=string >

 <Queries>

 MSELECT EmployeeNumber, Name1 FROM Employee

 WHERE EmployeeNumber in ParEmployeeNumbers ORDER BY EmployeeNumber

 <End Queries>

<End Universereport>

Help

With the help element, external help information for the report can be specified. Help for a report can be

specified using 3 levels:

file:///C:/Users/OrleneMarieAbundo/Desktop/New%20template%20docs/DeltekMaconomyReporting.docx%23_bookmark31

Definitions

Maconomy Reporting for Report Developers 4

description is for a very short description of what the report can be used for. The description is for use

in report listings and “mouse-over” help (tooltip).

summary is for a short version of the help text.

text is for an in-depth description of what the report can be used for, and how it works.

BNF help ::=

 <help [(description = string|string)] > [summary]

 [text]

 <help end>

 summary ::=

 <summary> [text]

 <end summary>

 text ::=

 <text (text = text|text) /> | text

The following example defines a report help element where all levels of help are defined (the short form of

text is used).

...

<help "MRL Reference Manual, Report">

 <summary>

 #This Report is for the MRL Reference Manual#

 <end summary>

 #

 This Report illustrates the help element, and is used as an example in

the MRL Reference Manual.

 #

<end help>

...

Parameter

The parameter element defines a parameter of the report, which will appear in the selection criteria and

might be filled with a value by the user before the report is executed.

A parameter can be used to control the queries, e.g. in restrictions that restrict the rows retrieved by the
query, or to control the layout.

BNF parameter ::=

<parameter (name = id|id)

(type = typeid|typeid)

[(title = string|string)]

Definitions

Maconomy Reporting for Report Developers 5

[(basis =

qualifiedfieldid|qualifiedfieldid)]

[(mandatory+|mandatory-)]

[(solitary+|solitary-)]

[(hidden+|hidden-)]

[(value = constExpressionShort|constExpressionShort)]

/>

Attributes of the parameter element:

Name Type Description

Name ID The name of the parameter. The
name is used when referring to
the parameter in the query or in
the layout.

Type typeID
The expected Maconomy type
of the parameter. The type
might be affected by the
solitary attribute, see
examples in this section

[title] string The title of the parameter.

[basis] qualifiedID Reference to an existing field
from a Maconomy object, e.g.

employee.employeeNumber.

By referring to an existing field,
the type, title, and foreign key
search are inherited from the
field to this parameter.

[mandatory] boolean Indicates if the parameter is
mandatory. A mandatory
parameter must be given a
value by the user before the
report is executed. Default value

is mandatory-.

[solitary] boolean Indicates if the parameter is
solitary. A solitary parameter
accepts a single value, whereas

a non-solitary (solitary-)

parameter accepts a range

value, e.g. “100..200”. The

type of the parameter is affected
by the solitary parameter, see
examples in this section

[hidden] boolean Indicates if the parameter is
hidden. A hidden parameter is
not available in the selection
criteria. It can be used in

Definitions

Maconomy Reporting for Report Developers 6

Name Type Description

connection with the ‘drill’ feature
of reports. Default value is
hidden-

[value] literal Default value for the parameter.
If this attribute is omitted, the

Maconomy type'null value is

assigned to the parameter.

Parameters are associated with every query in the queries element, as if they were defined explicitly in

each query using the using-parameters clause in MQL – see section 2.1.3, “Queries”.

In the following example, a mandatory and a solitary parameter with explicit type and title definitions are
defined for use with the eq operator in the mql expression. The solitary option means that only a

specific date can be entered, and the mandatory option means that a value must be entered.

...

<Parameter ParStartDate type=date title="Start date" solitary+ mandatory+>

...

MSELECT ...

WHERE FieldDate = ParStartDate

...

Example: Default value

In the following example, a default value is assigned to the parameter initializing the parameter with the
current date. The value of a parameter is a literal (a constant).

However, by using M-scripts in the reports (see section 2.4 on page 18), it is possible to calculate values
for parameters.

...

<Parameter ParStartDate type=date title="Start date" solitary+

mandatory+ value=date'today

>

...

MSELECT ...

WHERE FieldDate = ParStartDate

...

Example: Field association and foreign key definition

In the following example, a parameter has been associated with the Maconomy field

JobHeader.CustomerNumber in order to inherit the type, title and foreign key defini- tion from this field. A

foreign key definition enables Ctrl+G search on the parameter in the selection criteria dialog.

...

<Parameter ParCustomerNumber basis=JobHeader.CustomerNumber

solitary+ mandatory+>

file:///C:/Users/OrleneMarieAbundo/Desktop/New%20template%20docs/DeltekMaconomyReporting.docx%23_bookmark18
file:///C:/Users/OrleneMarieAbundo/Desktop/New%20template%20docs/DeltekMaconomyReporting.docx%23_bookmark27

Definitions

Maconomy Reporting for Report Developers 7

...

MSELECT ...

WHERE CustomerNumber = ParCustomerNumber

...

Example: Field association and foreign key definition

In the following example, a parameter has been associated with the Maconomy field

JobHeader.CustomerNumber in order to inherit the type, title and foreign key definition from this field. A

foreign key definition enables Ctrl+G search on the parameter in the selection criteria dialog.

...

<Parameter ParCustomerNumber basis=JobHeader.CustomerNumber

solitary+ mandatory+>

...

MSELECT ...

WHERE CustomerNumber = ParCustomerNumber

...

Example: Range parameter (solitary-)

In the following example, a solitary- parameter with explicit type and title definition is defined for use

with the in operator in an mql expression. The solitary- option means that an integer range can be

entered by the user, e.g. “10..20”. Note that a parameter with the solitary- option always has the type

string, and note the special semantics of the in operator in MQL, where the expression evaluates to true

if the value of the parameter is empty, witch is very different from the semantics of the eq operator.

...

<Parameter ParInterval type=integer title="Range" solitary->

...

MSELECT ...

WHERE FieldInteger in ParDateInterval

...

Example: Hiding attributes (hidden+)

Sometimes a report is used as a drill down report, meaning that another report links to it. In such cases,
there may be parameters that a user should not be able to set because their value is supplied by the

other report. The hidden+ option can be used for hiding parameters from the selection criteria. In the

following example, the ParStartDate parameter will be hidden.

...

<Parameter ParStartDate type=date value=date’today hidden+>

...

MSELECT ...

WHERE Date = ParStartDate

...

Definitions

Maconomy Reporting for Report Developers 8

Queries

The queries element defines the queries of the Report. A query is an MQL query, that is, a query based

on the Maconomy Universe technology. The queries element defines all the values which need to be

calculated for use in the layout, i.e. row values and aggregate values. Aggregate values are used in totals
and subtotals. For a description of how to make an MQL query, please see the “MQL Language
Reference” manual.

BNF queries ::=

<queries>

mselect (; mselect)*

<end queries>

Parameters defined in the report are associated with each query in the queries element, as if they were

defined explicitly in each query by means of the using-parameters clause in MQL. This means that a

parameter is available in each query for use in expressions, e.g. restrictions in a where clause.

Besides the explicitly defined parameters, three parameters are implicitly defined, namely: Report$name,

Report$title, and Report$nameOfUser. These parameters always make the name of the report, the title

of the report and the user name avail- able in each query.

When a report is executed, the actual values for the parameters are passed to each query.

In the following example, a query is using the implicit parameter Report$nameOfUser in a query

restriction.

...

<Queries>

MSELECT EmployeeNumber, Name, UserName

FROM EmployeeUserUniverse

WHERE Username = Report$NameOfUser

<End Queries>

...

When defining multiple queries, a name has to be associated with each query in order to access the
columns of a query in the layout. This is done using the cursor naming available in MQL.

In the following example, two queries are defined in the queries element. The first query has the name

Header, and the second query has the name TimeSheet.

...

<Queries> MSELECT [

EmployeeNumber, Name

] AS CURSOR Header FROM Employee

WHERE EmployeeNumber = ParmEmployeeNumber;

MSELECT [

PeriodStart, PeriodEnd,

sum(TimeActivity1Total) as TActivity

] AS CURSOR TimeSheet FROM TimeSheetHeader

WHERE EmployeeNumber = ParmEmployeeNumber;

Definitions

Maconomy Reporting for Report Developers 9

<End Queries>

...

Links

Reports may link to each other much like Web pages link to each other. As of MRL version 1.3, report
links can be specified in MRL. Up to MRL 1.3, links had to be specified in the layout, but now they can be
specified in both MRL and MPL (in case of conflicts, the MPL links will override the MRL links).

What are links?

Consider two reports: “Earnings Overview” displaying the earnings of the different departments, and
“Employee Earnings” displaying the department and earnings of each employee.

Earnings Overview

Department Earnings

Financial -1

PR 5

Employee Earnings

Employee Department Earnings

Bob PR 3

John Financial -1

Lisa PR 2

As the reports are related to each other, we would like to link between them such that a user can switch
from one report to the other at a click of the mouse. Assume a link has been successfully defined from the
Department field of the “Earnings Overview” report to the “Employee Earnings” report (see how to do this
in the example “Example: What are links?” on page 15). Then, when a user clicks on a particular entry,
say PR, in the “Earnings Overview” report, the “Employee Earnings” report will be opened. But links
provide more functionality than merely opening new reports: As the user specifically selected PR, we can
transfer the selected value to the “Employee Earnings” report such that the relevant entries are presented
(in this case, the employees of the PR department):

Employee Earnings - PR Department

Employee Department Earnings

Bob PR 3

Lisa PR 2

It is an important feature of links that they can be parameterized such that data can be transferred
between reports.

file:///C:/Users/OrleneMarieAbundo/Desktop/New%20template%20docs/DeltekMaconomyReporting.docx%23_bookmark21

Definitions

Maconomy Reporting for Report Developers 10

The links element – link definition

A link specification consists of two parts: link definitions and link associations. This section describes link
definitions; link associations are described in the next section.

A link definition specifies the resource linked to as well as the parameters that should receive a value
when linking. A resource need not be a report, it may be a portal component, a URL, or a dialog.

BNF links :: =

 <links>

 link*

 <end links>

 link :: =

 <link (name = id | id)

 (report = moduleid | portalcomponent = moduleid | url

= url | dialog = moduleid)

 [tooltip = string]

 [reportaction = drill | drillaround | edit] [target =

insideportal | newwindow | currentframe] [skipparametertransfer+ |

skipparametertransfer-]

 >

 (linkparameter | linkparameterfree)*

 <end link>

Attributes of the link element:

Name Type Description

Name ID The name of the link. The name
is used when referring to the
link.

Report module The identifier of the report linked
to.

Portalcomponent module The identifier of the Portal
component linked to.

url url The URL linked to

dialog module The identifier of the dialog linked
to.

[tooltip] string A short help description
associated with the link. The
tooltip will appear as a “mouse-
over” effect.

[Reportaction] enum This attribute can be used only
when linking to a report; it

Definitions

Maconomy Reporting for Report Developers 11

Name Type Description

controls what happens when the
new report is opened. With

drill, the report is simply

opened. With drillaround,

the report is opened, but the
report linked from will be
removed from the drill stack (the
list of reports previously linked

from). With edit, the report

linked to lets the user specify
selection criteria first. The

default value is drill

[Target] enum This attribute specifies the target
window of the link. The possible

values are: new (show in a new

browser window),

currentframe (replace the

current frame), and

insideportal (show inside

the Portal). The attribute is
ignored for report links. Default

value is insideportal

[Skipparametertransfer] boolean If false (-) all parameters of the

report linked from are used as
link parameters (hence, it is not
necessary to write the
parameters once again). If true
(+) only parameters specified in
the subsequent link parameter
elements will be transferred.
Subsequent link parameter
elements will overwrite the
transferred parameters. Default
value is
Skipparametertransfer-

Links may transfer values to the parameters of the resource linked to. The link parameters specify these
parameters. When linking to a URL, the link parameters are URL parameters. When linking to a Portal
component, the link parameters are key fields of the Portal component. When linking to a report, the link
parameters are parameters of that report (note the subtle difference between parameters of a report and
link parameters).

There are two kinds of link parameters, those called simply parameter which take constant values only,

and those called parameterfree which take free parameters.

In the above link example, the “Employee Earnings” report has a parameter of the same type as the

Department field, in the example called parmEmpDepartment, used for making restrictions on

departments. The “Earnings Overview” report will then have a single link parameter, namely

parmEmpDepartment. Moreover, it will be a free parameter such that the value of parmEmpDepartment will

be equal to the value selected by the user.

Definitions

Maconomy Reporting for Report Developers 12

BNF linkparameter ::=

 <parameter

 (name = id | id)

 value = constExpressionShort

 />

 linkparameterfree ::=

 <parameterfree (name = id | id) type = type

 />

The attributes of the parameter element and the parameterfree element:

Name Type Description

Name ID The name of the parameter of
the resource linked to. When
linking to a report or a Portal
component, this parameter must
be a parameter of that resource.

Value literal The value of the parameter.

Type typeID The Maconomy type of the
parameter.

Most often the report we link to shares parameters with the report we link from. In these situations it is not
necessary to explicitly specify these parameters as link parameters, because they will automatically be

transferred (assuming skipparametertransfer is false, which it is by default). This is illustrated in the

section “Example: Using skipparametertransfer” on page 16.

The fieldlinks element – link association

The second part of a link specification, the link associations, specifies the fields we link from and the values
that are to be transferred in the link

There are two kinds of field links, universe field links and query field links. Before we explain these, recall
that a field identifier may refer either to a field in a query or a field in a universe. For example, with the
query.

MSELECT [DepName, Earnings] as cursor DepCursor FROM Department

the field Department.DepName refers to field in a universe, whereas DepCursor.DepName refers to a field

in a query.

A query field link defines a link from a field in a query, and a universe field link defines a link from a field in

a universe (hence a universe field link must be associated with a universe). As every field in a report

belongs to a query, all links can be expressed using query field links. However, in practice it may be more

convenient to use universe field links, for example if you rename a field or have several queries that use the

same universe field (this is illustrated later in the section “Example: Using universefieldlinks” on page 15).

 fieldlinks ::=

 <fieldlinks

file:///C:/Users/OrleneMarieAbundo/Desktop/New%20template%20docs/DeltekMaconomyReporting.docx%23_bookmark23
file:///C:/Users/OrleneMarieAbundo/Desktop/New%20template%20docs/DeltekMaconomyReporting.docx%23_bookmark22
file:///C:/Users/OrleneMarieAbundo/Desktop/New%20template%20docs/DeltekMaconomyReporting.docx%23_bookmark22

Definitions

Maconomy Reporting for Report Developers 13

 [universe = moduleid] [interface = id]

 >

 (queryfieldlink | universefieldlink)+

 </fieldlinks>

 queryfieldlink ::=

 <queryfieldlink name = qualifiedid

 link = functionexpression [hidden+ | hidden-]

 />

 universefieldlink ::=

 <universefieldlink name = qualifiedid

 link = functionexpression [universe = moduleid]

 [interface = id] [hidden+ | hidden-]

 />

 functionexpression ::=

 id (linkargument (, linkargument)*)

 linkargument ::=

 constExpressionShort | qualifiedid | functionfieldid

Attributes of the fieldlinks, queryfieldlink, and universefieldlink elements:

Name Type Description

Name qualifiedID The name of the field linked

from.

Link funcExp Parameterized reference to a

link. The link must be defined in

the link definition, and the

arguments must match the link

parameters. The arguments

determine the actual values of

the link parameters.

[Universe] module The name of the universe to

which a universe field belongs.

This attribute must be specified

for universe field links such that

the links are associated with a

universe. The attribute may be

specified as an attribute of the

fieldlinks element. If the

attribute belongs to the

fieldlinks element, every

universe field link inherits the

Definitions

Maconomy Reporting for Report Developers 14

Name Type Description

value, i.e. will be associated with

the universe, but the universe

field links may overwrite it.

[Interface] ID Interface of the universe. If no
interface is specified, the default
interface will be used. If the
attribute belongs to the

fieldlinks element, every

universe field link inherits the
value, i.e. will be associated with
the interface, but the universe
field links may overwrite it.

[Hidden] boolean Specifies if the link should be
hidden. A hidden link will not be
available.

All references to fields in a universe field link must belong to the associated universe.

The universe and interface attributes are introduced at the fieldlinks element only to shorten the

specification of universe field links. An example where universe field links share attributes:

<fieldlinks>

<universefieldlink L1 universe=U1 link= ...>

<unviersefieldlink L2 universe=U2 link= ...>

<unviersefieldlink L3 universe=U1 link= ...>

<end fieldlinks>

Which is equivalent to

<fieldlinks universe=U1>

<universefieldlink L1 link= ...>

<unviersefieldlink L2 universe=U2 link= ...>

<unviersefieldlink L3 link= ...>

<end fieldlinks>

Example: What are links?

The following two reports specify the example mentioned in the section “What are links?” on page 10.

<UniverseReport EarningsOverview "Earnings Overview">

<Parameter parmDepartment type=string/>

<Queries>

MSELECT [DepName, Earnings] as cursor DepCursor FROM Department

WHERE DepName IN parmDepartment;

<End Queries>

<links>

Definitions

Maconomy Reporting for Report Developers 15

<link myFirstLink report=EmployeeEarnings>

<parameterfree parmEmpDepartment type=string/>

<end link>

<end links>

<fieldlinks>

<queryfieldlink DepCursor.DepName

link=myFirstLink(DepCursor.DepName)/>

<end fieldlinks>

<end Universereport>

<UniverseReport EmployeeEarnings "Employee Earnings">

<Parameter parmEmpDepartment type=string/>

<Queries>

MSELECT [Name, Department, Earnings] as cursor EmpCursor FROM Employee

WHERE Department=parmEmpDepartment;

<End Queries>

<end Universereport>

Example: Using universefieldlinks

In the above example we used a query field link, but we could just as well have used a universe field link:

<universefieldlink DepName universe=Department

link=myFirstLink(DepName)/>

This would make no difference. But if the “Earnings Overview” report had had an additional query

selecting the same field:

...

<Queries>

MSELECT [DepName, Earnings] as cursor DepCursor FROM Department

WHERE DepName IN parmDepartment;

MSELECT [DepName, Earnings] as cursor DepCursor2 FROM Department

WHERE DepName IN parmDepartment;

<End Queries>

...

things would be different. Using the query field link (of the section “Example: What are links?” on page

15), we would have links only in the first query; using the universe field link, we would have links in both

queries.

Definitions

Maconomy Reporting for Report Developers 16

Example: Using skipparametertransfer

The skipparametertransfer attribute of the link tag is introduced to make it easier to specify links in which

parameters are automatically transferred when we link.

Assume our two reports shared parameters, i.e., that both had the parameter

<Parameter parmDepartment type=string/>

And assume we did not explicitly transfer parameters when we linking, that is the link was defined as

<links>

<link my2Link report=EmployeeEarnings/>

<end links>

<fieldlinks>

<queryfieldlink DepCursor.Name link=my2Link()/>

<end fieldlinks>

This would change the link functionality. As the attribute skipparametertransfer is by default false, we

automatically transfer parameters when linking. Thus when we open the “Employee Earnings” report, the

value of its parameter will be equal to the value of the parameter in the “Earnings Overview” report.

Hence it will not be equal to the selected entry.

If we skipped parameter transfer, i.e., with the following link definition

<link my2Link report=EmployeeEarnings skipparametertransfer+/>

The value of the parameter parmDepartment of the Earnings Overview report would be its default value.

Example: Linking to a Web page

The following link opens the Maconomy homepage in a new window:

<links>

<link my3Link url=http://www.maconomy.com target=newwindow>

<parameterfree parmEmpDepartment type=string/>

<end link>

<end links>

As this link is parameterized, the link parameter is transferred as a parameter in the URL, so we actually

open the URL:

http://www.maconomy.com/?parmEmpDepartment=PR (assuming PR was selected).

Report collections
The reportcollection element defines a report collection. A report collection is essentially a list of

universe reports that share parameter and link definitions.

BNF reportcollection ::=

<reportcollection (name = module|module) [(title = string|string)] >

[help]

parameter*

universereport+ [links] [fieldlinks]

Definitions

Maconomy Reporting for Report Developers 17

<end reportcollection>

Where name, title, help, parameter, universereport and links are defined in the previous section.

Each of the universe reports in the report collection functions as an ordinary universe report. You refer to
a member by qualifying its name with the name of the collection, hence A::B::Member1 refers to the

member Member1 of the collection A::B. The names of the members cannot be qualified (cannot contain

::). The collection itself does not contain a query and cannot be executed. As the members share

parameters, they are not allowed to have a parameter definition. The members will also share the links
defined for the collection, but each member may additionally introduce its own links.

The members of a collection are independent of each other, thus each member has its own instances of
the parameters. It is, nonetheless, easy to copy the values of the parameters when linking from one

member to another—this happens per default (skipparametertransfer is by default false).

Example

<Reportcollection A::B "My first report collection">

<parameters>

<parameter MyParm title="My Parameter" type=string />

</parameters>

<Report Member1 "My first report member">

<Queries>

...

<End queries>

<Links>

...

<End Links>

<End report>

<Report Member 2 "My second report member">

...

<End report>

<End reportcollection>

The first member has a link definition, meaning this report (and this report only) has links. If the links were
defined for the collection (at the outermost level), both members would inherit the links.

Layouts
Both universe reports and report collections may be associated with layouts allowing report developers to
control how a report should look. A universe report may be associated with at most one layout (MPL) file,
making it unproblematic to associate the two. A report collection, on the other hand, may be associated
with several layouts. Each of the layouts must refer to the report member it is to be associated with. This

is done adding a print attribute to the layout tag of the layout. For example, if an MPL file contains

<layout print="Member2">

then the layout will be associated with the member named Member2. Layouts cannot be associated with

the collection itself and at most one layout may be associated with each member of the collection.

Definitions

Maconomy Reporting for Report Developers 18

Report M-scripts
The definition of parameters is not as flexible as we would sometimes want. A significant limitation is the

fact that the default value of a parameter must be a constant expression. In some cases, we want to be

able to express more details, for example to say that the default value should be the user’s latest entry to

the database or the first day of the present month. With the introduction of M-Script in version 1.2 of MRL,

M-Script can be used to update and validate parameters, which allow a flexible use of report parameters.

To use M-Script for updating and validating parameters, you have to create a file containing the M-Script

code. The file can declare two functions:

updateParametersPre

updateParametersPost

The first of these functions is used to update the default value of the parameters, i.e. to update the

parameters just before they are presented to the user in the selection criteria. The latter function serves

two purposes. It can be used to verify that the data entered by the user in the selection criteria satisfy

certain constraints. For example, if a user is required to enter the name of an employee, we may want to

verify that the name is in fact the name of an employee. Moreover, the function can be used to update the

values entered by a user. For example, we may want to qualify the name with the employee’s position.

Script interface

The functions updateParametersPre and updateParametersPost must be public and have a single

argument. The argument is an M-Script object representing the parameters of the report:

{ parm1 : { type : "string",

title : "Surname",

basis : "",

mandatory : true,

solitary : true,

solitaryType: "string",

hidden : false,

value : "Alice"

 },

parm2 : { type : "string",

...

value : ""

 },

reportInfo : { report$name : { ..., value : "Report1" },

report$title : { ..., value : "Report no. 1" }, report$nameOfUser

: { ..., value : "Adam" }

}

}

where parm1, parm2 are the names of the parameters of the report. All parameters of the report are

available, and all attributes of the parameters (except the name which is already known) are available as

well. Moreover, the implicitly defined parameters (the name and title of the report and the user name, see

section “2.1.3: Queries” on page 9) are available in the property reportInfo. The use of the

solitaryType attribute is somewhat technical. Whenever a parameter is solitary-, its solitaryType

Definitions

Maconomy Reporting for Report Developers 19

attribute is equal to the type attribute specified in the report, other- wise it is equal to "string". This

attribute is useful because the type of a solitary- parameter is "string". For example, if we have a

report parameter <parameter A type=date>, then type is "string" and solitaryType is "date",

because the parameter by default is solitary-.

The updateParametersPre and updateParametersPost functions must return an object whose

properties are the names of the parameters that are to be updated, more precisely, it must be on the form

{ parm1 : { mandatory : false,

hidden : true,

value : "Bob" },

parm2 : { mandatory : false, ... }

}

The object is used for updating the parameters. In this case, the parameter parm1 will be hidden, but it will

not be mandatory and its value will not be "Alice" but "Bob." Only the parameters and the attributes

referred to in the object will be updated.

Only the mandatory, hidden and value attributes of a parameter can be updated. All parameters of the

report can be updated except the implicitly defined parameters.

Only parameters declared in the report can be updated; it is thus not possible to declare new parameters

in the script. In case updateParameterPost is used only for verification, and not for updating parameters,

it may be declared a procedure instead of a function.

Verification and failure

The updateParametersPost function can be used to verify that data entered in the selection criteria is

valid. Whenever data is invalid, a user must reenter data. In the script, this is controlled by calling one of

the following functions:

maconomy::fail(msg)

maconomy::failOnParameter(parm, msg)

both of which expect string(s) as argument(s). The functions cause failure, meaning execution of the

updateParametersPost function stops and the user is presented with an error message, msg, connected

to the selection criteria. The failOnParameter function is distinguished from fail by setting focus to a

field, parm, in the selection criteria.

Restrictions on M-Script use

The M-Script file must be installed on the server, see section “1.4: Installing reports” on page 4. To

access the update functions, the file must declare a package. It is not possible to make use of the

package version framework of M-Script. All the M-Script API functions:

 maconomy::sql*

 maconomy::mql*

 maconomy::dialog*

 maconomy::fail*

are available in report M-scripts.

Definitions

Maconomy Reporting for Report Developers 20

The manuals “Maconomy M-Script Language Reference” and “Maconomy M-Script API Reference”

contain a list of permitted contexts for each M-Script command.

Commands that are permitted in report M-scripts are marked with “All” or “MRL” in the “Context” section

for each command.

Example: Pre-update and verification

Suppose we have a report that shows data about a company’s future business up to a given date. The

report has the parameter

<parameter parmFutureDate type=date solitary+ />

We want the default value of this parameter to be one week from the present day. However, if a user

changes the value of the parameter, we require that the entered date be in the future. This way we

ensure the report shows engagements of the future. These constraints are met by the following script.

#version 14

package myReport(1.0.0);

public function updateParametersPre(parameters)

{

return { parmFutureDate : { value : getdate() + 7 } };

}

public procedure updateParametersPost(parameters)

{

var enteredDate = parameters.parmFutureDate.value;

if (enteredDate <= getdate())

maconomy::failOnParameter("parmFutureDate",

"Please enter a future date");

}

The updateParametersPre function updates the parameter parmFutureDate by setting its default value to

one week from today. In the updateParametersPost procedure we declare a variable enteredDate

which is equal to the value of the parameter parmFutureDate, hence equal to the date entered by the

user in the selection criteria. We then verify whether the entered date is in the future: if not,

maconomy::failOnParameter is called, which causes failure (stops execution of the script), meaning

the user is presented with the error message and required to reenter a date.

Example: Verification and post-update

We have a report with the following parameter

<parameter parmArea type=real solitary+ />

But we want to use its square root. In the script, we verify that the parameter is not negative, before

returning its square root:

public function updateParametersPost(parameters)

Definitions

Maconomy Reporting for Report Developers 21

{

var parmArea = parameters.parmArea.value;

if (parmArea < 0.0)

maconomy::fail("Please enter a non-negative number"); else

return { parmArea : { value : sqrt(parmArea) } };

}

Example: Conditionally hidden parameters

In the following example we have a report with a single parameter

<parameter parmEmpName basis=Employee.Name1 />

The report is used primarily as a drill-down report (meaning that another report links to it). If a link is

successfully established, parmEmpName is supplied a value, otherwise its value will be its default value (the

empty string). When the parameter has a non-empty value, the user should not be able to change it

(hence the parameter should be hidden), otherwise the user should be able to change it (hence the

parameter should not be hidden).

public function updateParametersPre(parameters)

{

if (parameters.parmEmpName.value != "")

return { parmEmpName : { hidden : true } };

else

return { };

}

Example: Accessing the database

The following example illustrates how a report M-Script may access the database using the MQL API of

M-Script. Assume a report with the parameter

<Parameter parmDate basis=JobEntry.DateOfEntry solitary+ >

We want the default value of this parameter to be the date of the user’s latest entry to the JobEntry

relation of the database. This requirement is met by the M-Script function below.

public function updateParametersPre(parameters) {

try {

var userName = parameters.reportInfo["report$nameOfUser"].value; var

userEmpNumber = "0";

var mqlQuery1 = 'MQLQUERY1';

<MQL 1.3>

MSELECT employeenumber FROM employee

WHERE name1 = mqlParmEmpName

USING PARAMETERS mqlParmEmpName : string

MQLQUERY1

Definitions

Maconomy Reporting for Report Developers 22

var mqlBind1 = { parameters:{ mqlParmEmpName: { value: userName }

} };

var mqlResult1 = maconomy::mql(mqlQuery1, mqlBind1);

var mqlRows1 = mqlResult1.mqlData.rows;

if (sizeof(mqlRows1) == 1)

userEmpNumber = mqlRows1[0].employeenumber.value;

else

maconomy::fail("Internal error: illegal name");

var mqlQuery2 = 'MQLQUERY2';

<MQL 1.3>

MSELECT DateOfEntry FROM JobEntry

WHERE employeenumber = mqlParmUserEmpNumber

ORDER BY DateOfEntry DESC

USING PARAMETERS mqlParmUserEmpNumber : string

MQLQUERY2

var mqlBind2 = { parameters:{ mqlParmUserEmpNumber: { value: userEmpNumber } } };

var mqlResult2 = maconomy::mql(mqlQuery2, mqlBind2);

var mqlRows2 = mqlResult2.mqlData.rows;

if (sizeof(mqlRows2) == 0)

return { parmDate : { value : getdate() } };

else {

var latestEntry = mqlRows2[0].DateOfEntry.value;

return { parmDate : { value : latestEntry } };

}

}

catch(e) { maconomy::fail("Internal error"); }

}

First we obtain the name of the report user, which is available under the reportInfo property. Then a

query, mqlQuery1, is defined, which is to retrieve the employee number of the user. The query uses a

parameter to which the user’s name is bound. If the query does not retrieve one row, then an internal

error has occurred, since the user is not identified by his or hers name. Thereafter another query,

mqlQuery2, is defined, which is to retrieve the date of the user’s latest JobEntry entry. If no date is

retrieved, the default value of parmDate is set to be today, otherwise the default value is the date of the

latest entry.

Definitions

Maconomy Reporting for Report Developers 23

Example: M-Script for a report collection

A report collection may be associated with at most a single report M-script, so all the members of a report

collection share pre- and post-update functions. Nevertheless, we can customize the behavior of the

functions for each member. This can be done using the implicitly defined parameter Report$name.

Suppose the report collection is that of the example in section 2.2.1 on page 17. We want the default

value of the MyParm parameter to be 1 for first member of the collection and 2 for the second member:

public function updateParametersPre(parameters)

{

var reportName = parameters.reportInfo["report$name"].value;

if(reportName == "A::B::Member1")

return { MyParm : { value : "1" } };

else if(reportName == "A::B::Member2")

return { MyParm : { value : "2" } };

...

}

We refer to the members by means of their full (qualified) name.

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 24

Getting Started with Universe Reports
This manual helps you to get started with Maconomy Universe Reports. After reading this manual and
working through the examples, you should be able to build a report, install it, and run it.

Please note that a number of Maconomy add-ons are required to create and run universe reports.

Introduction to universe reports
The data in your Maconomy system is only valuable to the extent by which you are able to retrieve the
data. This guide describes a simple, robust way of retrieving and presenting data from the Maconomy
system.

Universe reports are reports designed to retrieve relevant information quickly and presenting it in the
Portal. The information can be presented as HTML (for screen use) or PDF (for printing).

Universe reports offer powerful drill down functionality. When the report results are displayed, you can drill
down to explore the figures in greater detail. The drill down is done by simply clicking the links presented
on the report lines. A “drill down path” is displayed at the top of the report, which lets you drill back up
again to higher reporting levels. For more information, see the “Maconomy Portal User’s Guide” in the
Maconomy Reference Manual.

What’s in a universe?
A universe is a collection of fields from different relations in the database. When you make references to
a universe instead of all the relations you need to access, Maconomy will think of the universe as a single
relation with all the required fields available. For instance, you can create a “Job” universe with all
information relevant to jobs. This makes reporting faster. It also makes reporting simpler, as we shall see.

However, a single relation in the database can also be defined as a universe. This is what we do in this
manual.

In this manual, we will build two simple reports as an example of how to use the Maconomy universe
reporting tools. Even though the reports are simple, developing them involves most of the techniques
required for most universe reports.

After building the reports, we link them together. The final result will look like this:

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 25

The following sections take you through the creation of the report step by step. First, we will look at the
basic concepts.

Concepts

A report is made up of three elements:

1. A query or a number of queries (data selection)

2. Parameters (data parameterization)

3. Layout (data presentation)

Queries
The query defines what data will be available for display in the report. The query is the mechanism by
which data in the database are selected. In order to select the correct data, universe reports use a data
selection language called MQL (Maconomy Query Language). Using this language, you can specify the
universes (or relations) from which data should be selected, which fields in the universes should be
selected, and a number of other criteria.

MQL is very similar to SQL, which is the most common data selection language. Then why use MQL?
MQL has a number of advantages over SQL:

 MQL works the same way, regardless of which database is used – it is database- independent.
The syntax or function of SQL differs slightly between databases, where the SQL expressions

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 26

used for an Oracle database is different from what is used for DB2 or MS SQL Server databases.
This means that you can e.g. switch data- bases without having to rewrite all your reports, and
you can transfer a good report from one Maconomy system to another without having to change
it.

 MQL is specially designed to make use of Maconomy universes. This means that MQL is easier
and faster than regular SQL.

 Maconomy validates the MQL statements for syntax, field typing, and semantic errors before they
are issued to the database, making it easier to find errors in your statements.

 Finally, MQL offers features not available in standard SQL, such as data aggrega- tion.

It is possible to have multiple MQL expressions in the same report.

The MQL query is included as part of a file written using MRL - Maconomy Reporting Language. The
MRL file is the report file as such, in that it defines the name, query and parameters of the report. We will
return to the contents of this file later.

Parameters
Often you will want to be able to modify your report while running it (“at runtime”). For instance, you may
want to limit the selection of jobs to jobs created by a specific employee or created for a specific range of
customers.

In order to achieve this, you need to set report parameters. The parameters in effect define the report’s
interface by specifying which fields the user can use to limit the data selection. They can also control
aspects of the report layout, e.g. by specifying that a report header should or should not be printed.

The parameters can be embedded in the report file to control data selection options or in the layout file
(see below) to control layout selection options.

Layout
The layout defines what the report will look like when printed (either to the screen or to a printer). The
layout is defined in a layout definition file by means of MPL – Maconomy Print Language. This is the
same language which is used for creating print layouts in the standard Maconomy client. It has a wealth
of features which are described in the manual “Printout Design using MPL”. Features which are only
relevant for use in universe reports are described in a section of the same manual.

The layout is specified in a separate file. The advantage of this is that you can change the layout without
having to change the actual report file.

If you do not specify a layout, the report uses a standard, built-in layout. This layout is available for
inspiration, i.e. you can copy the default layout and change it to suit your needs as described in “Viewing
the default layout” on page 11.

Some of the advantages of MPL are the following:

 The MPL code is validated, and syntax and semantic errors can be found before the report is run.

 The layout specification is target independent. This means that you use the same layout file,
regardless of whether you output the report in HTML format or in PDF.

 MPL controls the Maconomy formatting engine. The data selected from the data- base is passed
through the formatting engine with the specifications defined in the layout file. Maconomy then
produces the report as specified. The same formatting engine is used for producing HTML, PDF,
SVG, etc.

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 27

Report example 1

In this section, we will create a report showing a list of employees. The example shown below is
annotated, i.e. comments to the individual line numbers are added in the section “Annotations” below.

Note that the file is built using tags, similar to an HTML file. Some tags must have both an opening tag

and a closing tag. The code between the tags then pertains to the command or instruction indicated by
the tag, for example, <Queries>...<End Queries>.

Some tags are single tags with attributes, for example, <MRL 1.0>.

Create the report file

Open a text editor, and type the following:

1 <MRL 1.0>

2 <Report name=Examples::R001 title="Example Report 001">

3 <Parameter parmEmployeeNumbers type=string title="Employees" mandatory-

solitary- >

4 <Queries>

5 MSELECT EmployeeNumber, Name1

6 FROM Employee

7 WHERE EmployeeNumber in parmEmployeeNumbers

8 ORDER BY EmployeeNumber

9 <End Queries>

10 <End Report>

Close the file, and save it as R001.mrl. Please note that if you are using Windows Notepad, you may

have to enclose the filename in quotes when you save it to prevent Notepad from adding .txt to the

filename.

Annotations

The following comments are intended to help you understand the example above. They are not a
complete explanation of each MRL tag.

1. All MRL files start with an indication of the current MRL version number. This tells the Maconomy
server what to expect.

2. Next, the single tag <Report> defines the current MRL file as a report definition file. Furthermore,

the tag has two attributes:

a. name specifies the name by which the Maconomy server will know the report. The server

places the report in a separate namespace indicated by the colon- separated names. In this
case, the report belongs to the “Examples” collection and is entitled “R001”.

b. title is the external name of the report, i.e. the name printed at the top of the report when it

is run.

c. An additional attribute, defaultLayout, can be used to force the report to use the default

layout, no matter if a valid layout file exists. This attribute is not used here. Leaving it out
means that the default layout will not be used if a valid layout file exists.

3. The Parameter tag defines the parameter selection dialog of the report. When you run the report
in the Portal, this is what you see first. In this example, a parameter section called

parmEmployeeNumbers is defined, in which the user can select an employee or a range of

employees. This parameter section is referenced by MQL in item 7 (see below).

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 28

The expected input into the parameter section is a string (type=string).

The label (external name) of the field in which the user selects a range of employees is

“Employees” (title="Employees").

The user is not forced to enter employees (mandatory-). To force the completion of a field, enter

mandatory+.

The user can enter a single employee or a range (e.g. 1047..2109) of employees (solitary-). If

you only want the user to enter a single value, enter solitary+.

Please note that you can enter multiple Parameter tags to include several restriction fields.

4. The Queries tag specifies the beginning of the data selection part of the report file. This part

contains MQL code, which will be explained below.

5. Select the values of the database fields EmployeeNumber and Name1. These fields contain the

employee’s number and full name, respectively.

6. The fields mentioned in item 6 are to be found in the Employee relation (or universe) of the

Maconomy database.

7. However, do not select all the fields - only select those which match the criteria entered by the

user in the parameter dialog section called parmEmployeeNumbers, which was defined in item 3

above. When the report is run, only those employees that are matched by the criteria entered by
the user will be selected.

8. Sort the selected data in ascending order by employee number. This concludes the MQL data
selection statement.

If you want to add additional queries, you can repeat items 5-8 above with different values. Only
remember to place a semicolon (;) to separate the MQL statements.

9. The End Queries tag specifies the end of the data selection part of the report file.

10. The End Report tag specifies the end of the report file. Any text or commands after this tag will

be ignored.

Testing the report

In order to test the report, the report must be installed on the server and made available in the Portal. This
is a three-step process of stamping the report file, installing it on the Maconomy server, and granting
access to it using the Portal Designer.

This process is described in the section “Enabling the report” on page 18. Note that you must have
access to the Maconomy server and a file stamping tool to place the file in the Portal framework, and you
must have Portal Designer rights to add the report to a Portal role.

After completing the steps outlined in the section “Enabling the report”, you can run the report. It should
look like this:

file:///C:/Users/OrleneMarieAbundo/Desktop/New%20template%20docs/DeltekMaconomyReporting.docx%23_bookmark57

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 29

The report is launched showing the field defined in the Parameter section of the report file. After entering
criteria in the field “Employees” (or leaving the field empty), clicking OK will produce a result similar to the
following (the Portal menu will not be included in screen shots from now on):

Remember that we did not add a specific layout to this report, so the report uses the standard layout with
a header supplying details about the report, the results in a standard table, and a page number.

Note that the external names of the fields selected in the MQL statement are used as headings in the
result table. One effect of this is that if you are using dynamic translation, these field names will be
displayed in the language which you are set up to use.

With the buttons along the top of the report:

you can choose to print the report, set up page size and orientation, and return to the parameter selection
dialog to rerun the report.

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 30

Adding a layout

Maconomy identifies a layout file by its name. If a layout file with the same name as the report file (except
extension) is placed in the same folder as the report file, and the report file does not specifically say that it
should use the default layout, then Maconomy will use that layout file to format the report.

Now we would like to remove the header information and the page number from the report.

Create the layout file

In the same folder as the report file (R001.mrl), create a file called R001.mpl using a text editor. Enter the
following in the file:

1 <mpl 2>

2 <layout>

3 <paper fontsize=10>

4 <table cursor=query>

5 <fields>

6 *

7 <end fields>

8 <end table>

9 <end paper>

Save the file.

Annotations

The following comments are intended to help you understand the very simple example above. They are
not a complete explanation of each MPL tag. The “MPL Language Reference” contains complete
information.

1. All MPL files start with an indication of the current MPL version number. This tells the Maconomy
server what to expect.

Please note that the tags are case-sensitive – you must type all MPL tags using lowercase only.

2. Next, the single tag <layout> specifies that the purpose of the following code is to define a

layout.

3. The paper tag defines the general options of the current layout, much like the <BODY> tag in

HTML. The only attribute used here is font size, which is set to 10.

Many of the attributes which can be used in the paper tag are not relevant for layouts intended

for display in a browser. The browser automatically takes care of most of the formatting.

4. The table tag specifies the beginning of a table in the layout. The attribute cursor specifies the

origin of the content of the table. The content is the result of an MQL query, and by default MQL
queries have the name query. The table is laid out automatically by the columns and rows
selected by the MQL query.

It is possible to give the MQL query another name than query in the report file, using the as
cursor attribute. For more information, please see the MQL documentation and the example in
the section “Create the second report” on page 12.

5. The fields tag relates to the table tag above and tells Maconomy that the contents of the table

begins here – the processing of the query result can begin.

6. The * means that all selected fields should be included in the table. Instead, you could have

selected among the fields in the query by entering internal field names, preceded by a dot (.).

You can also use this technique to reorder the columns from the query. For instance, if you write:

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 31

.Name1 .EmployeeNumber (note: no separator other than a space between the field names)

instead of *, the same table is displayed in the result, but the columns are switched around.

7. The end fields tag specifies the end of the fields of the table generation part of the layout file.

8. The end table tag specifies the end of the table generation part of the layout file. Note that you

can generate multiple tables in a layout by repeating the table tags.

9. The end paper tag specifies the end of the layout file. Any text or commands after this tag will be

ignored.

Now install the layout file on the server by following the steps outlined in the section “Enabling the report”
on page 18.

Viewing the default layout

If you want to see how the default layout is designed, you can dump the contents of the default layout to a
text file in the following way:

1. In the Maconomy Portal, click “Universe Analyzers” in the Portal menu.

2. Find the report in the list of components, and click its name.

3. This opens the “Universe Analyzer” edit window.

4. In this window, click the button “Get MPL”.

5. This opens a new browser window which reveals the contents of the MPL layout file of the current
universe report. You can now copy this information and paste it into a text editor for use as
inspiration for your own layouts.

Note that it is always the default layout that is shown, not any customized layout which was installed
together with the report.

Report example 2
You have now built a report which shows a list of employees, and you have added a custom layout to the
report.

We will now add a second report showing time sheet information about the individual employees. Then
we will create a link between the first and the second reports, so that when you click on an employee in
the first report, the second report will launch with information about that employee.

This example is rather more complex than the first one. It is used to generate a list of the jobs and
activities on which an employee has been working within a range of dates.

Create the second report

Open a text editor, and type the following:

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 32

<MRL 1.0>

<Report name=Examples::R002 title="Example Report 002">

1 <Parameter parmEmployeeNumber basis=employee.employeenumber mandatory+

solitary+ >

2 <Parameter parmPeriod type=date title="Period" mandatory- solitary-

>

3 <Queries>

4 MSELECT [EmployeeNumber, Name1] as cursor

EmployeeCursor

FROM Employee

WHERE EmployeeNumber = parmEmployeeNumber;

5 MSELECT [Job.JobNumber, Job.JobName,

[Activity.ActivityText, PlanOfWeekSUM,

NumberOfWeekSUM] as cursor activityCursor]

as cursor JobCursor aggregate sum

6 FROM JobUniverse

7 WHERE Employee.EmployeeNumber = parmEmployeeNumber

8 AND TimeSheet.PeriodStart in parmPeriod ORDER BY Job.JobNumber;

9 MSELECT [Activity.ActivityText, PlanOfWeekSUM,

NumberOfWeekSUM] as cursor activityCursor

FROM JobUniverse

WHERE Employee.EmployeeNumber = parmEmployeeNumber AND

TimeSheet.PeriodStart in parmPeriod

ORDER BY Activity.ActivityText

10 <End Queries>

11 <End Report>

Close the file, and save it as R002.mrl.

Annotations

The annotations below do not repeat what you already know from the first report example.

1. This report contains two parameter tags. The attribute basis is a short way of specifying the type

and title of the current field in the parameter selection window. By specifying a database field

as the basis of the current parameter selection field, the selection field will inherit the database

type and the external name of the field. In this case, it corresponds to typing type=string

title="Employee No.".

Note that this parameter selection field is both mandatory and solitary, i.e. the user must enter a
single employee number.

2. This parameter selection field is of type date. This is a special Maconomy data type. The user will

use this field to enter a range of dates for which he or she wants to see what the employee has
spent time on.

3. In this report, the Queries section contains three MQL queries. Please note the use of the

semicolon (;) to separate the queries.

4. The first query selects the employee number and the full name, as in the first example report.
However, the default name of the query, query, is not used in this case, but the query is given the

name EmployeeCursor using the syntax as cursor. By naming the queries in this way, the MPL

layout file can distinguish between the three queries in the report file.

Note that when as cursor is used, you must enclose the database field names in square

brackets [].

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 33

5. This MSelect statement is a query which defines two blocks of data, each with a separate cursor

name. The fields ActivityText, PlanOfWeekSUM, and NumberOfWeekSUM are defined as one

cursor, and that cursor along with the fields JobNumber and JobName are combined into another

cursor.

This construct allows the report to iterate through all selected jobs (jobCursor), and for each job

print the activities used on the job, the registered number of hours, and the week number

(activityCursor). Furthermore, a sum of the fields within both the cursor activityCursor and

JobCursor are generated using aggregate sum, adding a subtotal per job to the report and a

grand total for all jobs.

Please see page 17 for an illustration of the finished report.

6. The fields mentioned in the MSelect statement are all to be selected from the universe

JobUniverse. This universe is a combination of several relations (Job and Activity) , and it also

contains calculated fields that do not exist in the database – PlanOfWeekSUM and

NumberOfWeekSUM.

7. The fields are selected for the employee specified in item 1...

8. ...and for the dates specified in item 2.

9. This query defines the fields which the report will use to build a bar chart to sum up the report.

10. This ends the query definition section of the report file.

Create the layout file

In order to display the second report in a nice way, you must design a layout. Open a text editor, and type
the following layout:

<mpl 2>

<layout>

<paper fontsize=10>

1 -- island on Employee

2 <repeating cursor=EmployeeCursor>

3 <island justification=left leftmargin=10pt topmargin=10pt

bottommargin=10pt rightmargin=10pt>

{

4 [.EmployeeNumber] .EmployeeNumber;

5 "" .Name1:bold=true; [.parmPeriod] .parmPeriod;

}

<end island>

6 <end repeating>

7 <skip 10pt>

8 <table JobCursor>

<fields>

.Job.JobNumber

.Job.JobName

<end fields>

<table activityCursor>

<fields>

.Activity.ActivityText

.PlanOfWeekSUM

.NumberOfWeekSUM

<end fields>

<end table>

<end table>

<skip 10pt>

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 34

9 <barchart cursor=ActivityCursor height=140pt >

10 <legend>

.Activity.ActivityText

<end legend>

11 <fields>

.PlanOfWeekSUM

.NumberOfWeekSUM

<end fields>

<end barchart>

<skip 10pt>

<end paper>

Close the file, and save it as R002.mpl.

Annotations

The annotations below do not repeat what you already know from the first layout example.

1. You can enter one-line comments in MPL files by inserting a pair of hyphens before the comment.

2. repeating cursor=EmployeeCursor means that the current layout (paper) should be repeated

for every item within the query cursor EmployeeCursor. Remember that in the report file, we

specified that it should only be possible to select one employee, meaning that the current cursor
will only run once. But if you later change the parameter selection in the report file, the layout file
is already prepared for this.

3. The island tag defines an area of text, just like an island in a window in the Maconomy client. In
this case, the island is placed along the left edge of the paper area, with a margin of 10 points all
around.

4. In the island, show the parameter selection criteria.

5. The field Name1 should be in a boldface font.

6. Ends the repeating part of the layout.

7. With the skip tag, you can jump a certain amount of points down the page.

8. This table tag is nested, i.e. it contains another table tag. The implication of this is that for every

job in JobCursor, the fields in the activityCursor are printed. Note also that the attribute name

query does not need to be present; i.e. query=JobCursor and simply JobCursor are equally

valid.

9. The barchart tag draws a barchart based on the cursor ActivityCursor. The activity number is

used as legend, and the planned hours per week and the week number are the bars in the chart.
That way, you can easily compare the planned and the available hours per week.

Transfer the report file (and the layout file) to the server as outlined in the section “Enabling the report” on
page 18. However, do not display this report in the Portal menu.

Linking the reports

Even though the second report could run as a stand-alone report, we would like to link it to the first report
we created.

Linking reports is done in the layout file alone, and there is no need to rewrite anything in the reports as
such.

Therefore, we need to open the first layout file, R001.mpl, in a text editor. Change the lines concerning

the table tag to read the following:

<table cursor=query>

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 35

1 <fields>

2 .EmployeeNumber:report="Examples::R002"

:parameters=

[parmEmployeeNumber=.EmployeeNumber]

:reportsetup=[rpAction="drill"]

3 *

<end fields>

<end table>

Save the files.

Annotations

1. The fields tag has been expanded. Before, it simply showed an *, denoting that all fields should

be displayed.

2. The field .EmployeeNumber (which is one of the fields selected by the MQL query in the report

file) is specifically added to the layout, with a number of parameters:

report: This attribute means that a report should be attached to the field name. In this case, we

attach the second report we made, and which we called Examples::R002.

parameters: This is a signal to the target report (R002) that its parameter section with the name

parmEmployeeNumber should be prefilled with the value of this field (i.e. an employee number).

reportsetup: With this attribute, you can specify an action to be performed automatically when

the second report is launched. In this case, the report action “drill” ([rpAction="drill"]) is

selected. This means that the second report is a drill down report – it is run instantly, without
displaying the parameter selection options.

3. The remaining fields are then displayed as normal.

Now transfer the report and layout files to the server as outlined in the section “Enabling the report” on
page 18. The report will now look like this (after choosing to see employees “200?” in the parameter
selection window):

Note that the employee numbers are now hyperlinks. Clicking a link launches the second report, using the
clicked employee as input. The report looks like this when clicking employee 2005:

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 36

Notes:

1. If you click “Edit Selection Criteria”, you can choose to see information about a certain period.

2. Maconomy automatically adds drill down/drill up functionality. Clicking “Employee Report 001”
lets you select another employee.

3. This area shows information about the current employee.

4. The barchart shows the activity text and amounts of planned hours compared with registered
hours. If nothing was registered, no barchart would be displayed.

Enabling the report
In order to install a report on the Maconomy server, a number of requirements must be met: You must
have access to the Maconomy report stamping tool, your company must have a valid license file, you
must have access to installing the file on the Maconomy server, and you must have access to the Portal
Designer role in the Maconomy Portal. All these requirements are further described in the following.

Please note that this is not a manual for using either the stamper tool or the installer tool. You can find
more information about these tools by exploring their help options and reading the “MStamper Reference”
and “MBuilder Reference” manuals.

Both tools must be run on the computer hosting the Maconomy Server.

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 37

Report stamper (MStamper)
The Maconomy stamper tool is called mstamper.exe and is included in the Maconomy TPU (Tools

Packing Unit). Using it requires the presence of a special license file, usually called license.tac, which

you receive from Maconomy when purchasing the license to create universe reports.

When installing a recent TPU, the stamper tool is installed as well. On an NT machine, it is installed in the

MaconomyNT\bin directory. This directory is included in your system path, which means that the stamper

tool can be run from any directory on the computer.

After creating a report and a layout file, open a system prompt and navigate to the folder where the report
and layout files are placed. Then run the stamper tool. To stamp the first report we made, you can type
the following:

mstamper --readable --output r001.stamped.mrl r001.mrl

The report file R001.mrl is kept readable (as opposed to “scrambled”), and the stamped file is called

r001.stamped.mrl.

Now do exactly the same for the layout file. The example below uses the short form of attributes:

mstamper -r -o r001.stamped.mpl r001.mpl

Both files are now stamped and ready to be installed on the server.

Report installer (MBuilder)
To install the file, use another tool included in the Maconony TPU, mbuilder.exe. This tool verifies the

report files and installs the files correctly on the Maconomy server.

Example:

mbuilder --MaconomyDir c:\maconomyNT\MaconomyHomes\W_8_0

--Customization custom --Report r001.stamped.mrl

This command points out the location of the Maconomy server and the name of the report file stamped in
the previous example. The command also installs any layout file with the same name as the report file

except file extension, so the layout file r001.stamped.mpl from the example above will be installed at the

same time. If you for some reason do not wish to do that, append the attribute -MRLOnly to the command

line above.

The report is now ready to be made available in the Portal.

Portal Designer
After stamping and installing the report, it must be made available to the users in the Portal. A number of
steps are involved, all of which require that you log into the Portal as a Portal Designer.

For more information about the Portal Designer, please see the chapter “Maconomy Portal Designer” in
the Maconomy Reference Manual.

Include the Report

In order for the report to be visible in the Portal, you must create the report as a Portal component. To do
so, open the “Universe Analyzers” list in the Portal Designer, and do the following:

1. Click “New” to create a new component.

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 38

2. Enter a component ID in the field “Component ID”. This is the component identifier, i.e. the name
by which it is referenced in the Portal. You may choose any name as an ID (but do not use the
backslash character).

3. Enter a name in the field “Name”. This is the external name for the report, e.g. in the Portal menu.

4. Select “Report” in the field “Type”.

5. Enter the path to the report in the field “Report ID”. This is the path as defined in the attribute
name in the Report of the report file, e.g. Examples::R001.

The “Universe Analyzer” list might look as above.

Click “Create” to add the report as a report component.

The report is now made ready for inclusion in roles and menus in the Portal.

Assign the report to a role

Now you need to assign the report to one or more roles. Portal users assigned to those roles will have
access to use the report.

Open the “Roles” list in the Portal Designer, and do the following:

1. Click the role to which you want to add access to the report. Please note that if you are using one
of the Maconomy standard roles, you may need to clone the role first as described in the
“Maconomy Portal Designer” manual.

2. Click the “Components” button to see a large window of all the components available in the
Portal.

3. Scroll right to find the “Universe Analyzers” column.

4. Scroll down to find the component ID you just added, and mark the field.

5. Click “Update”.

Users assigned to the current role now have access to the report. However, the report cannot be found in
any menu yet.

Include the report in a menu

If you want the report to be visible in a menu, you must assign the report component to a menu. You may
not want to do this if the report is linked from another report, as is the case with report example 2 in this
guide. That report should only be available after the user has selected an employee in the first report.

To assign a report component to a menu, open the “Roles” list in the Portal Designer, and do the
following:

1. Click the role to which you want to add menu access to the report.

2. Click “Menu Items”.

Getting Started with Universe Reports

Maconomy Reporting for Report Developers 39

3. Click the name of the menu to which you want to add the report for users of the current role, e.g.
“Universe Reports”.

4. To insert the report on a new line, click the “Insert line”

5. Enter the report’s component ID (e.g. R001), and click “Update”.

The report has now been added to the “Universe Reports” menu for the role in ques- tion, and can be
launched by any user with access to that role.

Where to go from here
Additional information can be found in the following manuals:

 “MRL Language Reference”

 “MStamper Reference”

 “MBuilder Reference”

 “Maconomy Portal Designer” (Maconomy Portal Configuration and Administration manual)

 “Printout Design using MPL” (including “MPL for Universe Reports”, in the System Administrator’s
Guide)

Maconomy Report Designer

Maconomy Reporting for Report Developers 40

Maconomy Report Designer
This handbook is a guide to Maconomy’s Report Designer. The report designer is a program which
translates written reports into reports which can be printed in Maconomy by the end user.

The language used for developing the reports is called RGL – Report Generator Language.

You need some knowledge of Maconomy's database in order to write these reports. It is also beneficial to
have some previous experience from other report designers or general knowledge about programming.

Please note: The information in this document is primarily meant for main- taining existing RGL reports.
The development of new RGL reports is discouraged due to the fact that the RGL technology has been
replaced by universe reporting as described in the other chapters of this book.

User’s guide
This manual is divided into two parts: an overview and a reference section. The concepts described in
this book are fully illustrated by examples to get you started writing simple reports and develop them as
you go along and as the need arises.

This section is an overview, not a reference manual. Consult the reference section whenever you need a
precise and comprehensive explanation of a concept.

This section of the handbook contains the following:

 Subsection 2, “Procedure”, explains how to write and translate a report, describes which aids you
have at hand etc.

 Subsection 3, “SQL”, gives an introduction to SQL, which is the standard Maconomy uses to
manipulate the information in the database.

 Subsection 4, “Levels”, explains how reports are designed in levels, which are the building blocks
of the reports. Your understanding of report levels is of vital importance to being able to write
reports.

 Subsection 5, “Basic RGL elements”, explains what is understood by variables and expressions,
which is the mechanism used to make calculations.

 Subsection 6, “Selection criteria”, explains how to design the window in which data for the report
are entered by the user.

 Subsection 7, “Hints”, has some advice and hints to make it easier to write (good) reports.

Procedure
This section explains the procedure used for making reports in Maconomy.

Using the Report Designer
When you write or modify a report it is important to define precisely what is desired of the report. Not
before you establish the purpose of the report can you begin writing it or adjusting it.

The function of the report is basically to retrieve data from the database and present it (or data calculated
from it) in a way sensible for the user. It is therefore necessary to know which data is located in which
relations in the database. Consult the Database Description, where you will find descriptions of all
relations and their fields. You can make most adjustments to existing reports without this knowledge.

Entering reports

Maconomy Report Designer

Maconomy Reporting for Report Developers 41

When you have found out where the desired data are situated in the database, or how to calculate them,
you start to write the report. This is done by entering the report with a suitable editor (e.g. Microsoft
Word® or TeachText). The result is a file which contains the report. It is sensible to follow the convention

that names of files containing reports end in .rg, e.g. MyReport.rg.

Translation

When you have finished entering the report, it must be translated. This is done with the report designer
program.

The Report Designer comes in two versions: one for Windows and one for the Macintosh. The translation
of reports is a little different on the two platforms, and therefore the description of this procedure is divided
into a Windows and a Macintosh section.

Windows

Start the Maconomy Report Designer for Windows. After you perhaps have selected a Maconomy folder,
the following window is displayed:

The window shows which Maconomy folder the Report Designer is working with. In order to be able to
translate the report, select “Open...” from the File menu. This opens a window in which you choose which
report to translate.

Here you can e.g. select the report Summary.rg by clicking the file name and then “Open”.

Maconomy Report Designer

Maconomy Reporting for Report Developers 42

You can now translate the report by selecting “Compile” from the File menu.

In this example, the report is not correct (and can therefore not be translated). The Report Designer has

created a file called “SummaryErr.txt” in the same folder as the source text of the report. This file

contains a description and the location of the error. You must now correct the error and attempt another
translation.

The Report Designer can also display a message such as this one:

Maconomy Report Designer

Maconomy Reporting for Report Developers 43

Here, no actual errors were found in the report, and the report was translated. But the Report Designer
has found a suspicious-looking construct which means that the report may not function is the way it was

intended. The warning is again described in the file SummaryErr.txt, and you are recommended to read

the warning and decide if the report needs to be changed.

If the Report Designer finds no errors and no reason to issue a warning, a message such as the one
below is shown:

The Report Designer has now created a file which contains the report in a format which enables

Maconomy to process it. The file is called Summary.grn and is located in the same folder as the source

text. The report can be renamed after translation.

Macintosh

Start the Maconomy Report Designer program. After perhaps selecting the Maconomy folder, select
“Open...”. Note that from System 7 and up you can drag one or more reports to the Report Designer
program, and the program will then translate them.

This opens a window in which you choose which report to translate.

The Report Designer will create a file as described above under 2.1.1, “Windows”, which may contain
error messages. Follow the guidelines above to translate the report until it is translated correctly. The

correctly translated file has the string .grn appended to its file name and is saved in the same folder as

the report source text. The file can later be renamed.

Test

When this is done, the report must be tested. You do this by selecting the “Report...” function in
Maconomy and then selecting the correctly translated file (e.g.

MyReport.grn). It is good practice to select “Print to screen” to save paper. If you discover that the report

does not produce the expected results, you can adjust it and translate it again.

SQL
SQL is the language Maconomy uses to communicate with its database. SQL is the most widely used
standard for database processing.

Maconomy Report Designer

Maconomy Reporting for Report Developers 44

It is the use of SQL that ensures that you can change the database server without changing Maconomy's
functionality.

The language in which you write reports is inspired by SQL. SQL introduces various concepts, some of
which are described in this chapter and used to define reports.

Important concepts

Relations

Relations are data tables

Relations are groups of data in the database. For the purpose of reports for Maconomy, we can define
relations as tables of data. These tables consist of a fixed number of columns and a variable number of
rows. Each row has data in each column. Each column has a name, e.g. “CustomerNumber” or “Name1”,
which indicates which kind of data is listed.

 Fields, Records

In SQL terminology, columns are called fields and rows are called records. This terminology is used from
here on.

To recapitulate, a relation is a group of records, each with a number of named fields which contain data.
This is illustrated below.

Maconomy is designed from a number of different relations. There is a relation for customers, a relation
for vendors etc. All the relations used by Maconomy are described in a separate document: Maconomy
Database Description. This document lists the name of every relation in Maconomy as well as which field
is contained in it.

Maconomy Report Designer

Maconomy Reporting for Report Developers 45

Cursors

Access to individual records in a relation can only be obtained by cursors. These are conceptual pointers

to the records in the relation to which the cursor belongs. The figure above illustrates a cursor pointing to
four records in the relation.

Cursor declarations

You define a cursor using a cursor declaration. The cursor declaration is used to specify the relation from
which you wish to read records, any conditions tied to the records and the order in which you wish to sort
the records. Every cursor has a name.

Field selection

In the cursor declaration you specify which fields you want access to. You write a list of field names,

separating the names by commas. Normally all fields are selected, specified by the keyword ALL.

WHERE part

You can associate a condition to a cursor. The records you wish to retrieve with the cursor must meet

your condition. A condition is specified in the cursor's optional WHERE part. If you do not specify a WHERE

part, this is interpreted as a condition which is always true, meaning that all records are retrieved. The

WHERE part is a logical expression. It is described later.

ORDER BY part

You can also specify how the records are to be sorted when they are retrieved. This is done using an

ORDER BY part. The ORDER BY part consists of a list of field names in a decreasing order of priority. If you

do not specify an ORDER BY part, the records will be sorted arbitrarily.

Examples
cursor CustomerCursor is

select all from Customer

The cursor called CustomerCursor retrieves all records in the Customer relation. No sorting is done.

cursor CustomerCursor is

Select all from Customer

Where Name2 = "Jones"

CustomerCursor retrieves those records in the Customer relation which have the value “Jones”. No

sorting is done.

cursor CustomerCursor is

Select all from Customer

Where Name2 = "Jones"

order by Name1

CustomerCursor retrieves the Jones records sorted by Name1 – that is, “Jones, Andy” comes before

“Jones, Bill”.

Maconomy Report Designer

Maconomy Reporting for Report Developers 46

Levels
After being introduced to the necessary SQL concepts, you are now ready to use them to make simple
reports. This chapter goes through the basic building blocks of your reports, the so-called levels.

Report levels
Essentially, a report consists of a number of levels. Normally, a cursor is assigned to a level. For every
level, the program runs through and prints all the records pointed to by the cursor assigned.

Example

We will now write our first report: A report which will print all purchase lines from purchase order number
“800001”:

-- A cursor to process purchase lines for

-- purchase order number 800001

cursor PurchaseLines is

select all from purchaseLine

where PurchaseOrderNumber = "800001"

-- For every record in purchase line with

-- order number 800001, print item number, item text

-- and quantity of ordered items. level 1 is Purchase lines

lines

ItemNumber: 30mm Itemtext1: 80mm QuantityOrdered: 30mm

This report prints a number of lines, one line for every line in purchase order number 800001. The line
contains the item number in a field width of 30 mm, then the item text in a field width of 80 mm, and finally
the quantity ordered in a field width of 30 mm.

Hierarchy

Levels are sorted in a hierarchy. This hierarchy expresses both the sorting order and nesting. Every level
has a number. This number defines the hierarchy. The rules are:

 The highest level must have level number 1.

 A level with level number N is nested in the previous level with level number N-1.

 The order in which the levels are sorted in the report is the order in which the records from the
levels will be printed.

 Every time one record is printed on a level, the program prints all records on the next level (i.e.
level number 1 higher). If there are several levels with the same level number, the records are
printed in the order in which they are written in the report.

Maconomy Report Designer

Maconomy Reporting for Report Developers 47

Example

Study the following level structure (the structure is emphasized by indentation):

level 1 is C1

level 2 is C2

level 3 is C3

level 2 is C4

level 3 is C5

level 3 is C6

The report is printed in the following order:

One record from C1 is processed.

One record from C2 is processed.

All records from C3 are processed.

The next record from C2 is processed.

All records from C3 are processed.

:

(No more records in C2)

One record from C4 is processed.

All records from C5 are processed.

All records from C6 are processed.

The next record from C4 is processed.

All records from C5 are processed.

All records from C6 are processed.

:

(No more records in C4)

The next record from C1 is processed.

:

(No more records in C1)

To get a clear picture of hierarchies, it is useful to draw the structure as boxes nested in each other. The
example from above would look like this:

Maconomy Report Designer

Maconomy Reporting for Report Developers 48

Example

We want to print all purchase orders and for each purchase order print all purchase lines pertaining to the
purchase order. This is easily done by writing two levels: The first level (level 1) prints the purchase order,
and level 2 prints all order lines. As you only want the purchase order lines which pertain to the current

purchase order, you make the PurchaseLines cursor select only the entries where the field

PurchaseOrderNumber is the same as the PurchaseOrderNumber of the purchase order. If you do not do

this, the report will print all purchase order lines for each purchase order.

-- Cursor declarations

cursor PurchaseHeaders is

select all from PurchaseHeader

cursor PurchaseLines is

select all from PurchaseLine where

PurchaseOrderNumber = PurchaseHeaders.PurchaseOrderNumber

order by LineNumber

-- Levels

level 1 is PurchaseHeaders

lines

PurchaseOrderNumber Name1: 80mm Name2: 80mm

level 2 is PurchaseLines

lines

" " -- Indentation

ItemNumber : 30mm

ItemText : 80mm

NumberOrdered : 30mm

Each level can contain 3 parts: A header part, a lines part, and a trailer part.

Maconomy Report Designer

Maconomy Reporting for Report Developers 49

Part Description

Header The header part is printed before the records are processed. It is normally
used to print headers and to clear variables (described later).

Lines Records are printed individually from the lines part.

Trailer The trailer part is printed after the records have been processed.
Typically, totals computed in the lines part are printed here.

Group by You can specify a group by part to a level to which you have assigned a
cursor. The group by part means that your data are grouped according to
the values of specific fields.

Example

You need a list of your customers, sorted by country. For every country, the list should show the names of
customers in this country, one on each line, indented by a few spaces. The report is written like this:

cursor Customers is

select all from Customer

order by Country

level 1 is Customers group by Country

header

"Customers per

Country":400:justification=center:size=15

lines

Country newline

level 2 is Customers

lines

" ":50 Name1

The lines part in level 1 is generated once for each country and level 2 runs through all the customers in
the given country. The report will show:

Customers per Country

USA

InLiving Inc.

Manson Mobile Homes

Summer Domiciles Inc.

DanFurniture Inc.

Liva Leather Rooms Inc.

Home Decorations Inc.

Maconomy Report Designer

Maconomy Reporting for Report Developers 50

Design House Group

Flex Decorations

Frank's Fancy Furniture

England

Nice Homes Ltd.

Water Beds Ltd.

 Basic RGL elements
The previous sections described how you use levels to process records in the database. This, however, is
not enough to write interesting reports. This requires several new concepts: variables, expressions,
statements and functions.

So far, we have introduced a method for processing records in relations (using cursors) and a method for
printing data from these records. However, this is seldom enough to write useful reports. For this you
need a mechanism to make calculations.

Variables

Item Description

Variables Variables are named objects which contain data of a specific kind, or type.
Variables are introduced when they need to be used, and they “live”
throughout the report. The variable type (string, integer (whole number), date
etc.) is determined exclusively from the context in which it is used. This is why
variables do not need to be declared.

Types A given variable can contain data of just one type. This type is called the
variable's type. The report designer deduces a variable's type from the
function it performs. Therefore, you rarely need to concern yourself with
variable types.

Assignments

Variables are assigned values in assignment statements. These statements
must be written before and clearly separated from the actual texts in the
header, lines or trailer parts. Assignment statements look like this:

VariableName := Expression

Variables can also be assigned values when they are used as arguments for
certain predefined functions.

Standard values When a variable's value is used before the variable has explicitly been
assigned a value, the system will supply sensible standard values,
determined from the variable's type. A date value, for example, has a value
which corresponds to the day the report is run, before the first explicit
assignment is made for the variable.

Maconomy Report Designer

Maconomy Reporting for Report Developers 51

Expressions

Item Description

Expressions Expressions are formulae which represent a value when the report is run.
Expressions can contain references to cursor fields, variables and built-in
functions (described later).

Example

Cursor CustomerCursor is

select all from Customer

level 1 is CustomerCursor

header

BalanceSum := 0.00 -- Initialize BalanceSum variable

"Sum of Balances for Customers"

lines

-- BalanceSum is increased by this customer's balance

BalanceSum := BalanceSum + DebitBalanceBasics

trailer

-- Print the sum

BalanceSum

The above report sums up the balance for all customers. The BalanceSum variable is set to 0.00 in the

header part of the level. This is only done once. The lines part is processed once for every record in the

CustomerCursor cursor and the BalanceSum variable is updated for every record. The summed up value

is printed in the trailer part.

Arithmetic expressions
Expressions which return a number value are called arithmetic expressions. These are built from sub-
expressions, which are joined by the following:

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

< Less than

> Greater than

<= Less than or equal to

Maconomy Report Designer

Maconomy Reporting for Report Developers 52

Operator Description

>= Greater than or equal to

= Equal to

<> Different from

The usual mathematical rules apply. So, 1+2*3 has the value 7, whereas (1+2)*3 has the value 9.

Logical expressions
Logical expressions can only have one of two values: true or false. This is the type of expression you

use in a cursor’s WHERE part to specify which records to retrieve. Logical expressions are constructed by

logical sub-expressions and the following operators:

Operator Description

and Logical conjunction. Both sub-expressions must be true for the result to be true.

or Logical disjunction. The result is true if one or both sub-expressions are true.

not Logical negation. The result is false if the sub-expression is true.

Examples

-- True for customers for which customer number is within

-- the range FromCustomer to ToCustomer (inclusive).

Customer number >= FromCustomer and Customer number <= ToCustomer

-- Select only manual or subledger accounts AccountType = Manual or AccountType =

Subledger

-- True for customers not called Jones Name2 <> "Jones"

-- The above expression may also be written as not (Name2 = "Jones")

Statements
There are four types of statements in the Report Designer language (RGL): The assignment statement,

the NEWPAGE statement, structured statements, and print statements.

Statement Description

Assignment An assignment statement causes the value on the right side of := to be

calculated and assigned to the variable on the left side. Example: a :=
2

NEWPAGE The NEWPAGE statement causes a page break in the report.

Structured statements Structured statements enable loops and conditional execution. Three

statements exist: WHILE, FOR, and IF.

Print statements Print statements are used for determining the appearance of the report.
You can specify fonts, justification, and font face.

Maconomy Report Designer

Maconomy Reporting for Report Developers 53

Example
WHILE i < 50 AND a [i] < 37 DO

b := b + 2 * a [i]

i := i + 1

END WHILE

FOR i := 3 i <= 30 i := i + 1 DO

SUM := SUM + a [i]

END FOR

IF i > 0 THEN

a := b / i

ELSIF i < 0 THEN

a := - b / i

ELSE

a := b

END IF

Functions

Function arguments
Predefined functions are used in a variety of operations. There are five obvious groups of functions:
mathematical functions, date functions, time functions, finance functions and miscellaneous functions.

Functions are invoked by writing the symbol @, followed by the function’s name. Every function has a

number of arguments (in parentheses, separated by commas). Type and number of arguments is specific
for each function. Some functions have an arbitrary number of arguments, but you can never state more
than 30.

 All functions and their application are described in detail under “21: Predefined functions” on page 60 in
the reference section of this manual.

Selection criteria
The reports which have been illustrated so far all have the flaw that the user is unable to determine which
customers, vendors etc. to include in the report. So the next step is to introduce the selection criteria
dialog. This is the dialog the user sees when the report is run in Maconomy.

Selection criteria specification
Below is an example of the window the user sees when the report is generated. The user can enter
values on the dotted lines. When the selection criteria have been specified, the user clicks the OK button
(with the mouse or Return key).

The dialog works the way the user is used to from Maconomy. You cannot close the window or move to a
new field if a given value is invalid.

Item Description

Target You write a specification of the selection criteria dialog in the report’s Target

specification. The (optional) part must be written before anything else.

Example
Target ("Customer")

"Customer No. Range" :20mm FromCustomer"-"ToCustomer ;

Maconomy Report Designer

Maconomy Reporting for Report Developers 54

"Customer Group" :20mm CustomerGroup ;

"Sales Rep." :20mm SalesRep

Note that the lines are separated by a semicolon.

The text in parenthesis after the keyword Target is the dialog’s title. If you do not specify a title, the

window title is “Enter Values”.

The names of the variables are written in the lines of the Target specification. These contain the values

the user enters for the report. The variables are typically used in cursor declarations to limit the number of
records to retrieve.

If you specify logical variables in the target group specification, the corresponding item will be check box.

If the variable is an enumerated field (such as CurrencyTypeType etc.), the field will be a popup with the

options that exist for that enumerated type.

After writing the variable, you can supply a standard value in parenthesis. The field is initialized with this
value when the window is opened, and it is used for the report unless the user changes it.

Example
Target

"From Year" FromYear (2005) ;

"To Year" ToYear (2006)

You can also state that the user cannot be allowed to leave the field blank. You do this by writing the

keyword MANDATORY in parenthesis after the variable.

Hints
You now have some idea of what reports look like in Maconomy. There are probably a lot of unanswered
questions – you will find some answers in the reference section. This chapter rounds up the experience
you have gained from making your first reports, and it concludes this section with some helpful hints on
how to design viable reports.

Style
Reports are not static structures, never changed once they have seen the light of day. On the contrary, it
is only natural that reports are continually adjusted and extended to meet the requirements and wishes of
the user. It is therefore important to always write reports in a style which makes them easy to maintain.

You are recommended to supply indentation to illustrate the nesting of the levels. This is easy to do with
an editing program suitable for the purpose, for example, the MPW editor for the Macintosh.

Example
level 1 is OrderCursor

header

lines

trailer

level 2 is OrderLineCursor

header

lines

Maconomy Report Designer

Maconomy Reporting for Report Developers 55

trailer

If you do not follow a specific standard (not necessarily the one in this book), you will encounter the same
kind of problem as when you try to add numbers, where the digits are placed in the wrong columns.

Use comments as often as you like. Comments start with two dashes and extend to the end of the line on
which they begin. Comments are also useful when you experiment. You can remove and insert printouts

by removing and inserting “--”.

Use long and descriptive names for variables and cursors. The maximum permitted length of names is
255 characters, so there is no need to economize.

Make sure that the report structure is correct before starting any calculations. Insert printouts to print

interesting fields from the records in the report. This lets you monitor whether the cursor's WHERE parts are

behaving as they should.

Construct parameter dialogs to look like the ones used by Maconomy. Use the Geneva font (which is

standard, if nothing else is specified), and use the dash, “-”, to separate entry fields that appear on the

same line. Make sure that the most frequently used values are the ones the user selects merely by
clicking OK.

Report designer reference
This section describes the language used for report writing. The section is for reference only. The section
“User’s guide” above describes the procedure of making reports from Maconomy. The “Database
Description” section of the Maconomy Reference lists the necessary database field names.

Audience
To make the most of this section, you must be familiar with the following concepts: cursor, relations and
levels. Consult the section “User’s guide” above for understanding basic concepts.

Notation
In natural languages (e.g. English or Danish) there is a distinction between correct constructions (the
syntax) and valid constructions (semantics). This handbook also distinguishes between syntax and
semantics for the various constructions described.

The syntax is described in a notation, called Backus Naur Form (abbreviated to BNF), which is a precise
notation used for describing the syntax. The following symbols are used:

Symbol Description

[…] Text between the two brackets can occur once or not at all.

{…} Text between the two curly brackets can occur zero times or any number of
times.

<Name> < and > surround a symbol which you define (if it is written to the left of ::=)
or a symbol which is defined elsewhere.

… | … This symbol appears between two alternatives. You either get the value to
the left or to the right of the | character.

Maconomy Report Designer

Maconomy Reporting for Report Developers 56

Symbol Description

::= This symbol means “is defined as”. The element to the left of the symbol is
equal to the expression to the right side of the symbol.

By placing two symbols together, the two symbols (or what they define) appear in the order the symbols
are written.

Examples
<TargetLines> ::=

<TargetLine> { ; <TargetLine> }

Read as: “TargetLines is defined as a target line, followed by 0 or more occurrences of: semicolon,

followed by a target line”, or, in other words, target lines is a row of target lines, separated by a
semicolon. Target lines are defined elsewhere.

<digit> ::=

0|1|2|3|4|5|6|7|8|9

Read as: A digit is defined as the character 0, or the character 1, or 2, or 3, or ... the character 9.

Lexical items
Lexical items are the basic building blocks of report definitions. This chapter describes what symbols look
like.

Characters
Letter> ::=

A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|

P|Q|R|S|T|U|V|W|X|Y|Z|

a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|

p|q|r|s|t|u|v|w|x|y|z|

<Digit> ::=

0|1|2|3|4|5|6|7|8|9

<Underline> ::= _

<Other characters> ::=

Any character you can enter on the computer

<Characters> ::=

<Letter>| <digit> | <Underline> |

<Other characters>

<Character sequence> ::= <Character> {<Character>}

A letter is alphabetical. A digit is a character from 0 to 9. A character sequence is a sequence of at least

one character.

The report designer never distinguishes between lower case and upper case.

Maconomy Report Designer

Maconomy Reporting for Report Developers 57

Comments
A comment is your own explanatory text. The report designer ignores your comments.

Comments start with two dashes, “--”. All the characters following the dashes and up to the end of the line
are ignored by the report designer. If your comments spread over more than one line you must start every
comment line with two dashes, “--”.

<Comment> ::= -- <Character sequence>

Example
-- Report: BalanceTop10

-- 11 Dec. 1999

-- Version 1.1

Special symbols and reserved words
Special symbols and reserved words are symbols with fixed meanings. When you attempt to use them in
a way which does not harmonize with their fixed meaning, the report designer issues an error message.

The following individual characters are special symbols:

+ | - | * | / | \ | _ | < | >

. | : | (|) | " | ' | @ | ,

The following character pairs are special symbols:

-- | <= | >= | <> | :=

Below is the list of reserved words:

AMOUNT | ALL | AND

ARRAY | ASC | BOLD

BOOLEAN | BY | CENTER

CONDENSED | COUNT | CURSOR

DATE | DECLARATIONS | DESC

DIV | DO | ELSE

ELSIF | END | EXTENDED

FOR | FROM | GROUP

HAVING | HEADER | INTEGER

IS | ITALIC | JUSTIFICATION

LEFT | LEVEL | LINES

MANDATORY | MAX | MIN

MM | MOD | NEWLINE

NEWPAGE | NOT | OF

OR | ORDER | OUTLINE

PLAIN | PREFERENCES | PRINT

REAL | REPORTLANGUAGE | RIGHT

SELECT | SHADOW | STRING

Maconomy Report Designer

Maconomy Reporting for Report Developers 58

STYLE | SUM | TARGET

TIME | TRAILER | UNDERLINE

VAR | VARDECL | WHERE

WHILE

Literals
A literal is used to specify the value of a given type. For example, 12 is an integer (whole number) literal,

and 12.22.2006 is a date literal.

Literals, syntax
<Literal> ::=

<IntegerLiteral> | <RealLiteral> |

<TimeLiteral> | <DateLiteral> |

<StringLiteral> | <Identifier>

<TimeLiteral> ::= "<DigitSequence>:<DigitSequence>:<DigitSequence>"

<DateLiteral> ::= "<DigitSequence>.<DigitSequence>.<DigitSequence>"

<DigitSequence> ::= <Digit> { <Digit> | <ThousandsSeparator>}

<ThousandsSeparator> ::= ,

<Integer literal> ::= <DigitSequence>

<RealLiteral> ::=

<IntegerLiteral>.<DigitSequence> [E <IntegerLiteral>] |

<IntegerLiteral> [E <IntegerLiteral>]

<StringLiteral> ::= "<CharacterSequence>"

<Identifier> ::= <CharacterSequence>

A literal can be an integer literal, a real number literal, a time literal, a date literal, a string literal or an
identifier. Real number literals contain an integer literal and a decimal part, and an optional exponent part.

String literals are defined by quotation marks ("). If the string itself contains quotation marks, you must
write them twice. That is, a string containing only quotation marks is written as: """".

Numerical literals (i.e. integer literals and real number literals) can contain one thousand separators.
These punctuation marks (comma) can only occur three digits behind the last comma, decimal sign

(period) or at the end of the number. That is, 1,250 is a valid integer literal with the value 1250, whereas

12,50 is not valid. The decimal figure twelve and a half is written as 12.5.

Literals, semantics
There is no syntactical difference between string literals, date literals and time literals; they are all
character sequences surrounded by quotation marks. The report designer determines the type of the
literal by looking at the contents of the string.

When a string has the form tt:mm:ss, and tt in the range between 0 and 23 and mm and ss are in the

range 0 to 59, the string is regarded as a time value. If the string has the form mm.dd.yy or mm.dd.yyyy

and dd lies in the range 1 to 31, mm lies in the range 1 to 12 and yy lies in the range 0 to 99 (or yyyy lies in

the range 1941 to 2040), and if the date is correct with regard to leap years etc., the string is regarded as
a date literal.

Maconomy Report Designer

Maconomy Reporting for Report Developers 59

Logical truth values (true and false) are regarded as predefined constants.

String literals cannot be longer than 255 characters, and they cannot contain a page break.

Identifiers can have any length, but are only distinguished by the first 255 characters (letters, digits and
underscores). They cannot consist of digits alone.

Separators
Blanks, tabs, new line, and comments are regarded as separators. You can have any number of
separators between two consecutive symbols.

Types
A value has just one type. The type determines which operations are permitted for the specific value. This
subsection introduces types and the legal operations of their values.

An expression has just one type. The possible types are: INTEGER, REAL, AMOUNT, STRING, DATE,
TIME, LOGIC and ENUMERATION. INTEGER, REAL and

AMOUNT types are called “numerical types”.

A literal’s type is specified by the literal. So, an integer literal is an INTEGER, a date literal is a DATE, etc.

Integer type
Integers are numbers without a decimal part.

The following arithmetic operators yield integer results when applied to an integer argument:

Operator Description

* Multiplication

+ Addition

- Subtraction

DIV Integer division. For example, i1 DIV i2. Division by 0 is not allowed.

MOD Modulus. Returns the remainder of i1 DIV i2. Division by 0 is not allowed. That is:
(i1 DIV i2) * i2 + (i1 MOD i2) = i1

When evaluating expressions, both DIV and MOD take precedence over the multiplica- tion operator.
That is:

i1 DIV i2 + i3 = (i1 DIV i2) + i3

i1 + i2 DIV i3 = i1 + (i2 DIV i3)

i1 MOD i2 + i3 = (i1 MOD i2) + i3

i1 + i2 MOD i3 = i1 + (i2 MOD i3)

They associate left to right:

i1 DIV i2 MOD i3 = (i1 DIV i2) MOD i3

i1 MOD i2 DIV i3 = (i1 MOD i2) DIV i3

Maconomy Report Designer

Maconomy Reporting for Report Developers 60

Note further:

(-i1) DIV i2 = i1 DIV (-i2) = - (i1 DIV i2)

and:

(-i1) MOD i2 = - (i1 MOD i2)

by convention.

i1 MOD (-i2) = i1 MOD i2

(however i2 < 0 is not very meaningful).

Examples
5 DIV 3 = 1

2 DIV 3 = 0

5 MOD 3 = 2

The following operators (called relational operators) yield a logical value when they are applied to
numerical values:

Operator Description

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Different from

Integer values have to be within the range -231 to 231-1, i.e. between -2,147,483,648 and 2,147,483,647,
inclusive.

The following attributes apply to integers:

Attribute Result

'First Returns -231 i.e. -2,147,483,648.

'Last Returns 231-1 i.e. 2,147,483,647.

Real type
If one or both of the constituent expressions are REAL, the following operators give real results:

Operator Description

* Multiplication

Maconomy Report Designer

Maconomy Reporting for Report Developers 61

Operator Description

/ Division. The result is real, even if both arguments are integers.

+ Addition

- Subtraction

The following relational operators return logical values when applied to numerical operands:

Operator Description

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Different from

Real values lie in the range -(2-2-23)*2127 to (2-2-23)*2127, i.e. approx. -3.402823872*1038 to
3.402823872*1038. The values are stored in IEEE 64 bit format.

The following attributes apply to real numbers:

Attribute Result

'First Returns -(2-2-23)*2127, i.e. approx. -3.402823872*1038

'Last Returns (2-2-23)*2127, i.e. approx. 3.402823872*1038

Amount type
Amounts always have exactly two decimals.

If one or both operands to the following operators are amounts, the result is an amount.

Operator Description

* Multiplication

/ Division

+ Addition

- Subtraction

The following relational operators return logical values when applied to numerical operands:

Maconomy Report Designer

Maconomy Reporting for Report Developers 62

Operator Description

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Different from

Amount values must lie in the range -2-63-1 to -2-63-1, i.e. -92,233,720,368,547,758.07 to
92,233,720,368,547,758.07, inclusive.

The following attributes apply to amounts:

Attribute Result

'First Returns -2-63-1, i.e. -92,233,720,368,547,758.07

'Last Returns-2-63, i.e. 92,233,720,368,547,758.07

String type
Strings are character sequences. The characters in a string are not interpreted by the report designer. A
string can be empty, that is, have no characters. A string can only be as long as 255 characters.

The following relational operators return logical results when applied to string values:

Operator Description

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Different from

Relational operators use a normal, lexicographic sorting order. The empty string, i.e. the one without any
characters, is regarded as smaller than all other strings.

The following attributes apply to strings:

Maconomy Report Designer

Maconomy Reporting for Report Developers 63

Attribute Result

'First Returns the empty string.

'Last Returns a string which is bigger than all other strings that can occur in
Maconomy.

Date type
The smallest difference between two date values is one day.

The following relational operators return logical values when applied to dates:

Operator Description

< Before

> After

>= On the same date or after

<= Before or on the same date

= On the same date

<> Not on the same date

The following attributes apply to dates:

Attribute Result

'First Returns January 1, 1904

'Last Returns January 1, 2040

Time type
Time values denote hour, minute and seconds. The smallest difference between two time values is one
second. Time values can express times between 00:00:00 (midnight) and 23:59:59 (one second before
midnight).

The following relational operators yield logical results when applied to time values:

Operator Description

< Before

> After

>= On the same time or after

Maconomy Report Designer

Maconomy Reporting for Report Developers 64

Operator Description

<= Before or on the same time

= On the same time

<> Not on the same time

The following attributes apply to time:

Attribute Result

'First Returns 00:00:00 (midnight)

'Last Returns 23:59:59

Boolean type
Logical values can be true or false.

The following relational operators yield logical results when applied to logical values:

Operator Description

AND Logical conjunction

OR Logical disjunctive

NOT Logical negation

= Equality

<> Inequality

Truth values for logical operators are given below:

FALSE AND FALSE = FALSE

FALSE AND TRUE = FALSE

TRUE AND FALSE = FALSE

TRUE AND TRUE = TRUE

Both constituent values must be true to give a true result of an AND expression. In other words, if one or
both constituent values are false, the result is false.

FALSE OR FALSE = FALSE

FALSE OR TRUE = TRUE

TRUE OR FALSE = TRUE

TRUE OR TRUE = TRUE

Both constituent values must be false to give a false result of an OR expression. In other words, if one or
both values are true, the result is true.

NOT FALSE = TRUE

Maconomy Report Designer

Maconomy Reporting for Report Developers 65

NOT TRUE = FALSE

If an expression is true, its negation (NOT) is false, and vice versa. The following attributes apply to
logical types:

Attribute Result

'First Returns false

'Last Returns true

Enumeration types
Maconomy has several different enumeration types. These are represented to the user as popup fields.
There is one enumeration type for every popup field. Popup fields are, for the purposes of this handbook,
called enumeration literals.

There is an ordering of popup options. The first enumeration literal in a given enumeration type has an
ordinal value of 0 and the following are numbered in consecutive order.

Some enumerations have fixed values, whereas others, called dynamic enumerations, have values which
are maintained by the Maconomy user (in the window Popup Fields in the Set-Up module). Please note
that because the Maconomy user can rename, adjust and delete these dynamic enumeration literals
freely, it is not safe to refer to them directly in your report.

Example

The CurrencyType type has the enumeration literals US$, GBP, DEM, and CAD. US$ precedes all the others,

and has an ordinal value of 0. CAD comes last and has an ordinal value of 3.

The following relational operators yield logical results when applied to enumerations:

Maconomy Report Designer

Maconomy Reporting for Report Developers 66

Operator Description

< Before

> After

>= Same place or after

<= Same place or before

= Same place

<> Not the same place

The following attributes apply to enumerations:

Attribute Result

'First Returns the enumeration value with an ordinal value of 0

'Last Returns the enumeration value with the last ordinal value

‘Pos Returns the ordinal value of the enumeration value

‘Val Returns the enumeration value with the given ordinal value

Example

CurrencyType is the enumeration which lists currency codes.

Currency Type Value

CurrencyType 'pos(GBP) Has the value 1

CurrencyType 'First Has the value US$

CurrencyType 'Last Has the value CAD

CurrencyType 'val(0) Has the value US$

The values of the attributes are calculated when the report is generated, not at the time of its translation.

Array type
An array type variable is an indexed set of simple variables. An array variable must be declared in the
variable declaration part of the report.

The syntax for specifying the type of an array variable declaration is:

<array specification> ::= ARRAY [<lower bound> .. <upper bound>] OF <simple type>

<lower bound> ::= <integer literal>

<upper bound> ::= <integer literal>

Maconomy Report Designer

Maconomy Reporting for Report Developers 67

<simple type> ::= INTEGER | AMOUNT | REAL | STRING |

BOOLEAN | DATE | TIME | <enumeration type name>

Note the following:

 The indexing type must be INTEGER, and lower bound must be less than or equal to upper
bound.

 The element type must be a simple type, i.e. arrays of arrays are not supported.

 Arrays are one-dimensional. This means that multi-dimensional arrays, declared as e.g. ARRAY [
1 .. 8, 0 .. 100] OF STRING, are not supported.

An array element may be referenced in an expression by an indexed factor:

<factor> ::= ... | <array variable> [<integer expression>]

Similarly, an array element may be assigned a value in an assignment statement:

<assignment variable> ::= <simple variable |

<array variable> [<integer expression>]

Note that assignment to an entire array is not supported.

Examples
var

a : ARRAY [10 .. 99] OF REAL

.

.

.

level 1 header i := 5

a [1] := 10.000

a [i + 1] := a [1] + 4

Variables
Variables are data items whose values are maintained while the report is being generated. Variables are
mainly assigned values using assignment statements.

Variables, syntax
<Variable> ::=

<Identifier>

The name of the variable is chosen by the report writer. The name should be chosen carefully to match
the function the variable has in the report. The maximum permissible length of a variable is 255
characters.

Variables, semantics
A variable is an item, which has a certain given value when the report is being generated. This value is
called the variable’s type.

Maconomy Report Designer

Maconomy Reporting for Report Developers 68

All variables are global, which means that the variable can be used throughout the report, and that it
exists throughout the time the report is being generated. Variables are defined when they are used for the
first time. User-defined variables obtain their values in assignment statements, or as output parameters in
finance functions.

The variable’s type can be assigned in two ways: It can be declared in the beginning of the report, or it
can be deduced from the context in which the variable is used.

Declared variable types

The type of the variables used in the report can be declared in the beginning of the report, before
selection criteria specifications and cursor declarations. The syntax of the variable declaration is as
follows:

<variable declaration part> ::= <empty> | VAR { <variable

declaration> }

<variable declaration> ::= <identifier> : <type> [:= <literal>]

<type> ::= INTEGER | AMOUNT | REAL | STRING |

BOOLEAN | DATE | TIME |

<enumeration type name> | <array specification>

The variable may be assigned an initial value by appending := <literal> to the <type>. The literal

must follow the syntax rules for literals of the specified type. Enumeration type variables cannot be
assigned an initial value.

When a variable has been declared, it cannot later be deduced. This means that if a declared variable
appears out of context according to its declared type, no other type will be deduced. Instead, an error
message will appear.

Example
VAR

a1 : AMOUNT := 1.00

a2 : AMOUNT

r1 : REAL := 1.000 r2 : REAL

.

.

.

LEVEL 1 HEADER

a2 := r1

r2 := a1

The four variables will preserve their declared types, regardless of the assignments.

As the default – and to ensure backward compatibility – variable declarations are optional. However,
variable declarations may be set to mandatory by preceding the variable declaration part by a preference
setting:

PREFERENCES VARDECL MANDATORY

Deduced from context

When, for example, a variable is used in a place where the only meaningful value is a date, the variable is
tied to a date value. The report designer issues an error message if you specify contradictory demands
on the variable’s type. If the report designer cannot deduce the variable type (from its context), it alerts

Maconomy Report Designer

Maconomy Reporting for Report Developers 69

you of the problem and assumes that the variable has the string value. If there is a risk of this happening,
you are recommended to type declare the variable at the beginning of the report.

Example
-- Here the BalanceSum variable becomes an

-- amount type, because the right side of the

-- assignment is an amount expression.

BalanceSum := 0.00

This is to illustrate the context-derived variable typing.

Predefined variables
Besides the variables inserted by the report writer, there are variables defined by Maconomy, the
predefined variables. These are given a value when the report is started.

You can use the values of the following predefined variables in the same way as you use user-defined
variables. But you cannot assign values to the predefined variables; their values are maintained
exclusively by Maconomy.

Predefined Variable Type Contains

TodaysDate /

DagsDato

STRING The date a report is started

– as a string, not as date.

TheTime / Tidspunkt STRING The time of day a report is
started – as a string, not as a
date.

NameOfUser /

Brugernavn

STRING The name of the computer (the
name shown in the Access
Control window when you start
Maconomy).

For more information about language dependence in the report, please see the subsection “Report
structure”.

Variables for output of tab separated files
The format of tab separated output files can be controlled by a number of global variables. These
variables are predefined, but are different from the other predefined variables in that their value can be
changed. The following variables exist:

Variable and Type Application

TabFileFieldDelimiter

: STRING

 -- Specifies the field separator for the

output file. The value must be one character.

Special characters are specified in the

following way:

\t Tab Character

\\ \

Maconomy Report Designer

Maconomy Reporting for Report Developers 70

Variable and Type Application

\n New Line

\xYY The ASCII character YY,

where YY is a hexadecimal value.

TabFileDOSFormat : BOOLEAN Only relevant for Windows. If true, output will be in the DOS

character set, instead of the Windows character set (the
character sets differ e.g. for the special language characters of
Danish).

DontGeneratePrint :

BOOLEAN

If true, no print will be generated.

DontGenerateTabFile :

BOOLEAN

If true, no Tab separated file will be generated.

To have effect, these variables must either be assigned an initial value in the variable declarations part or
appear in the target specification of the report, and they should not be assigned later.

Standard values
If a variable is used before it has been assigned a value (e.g. in an assignment statement), the report
designer uses a standard value, determined by the variable's type.

The standard values are:

Type Standard Value

INTEGER 0

REAL 0.0

AMOUNT 0.00

LOGICAL false

TIME Now

DATE Today

Now and Today refer to the time and date the report is started.

Statements
There are four kinds of statements in the report designer: The assignment statement, the NEWPAGE

statement, structured statements, and print statements.

Statements, syntax
<Statement> ::=

<Assignment Statement> | <NewPage Statement> |

Maconomy Report Designer

Maconomy Reporting for Report Developers 71

<Structured Statement> | <Print Statement>

<AssignmentStatement> ::=

<Variable> := <Expression>

<NewPageStatement> ::= NEWPAGE

<Structured Statement> ::=

<While Statement> | <For Statement> | <If Statement>

An assignment statement consists of a variable followed by the assignment operator (:=) followed by an

expression.

A NEWPAGE statement consists of the reserved word NEWPAGE.

The syntax of the structured statements (WHILE, FOR, and IF) and print statements is further defined

below.

Statements, semantics
An assignment statement means that the value to the right of the := is calculated and assigned to the
variable on the left. You cannot assign values to predefined variables.

A NEWPAGE statement causes a page break in the report.

Structured statements enable loops and conditional execution. Three statements exist: WHILE, FOR and
IF.

Structured statements
While Statements

The syntax for the WHILE statement is:

<while statement> ::= WHILE <boolean expression> DO { <statement> }

 END WHILE

As long as the <boolean expression> evaluates to true, the statements in the list {

<statement> } are executed.

For Statements

The syntax for the FOR statement is:

<for statement> ::= FOR <assignment statement 1> <boolean expression>

<assignment statement 2> DO

{ <statement> } END FOR

This is equivalent to:

<assignment statement 1>

WHILE <boolean expression> DO

{ <statement> }

<assignment statement 2>

END WHILE

The elements in the head of a FOR statement may be separated by ;:

Maconomy Report Designer

Maconomy Reporting for Report Developers 72

<for statement> ::= FOR <assignment statement 1> ; <boolean expression> ;

<assignment statement 2> DO

{ <statement> } END FOR

If Statements

The syntax for the IF statement is:

<if statement> := IF <boolean expression> THEN { <statement> }

{ ELSIF <boolean expression>

THEN { <statement> } }

[ELSE { <statement> }

END IF

The <boolean expressions> are evaluated in sequence. For the first expression that evaluates to true,

the corresponding statement list is executed; none of the other statement lists are executed. If all

expressions evaluate to false, the statement list after ELSE is executed (if any).

Example

WHILE i < 50 AND a [i] < 37 DO

b := b + 2 * a [i]

i := i + 1

END WHILE

FOR i := 3 i <= 30 i := i + 1 DO

SUM := SUM + a [i]

END FOR

IF i > 0 THEN

a := b / i

ELSIF i < 0 THEN

a := - b / i

ELSE

a := b

END IF

Structured statements are primarily intended for calculations, not for output generation. If you use
structured statements for generating output anyway, note the following:

WHILE and FOR statements should not be used for repeated output of elements on the same line as e.g.

in:

FOR i := 1; i <= 10; i := i + 1 DO a [i] :20 END FOR

This will not work as intended, while the following will work:

FOR i := 1; i <= 10; i := i + 1 DO

i :20 a [i] :80 newline

END FOR

After execution of a structured statement that generates output, the output line posi- tion is undefined,
e.g.

IF a < b THEN a :50 ELSE b :50 END IF

c :120

Here c will not be printed properly. Instead execute a ’newline’ before printing c (which will then be printed

at the beginning of a new line).

Maconomy Report Designer

Maconomy Reporting for Report Developers 73

Print statements
Print statements are specifications of the printed report. You choose which values are to be printed and
specify the format of the printed value (center alignment, bold text etc.).

The report definition language of the report has various print statements, which are used to define the
appearance of the report.

Print Statements, syntax

<PrintStatement> ::=

<PrintValue> <Attributes> |

NEWLINE |

FONT <CharacterSequence> |

SIZE <IntegerLiteral> |

JUSTIFICATION <Alignment>

<PrintValue> ::=

<Identifier> |

<Literal> |

<Identifier>.<Identifier>

<Attributes> ::=

{ : <Attribute> }

<Attribute> ::=

<WidthSpecification> |

<FontSpecification> |

<SizeSpecification> |

<StyleSpecification> |

<AlignmentSpecification>

<WidthSpecification> ::=

[WIDTH =] <IntegerLiteral> [mm]

<FontSpecification> ::=

FONT = <CharacterSequence>

<SizeSpecification> ::=

SIZE = <IntegerLiteral>

<StyleSpecification> ::=

STYLE = <StyleListe>

<StyleList> ::=

<Style> { , <Style> }

<Style> ::=

PLAIN | BOLD | ITALIC | UNDERLINE |

OUTLINE | SHADOW | CONDENSED | EXTENDED

<AlignmentSpecification> ::=

JUSTIFICATION = <Alignment>

<Alignment> ::= LEFT | RIGHT | CENTER

From a syntax perspective, the print statements are seen as literals, variables or cursor fields, sometimes
followed by a list of attributes, which determine the appearance of the printout. All attribute specifications
are preceded by a colon. You can assign several attributes to every print value. The style lists consist of

named styles, separated by a comma. You can leave out WIDTH = in width specifications.

Print statements, semantics
A print statement has the value which is going to be printed. The list of attributes has specifications of
what the printout is going to look like.

Maconomy Report Designer

Maconomy Reporting for Report Developers 74

For every print statement, you can specify the width of the field in which the value is going to be printed

(WIDTH), the alignment within the field (JUSTIFICATION), which font to use (FONT), which character size

(SIZE) and which style to apply (STYLE).

NEWLINE is used to print an empty line. Note, the report designer inserts a new line automatically after the

HEADER, LINES, and TRAILER of the level.

A global specification of font, size and alignment is applied again and again until you enter a new global
specification. Attributes, which are assigned to individual print items, always have higher priority than the
global values.

The character sequence after FONT must be the name of one of the fonts on the computer on which the

report is generated. On a Macintosh, you can usually use Geneva, Courier, Helvetica, Palatino, and

Chicago, all of which are standard fonts. If there is no font specification in the report definition, the

program uses Geneva by default. On a Windows computer, you can usually use Arial, Times New

Roman, Courier New. Default is Arial.

Font size is measured in points. If nothing else is specified, the program uses font size 9.

Field width is measured either in mm (1/1000 meter) or points. There are 72 points to an English inch.
The highest resolution is therefore 25.4 / 72, corresponding to 0.35 mm/point.

If you have not specified a width, the program uses 100 points, which is approx. 35 mm. If you enter a
literal without explicit width specification, the program uses a value which is precisely large enough to
contain the value with its attributes.

If nothing else is stated, the program applies left alignment.

The styles you can use are: PLAIN (none of the others), BOLD, ITALIC, UNDERLINE, OUTLINE, SHADOW,

CONDENSED, and EXTENDED. Some of these styles only apply to the Macintosh. You combine styles by

separating them by commas.

Example
"The rain in Spain stays mainly in the plains":Style=bold :Size=14

is printed as

The rain in Spain stays mainly in the plains

The three print items

"> " "This is a heading":140 " <"

are printed as

> This is a heading <

"> " "This is a heading" :

Justification = Center

:140 " <"

is printed as

> This is a heading <

"> " "This is a heading" :

Justification = Right

:140 " <"

is printed as

Maconomy Report Designer

Maconomy Reporting for Report Developers 75

> This is a heading <

"Italic and Underline" :Style=underline,italic

is printed as

Italic and Underline

"Size 6 " : Size =6 newline

"Size 9 " : Size =9 newline

"Size 12 ": Size =12 newline

"Size 15 ": Size =15 newline

"Size 18 ": Size =18 newline

is printed as

Size 6

Size 9

Size 12

Size 15

Size 18

Expressions
An expression is a formula which expresses a value when the report is generated.

Expressions, syntax
<Expression> ::=

<logical term> { OR <logical term> }

<logical term> ::=

<logical factor> { AND <logical factor> }

<logical factor> ::=

[NOT] <Simple logical expression>

<Simple logical expression> ::=

<Simple expression>

[<Relational operator> <Simple expression>]

<Relational operator>::=

= | ¦ | < | | > |

<Simple expression> ::=

[<Additive operator>] <Term>

{ <Additive operator> <Term> }

<Additive operator>::=

+ | -

<Term> ::=

<Factor> { <Multiplication operator> <Factor> }

<Multiplication operator>::=

* | /

<Factor> ::=

<Literal> |

<Function call> |

<Attribute Spec> |

(<Expression>)

<Function call>::=

@ <Identifier> (<Expression list>)

Maconomy Report Designer

Maconomy Reporting for Report Developers 76

<Attribute Spec> ::=

<Identifier> ' <Identifier>

<Expression list> ::=

<Expression > { , <Expression > } |

The usual rules for operator priority apply: Hence, 1 + 2 * 3 is 1 + (2*3). Brackets are used to change the
order in which the expressions are evaluated.

Function calls consist of the symbol @, followed by the name of the function, followed by a parameter list
in parentheses.

Expressions, semantics
The same limitations apply to expressions as to other types. Arithmetic operations can be applied to any
numerical type, and numerical types can be mixed within arithmetic expressions.

If an error occurs during the evaluation of an expression value (e.g. by dividing by 0), the result is an

undefined value. Such a value is written as NaN (abbreviation of Not A Number).

Example
(1 + tax/100) * Price

Calculates the price with tax.

CustomerNumber  From and CustomerNumber To

This expression is true if the CustomerNumber is within the range between the values To and From,

inclusive.

@AddDays (UndefinedDate, 1)

Calculates the date tomorrow. Note the use of the standard value for an undefined variable; this variable
is not assigned a value anywhere in the report and consequently contains its default value, namely today.

@IF (SoldTotal <> 0,

SoldUS * 100 / SoldTotal,

0.0)

Calculates how large a percentage of your total sales were made in the United States. Note how you
have taken the precaution against dividing by 0 in the event sales are down to 0.

@concat ("Balance for other ",

@image(RecordsToSkip),

" customers")

This is a string containing “Balance for other 123 customers”: RecordsToSkip has the value 123. Here,

one of the parameters to a predefined function (@concat) is itself a predefined function (@image).

Preference specification
At the top of a report you can specify preference settings which apply to the whole report.

Preferences, syntax
<preferences part> ::=

<Empty> | "PREFERENCES" { <Preference specification> }

<Preference specification> ::=

{ "REPORTLANGUAGE DANISH" | "VARDECL MANDATORY" }

Maconomy Report Designer

Maconomy Reporting for Report Developers 77

Preferences, semantics
Preferences are specified at the start of the report. See the subsection “19: Report structure” on page 56
for more information.

You can specify two kinds of variable settings: Language, and whether variables are to be type declared
in the beginning of the report. For more information, please see the subsections 19.3, “Language” and
12.2, “Variables, semantics”.

Cursor declarations
A cursor is a pointer to a specific relation. A relation is a table of data in the database. Maconomy is
designed from relations. The relations are described in the document “Database Description”.

Cursors, syntax
<Cursor declaration> ::=

CURSOR <CursorName> IS

<Query expression> [<Order-by-part>]

<CursorName> ::= <Identifier>

<Query expression> ::= <Query specification>

<Query specification> ::=

SELECT <Selection> <Table expression>

<Selection> ::=

ALL | * | <SelectionsList>

<SelectionsList> ::=

<selection> {, <selection> }

<selection> ::= <FieldName>

<FieldName> ::= <Identifier>

<Table expression> ::=

<From clause>

[<Where clause>]

[<Group-by-clause>]

[<Having clause>]

<From clause> ::= FROM <RelationName>

<RelationName> ::= <Identifier>

<Where clause> ::= WHERE <SearchCondition>

<Group-by-clause> ::=

GROUP BY <FieldNameList>

<FieldNameList> ::=

<FieldName> { , <FieldName> }

<Having clause> ::=

HAVING <SearchCondition>

<Order-by-clause> ::=

ORDER BY <OrderList>

<OrderList> ::=

<Order> { , <Order> }

<Order> ::=

<FieldName> [ASC | DESC]

<SearchCondition> ::=

<SQL Logical term> |

<SearchCondition> OR <SQL Logical term>

<SQL Logical term> ::=

<SQL Logical factor> |

<SQL Logical term> AND <SQL Logical factor>

<SQL Logical factor> ::=

[NOT] <SQL Logical primer>

<SQL Logical primer> ::=

<SQL Predicate> | (<SearchCondition>)

Maconomy Report Designer

Maconomy Reporting for Report Developers 78

<SQL Predicate> ::=

<SQL Comparison>

<SQL Comparison> ::=

<SQL Scaler>

[<RelationOperator> <SQL Scaler>]

<SQL Scaler> ::=

<SQL Term> |

<SQL Scaler> <Additive Operator> <SQL Term>

<SQL Term> ::=

<SQL Factor> |

<SQL Term>

<Multiplication Operator> <SQL Factor>

<SQL Factor> ::=

<Addition Operator> <SQL Primer>

<SQL Primer> ::=

<SQL Atom> |

<SQL FunctionReference> |

(<SQL Scaler expression>) |

<CursorName> . <FieldName>

<SQL Atom> ::=

<Variable> |

<Attribute> |

<Literal>

<SQL FunctionReference>::=

COUNT (*) AS <Identifier>| MIN

(<FieldName>) AS <Identifier>| MAX

(<FieldName>) AS <Identifier>| SUM

(<FieldName>) AS <Identifier>| AVG

(<FieldName>) AS <Identifier>

<SQL AccessControlSpecification> ::=

DIRECTACCESSCONTROL |

INDIRECTACCESSCONTROL (<FieldName> , <RelationName>)

ALL is synonymous with the symbol * in field selections.

Cursors, semantics
The search direction (ASC or DESC) is ignored. All sorting is ASC (abbreviation of ascending), i.e. smaller

field values go before larger field values. HAVING and GROUP BY clauses are ignored.

The cursor name (after CURSOR) must be unique for the cursor. Most importantly, a cursor cannot have the

same name as a relation.

All cursors are ‘read only’, which means that you cannot update or add records in the database.

The relation name in the FROM part must name a relation in the database.

A selection is a list of fields in the relation given in the FROM part. Individual field names can only occur

once in this list. If you specify ALL (or *), you select all the fields in the relation. In this case, the cursor's

fields are given the same names as the relation's fields.

SQL search expressions look like any other expressions. But there are restrictions: It is not permitted to
state references to predefined functions. The semantics of SQL search expressions are the same as for
ordinary logical expressions.

The WHERE clause limits the number of records traversed in a relation. The report only retrieves the

records which meet the conditions set in the WHERE clause. If you do not specify a WHERE clause, you

retrieve all the records in the relation, i.e. the expression is true.

There are certain limitations to which cursor fields you can refer to in the WHERE and

Maconomy Report Designer

Maconomy Reporting for Report Developers 79

HAVING clauses. These are described in the chapter on scopes and visibility.

All the fields in the GROUP BY part must be included in the selection. The fields can only appear once in

the GROUP BY part.

The ORDER BY part specifies the sorting order of the returned records. If you do not give an ORDER BY

part, the sorting order is arbitrary, and can vary from report to report. All the fields in the ORDER BY must

exist as fields in the relation stated in the FROM part, but they do not need to appear in the selection.
Write the most important sorting field at the top of the list.

It is possible to specify function references in your selections. SQL defines the following functions: SUM,

COUNT, AVG, MIN, and MAX. The identifier after AS is the name the function value is read from. These

identifiers are called the function aliases.

Every one of these identifiers can only appear once.

COUNT (*) counts the number of records. SUM (field name) calculates the sum of the values for every field

name. AVG (field name) calculates the average of the field values in a given field. MIN (field name)

calculates the smallest value and MAX (field name) calculates the largest value. The report only takes

into consideration the records specified in the WHERE part.

A cursor with a selection containing function references always returns just one record – the result of the
calculation. This returned record does not, in other words, exist in the database, but is the result of the
calculation of the selected records in the database. The calculated values are identified by the names

given after AS. The types of these “fields” (which are not relation fields) depends on their function and on

the types of the argument fields. COUNT returns an integer value, AVG returns a real number value. SUM,

MIN, and MAX return a value of the same type as the argument.

For Maconomy systems on which the add-on “Extend Access Control” has been installed, extended

access control can be activated in reports by specifying the constructs DIRECTACCESSCONTROL and

INDIRECTACCESSCONTROL, which are inserted in the WHERE part of a cursor declaration.

DIRECTACCESSCONTROL means that only entries in the relation in question to which the current user has

access are returned, whereas INDIRECTACCESSCONTROL (<FieldName> , <RelationName>) means that

only entries in the relation in question are returned if the field <FieldName> refers to entries in the relation

<RelationName> to which the current user has access.

Examples
Cursor CustomerCursor is

select all from Customer

Retrieves the records in the Customer relation, in unspecified order.

Cursor CustomerCursor is

select all from Customer

order by CustomerNumber

Retrieves the records in the Customer relation, sorted in ascending order by customer number.

cursor CountCursor is

select count(*) as theCount,

sum(DebitBalanceBase) as theSum

from Customer

where

(CustomerNumber >= FromCustomerVar and

CustomerNumber <= ToCustomerVar)

Maconomy Report Designer

Maconomy Reporting for Report Developers 80

Returns just one record stating how many records meet the condition that customer number is within the

range FromCustomerVar to ToCustomerVar. It also returns the sum of the DebitBalanceBase field for the

same records. The number of records is retrieved with CountCursor.theCount, and the sum with

CountCursor.theSum.

Cursor JobCursor is

select all from JobHeader where DirectAccessControl

Returns the entries in the JobHeader relation to which the current user has access.

Cursor RequisitionCursor is

select all from InternalRequisitionHeader

where

IndirectAccessControl (JobNumber, JobHeader)

Returns the entries in the InternalRequisitionHeader relation where the field JobNumber refers to an

entry in the JobHeader relation to which the current user has access.

Target group specification
The target group (or target specification) is used to describe the Selection Criteria parameter dialog which
you see when the report is generated. The parameter dialog is used to specify which data to include in
the report.

The target group dialog is specified by using an (optional) target specification.

Target group, syntax

<Target Specification> ::=

TARGET [(<StringLiteral>)]

<TargetGroupLine> { ; <TargetGroupLine> }

<TargetGroupLine> ::=

<PromptString> [<Attributes>]

{ <TargetGroupElement> }

<TargetGroupElement> ::=

{ <VariableReference> | <String> }

<Variablereference>::=

<VarRef> [<Attributes>]

[(<Descriptor> [, <Descriptor>])]

<Descriptor> ::= MANDATORY | <Literal>

<String> ::= <Stringliteral> [<Attributes>]

<PromptString> ::= <StringLiteral>

<VarRef> ::= <Identifier>

Note that the target group lines are separated by, not terminated by, a semicolon. Every line must start
with a string literal, serving as a prompt string. Every string literal and variable reference can be assigned
an attribute list, which describes what the string or input looks like. Variables can furthermore be assigned

one or two descriptors in parenthesis. A descriptor is either the word MANDATORY or a literal.

Target group, semantics
The string literal specified between the parentheses after TARGET is the title of the parameter dialog. If

nothing is specified, the window title is “Enter Values”.

If no width attribute (:WIDTH=...) is specified on any of the prompt strings (i.e. the strings at the start of

the target group lines), the lengths of all the prompt strings are given the length of the longest prompt

Maconomy Report Designer

Maconomy Reporting for Report Developers 81

string, thus aligning the fields following the prompt strings. You can also use width attributes to determine
the width of these fields, which is where the user enters data specifications.

The target group dialog has data fields wherever the target group lines contain variables. If the variable is
logical, the program creates a check box. If the variable is an enumerated type, the selection is done in a
popup field.

You can specify one or two descriptors after a variable in a target specification line. A descriptor can
either be the word MANDATORY or a literal. MANDATORY means that you cannot close the target group dialog

before entering valid data. The literal is a standard value which is already inserted when the dialog opens.

You cannot give two standard values or two MANDATORY specifications on the same variable.

You are recommended to keep the appearance of the dialogs consistent with the design of the
Maconomy dialogs.

When the user clicks “OK” in the parameter dialog, the variables are given the values specified by the
user.

Example

TARGET ("Parameter Dialog")

"Integer (1)":100 iVar (1) ;

"Real (1.000)":100 rVar (1.000) ;

"Amount (1.00)":100 aVar (1.00) ;

"String":100 sVar (MANDATORY);

"Date (1.1.92)":100 dVar ("1.1.92") ;

"Time (12:30)":100 tVar ("12:30") ;

"Boolean (true)":100 bVar (true) ;

"Enumerated":100 eVar -- No default allowed

Yields the window below, which also demonstrates the different types in RGL:

Levels
Levels express the structure of the data included in the report. They are the basic building blocks with
which you design reports.

Maconomy Report Designer

Maconomy Reporting for Report Developers 82

Levels, syntax

<LevelSpecification> ::=

LEVEL <IntegerLiteral>

[IS <Identifier> [GROUP BY <FieldList>]]

[<Header Spec>]

[<Lines Spec>]

[<Trailer Spec>]

<Header Spec> ::=

HEADER

{ <Statement> }

<Lines Spec> ::=

LINES

{ <Statement> }

<Trailer Spec> ::=

TRAILER

{ <Statement> }

<FieldList> ::=

<Identifier> { , <Identifier> }

Levels consist of the word LEVEL, an integer determining the level’s place in the hierarchy, an optional

cursor attachment and optional HEADER, LINES, and TRAILER specifications. If the level has a cursor, you

can specify a GROUP BY part, which consists of a list of fields, separated by commas.

The HEADER, LINES, and TRAILER parts consist of an optional statement list.

Levels, semantics
The level numbers reflect the hierarchy. The first level always has number 1. The next level has number 2
etc. Every level with level number N can contain a number of nested levels, which all have level number
N + 1.

Example
(A) level 1 is CursorA

(B) level 2 is CursorB

(C) level 2 is CursorC

(D) level 3 is CursorD

Level 1 has two nested levels -- level 2 (B) and level 2 (C). The second level, 2 (C), also has a nested
level, level 3 (D). The structure is emphasized with indentation.

Here it is appropriate to introduce the concept of level path. A level path is a list of levels from level 1
(called the root) to the given level. In the above example, level B has the path (A, B) and level D has the
path (A, C, D).

In the following, it is assumed that all levels have a cursor. When the report is run, the records are
retrieved like this: When the report retrieves one record from a given level, it retrieves all the records in
the nested levels.

In the example above, the records are fetched in the following order:

A1

B1

C1

Maconomy Report Designer

Maconomy Reporting for Report Developers 83

D1

D2

:

Dn

C2

D1

:

Dn

C3

:

Cn

A2

B1

C1

:

An

First the report retrieves the first record in CursorA. It then gets the first record in CursorB and CursorC.

It then gets all the records under CursorD. It then gets the second record in CursorC, after which it

examines all the records under CursorD. This continues until there are no more records in CursorC. Then

it gets the next record in CursorA, and the whole procedure starts again, continuing until there are no

more records in CursorA.

HEADER, TRAILER, and LINES
Statements are executed in the HEADER part, before any records are fetched. Statements are executed in

the LINES part once for every record in the cursor. If the level does not have a cursor, the statements

processed just once in the LINES part.

The cursor after IS must be declared in a cursor declaration.

GROUP BY
The identifiers in the GROUP BY part must be fields in the corresponding cursor's selection. If a given level

in the path has a group by part, the next level in the path must have either

 no GROUP BY part, or

 a GROUP BY part formed by adding one or more fields behind the fields in the level's GROUP BY

part. All the levels in such a sequence (from the first GROUP BY part to the first level without a

GROUP BY part) must have the same cursor.

The cursor in the levels which have a GROUP BY part must have an ORDER BY part which includes the

longest group by list.

Examples
Cursor1 is

select all from Relation

order by Field1, Field2

Maconomy Report Designer

Maconomy Reporting for Report Developers 84

Level 1 is Cursor1

Level 2 is Cursor2 group by Field1

Level 3 is Cursor2 group by Field1, Field2

Level 4 is Cursor2

This is a legal structure. The group by list at level 3 is produced by adding fields (Field2) to the previous

level’s GROUP BY list. Furthermore, Cursor1 has an ORDER BY part which includes Field1 and Field2.

Level 1 is OrderCursor

Level 2 is OrderCursor Group by Field1, Field2

Level 3 is OrderCursor group by Field1

This is not legal, since the GROUP BY list at level 3 is not an addition of fields from the

GROUP BY list from the surrounding level (2).

Level 1 is OrderCursor group by Field1

Level 2 is OtherCursor

Level 3 is OrderCursor group by Field1, Field2

Level 4 is OrderCursor

This is not legal, since level 2 with the OtherCursor cursor comes between the GROUP BY levels with the

OrderCursor cursor.

Level 1 is OrderCursor group by Field1

Level 2 is OrderCursor group by Field1, Field2

This is not legal, since there is not a level 3 with an OrderCursor without a GROUP BY

part.

The GROUP BY part causes the data to be grouped in such a way that a level’s LINES part is processed

once for every different combination of the group by fields in the cursor.

Example

You wish to print all the orders in the system, and all the items in individual orders. The OrderLines

relation has the information. You write two levels: Level 1 is grouped according to order number. All the
different order numbers are processed in the LINES part of Level 1, taking one record for every different

order number. All orders with the same order number are processed in the LINES part of level 2.

cursor OrderLines is

select all from OrderLines

order by OrderNumber

level 1 is OrderLines group by OrderNumber

header

-- Print suitable heading

"OrdersList":400

:justification=center:Size=15

lines

"Order number " OrderLines.orderNumber

trailer

Maconomy Report Designer

Maconomy Reporting for Report Developers 85

-- Mark that print is finished

"End of OrdersList":400

:justification=center:Size=15

level 2 is OrderLines

header

"":60 -- Indentation

"ItemNumber":60 " " "ItemText":200

lines

"":60 -- Indentation

OrderLines.ItemNumber:60 " "

OrderLines.ExternalItemText:200

Report structure
This subsection describes the basic structure of the report definition.

Report structure, syntax
<report> ::=

<preferences part>

<variable declaration part>

<target specification>

<cursor declaration part>

<level specification part>

Maconomy Report Designer

Maconomy Reporting for Report Developers 86

A report consists of an optional target group specification, an optional cursor declaration list and an
optional list of levels.

Report structure, semantics
The first thing that happens when you run the report is that the target group window opens. When you
leave this window (by clicking OK), the variables (if there are any) in the target group are assigned their
values.

The levels are then processed as described in the subsection 4, “Levels”.

Language
Previously, a Danish and an English version of the Report Designer existed. This is no longer the case.
This means that you can use either Danish or English language predefined variables (see the subsection
12.3, “Predefined variables”) and that names of the days in the week and month names by default will be
in English.

To use Danish names for weekdays and months, insert a preference REPORTLANGUAGE DANISH in the

preferences part of the report, i.e.

PREFERENCES ::= REPORTLANGUAGE DANISH

Please note that:

 In practice, this only affects reports using weekday names or month names in Danish.

 Weekday names and month names in other languages than English or Danish are easily
implemented using arrays of strings.

Visibility and scope
The structure of a report definition implies that it is not always permitted to refer to the name of a field or
variable. The visibility rules, i.e. the rules which govern where field references and variable references are
allowed, are described in this section.

The general rule is that a name must be unique. You cannot therefore have a variable with the same
name as other variables, cursors, fields, relations or enumeration literals.

However, by using an escape character (“\”) you can refer to fields where the name is the same as a

reserved name in RGL (the Report Generator Language), e.g. the field “Header” in the relation

FinanceReportLine. Note that name and \name are equivalent spellings of the same item, e.g. a

variable.

Example
HEADER

LINES

IF \Header = TRUE THEN

...

Maconomy Report Designer

Maconomy Reporting for Report Developers 87

Variables
Variables are visible throughout the report. If a variable exists in a target specification, it is assigned its
values when the report is generated. If it appears elsewhere, it represents a value. A variable represents
one and only one type of value. This value is always defined; if the user has not assigned it, it takes on a
standard (default) value, determined by its type.

Cursor fields
In most cases you can specify a cursor field by its full name, for instance MyCursor.FieldName, or by an

abbreviated name, which does not include the name of the cursor. This abbreviated name should be used
when there is no risk of ambiguity.

In cursor declarations

A cursor field can occur in a cursor declaration, if the cursor defining the field has been declared before
the cursor declaration in which it is used. If you only supply the field name (without the prefixed cursor
name), the report uses the nearest cursor with a selection which incorporates the field. If there is no such
cursor, the report designer issues an error message. The field can be referred to as

MyCursor.FieldName, if the MyCursor selection includes the field called FieldName. In this way the field

is clearly identified.

In levels

A cursor attached to a level is called the level's primary cursor. You can refer to primary cursor fields and

to fields from all nested levels in the LINES part of a given level. In the HEADER and TRAILER parts you can

refer to cursors from all the levels in where the level is nested, but not to fields in the primary cursor. It is

in the LINES part that the primary cursor records are processed. It is therefore meaningless to refer to this

cursor in the HEADER and TRAILER parts; the cursor is not defined before the first record has been

retrieved (the HEADER part) or before the last record has been retrieved (the TRAILER part).

If the cursor name is not given with the field name, the program uses the nearest cursor, whose selection
includes this field.

Example

cursor PurchaseHeader is

select all from PurchaseHeader

cursor PurchaseLines is

select all from PurchaseLines where

PurchaseOrderNumber =

PurchaseHeader.PurchaseOrderNumber

order by LineNumber

-- Levels

level 1 is PurchaseHeader

lines

-- here we use PurchaseHeader.PurchaseOrderNumber

PurchaseOrderNumber Name1: 80mm Name2: 80mm

level 2 is PurchaseLines

lines

" " :30mm -- indent

ItemText :30mm -- PurchaseLines.ItemNumber

ItemText1 :80mm -- PurchaseLines.ItemText1

QuantityOrdered :30mm

Maconomy Report Designer

Maconomy Reporting for Report Developers 88

The report has two levels. Level 1 prints the purchase order and level 2 prints the order lines. In the lines
part of level 2 you can refer to the primary cursor in level 1, just as you can refer to level 2’s own cursor.

Note also that the PurchaseLines cursor’s WHERE part has references to PurchaseOrderNumber fields

both in the PurchaseHeaders cursor and the PurchaseLines cursor.

You cannot refer to a field from a cursor which is not assigned a surrounding field - either in levels or in
cursor declarations.

Example

cursor A is

select a1, a2 from Relation1

cursor B is

select b1, b2 from Relation2

where b1 = a1

level 1 is B – ILLEGAL

You cannot refer to cursor B in level 1, because of the assumption that, in B’s WHERE part, a1’s value

belongs to a cursor (namely A), which does not have a value in level 1.

Note that the cursor declaration is itself legal; it is the way it is used which gives an error in the cursor
declaration.

The records belonging to a given cursor are retrieved when the matching LINES part is processed. If the

cursor’s WHERE part has variables, it is the values of the variables just prior to the lines part, which

determine which records will be retrieved.

Predefined functions
Expressions can contain calls to predefined functions. The predefined functions are described in this
subsection.

Predefined functions fall within the following groups: Mathematical functions, date functions, time
functions, string functions and miscellaneous functions.

Mathematical functions
Arguments for mathematical functions must be numerical.

Function Description

Abs (argument:integer) : integer

Abs (argument:amount) : amount

Abs (argument:real) :

real

Returns the absolute value of the argument, i.e. the
resulting value is always positive or 0. The result is the
same type as the argument.

Exp (argument:integer) : real

Exp (argument:amount) : real

Exp (argument:real) : real

Returns the natural anti-logarithm of the argument. ab

can be written as

@EXP (b*@LN (a)).

The result is real, irrespective of the type of argument.

Maconomy Report Designer

Maconomy Reporting for Report Developers 89

Function Description

Ln (argument:integerExpr) :

real Ln (argument:amount)

 : real Ln (argument:real)

 : real

Returns the natural logarithm of the value of the
argument, which must be greater than 0.

Date functions
Date functions are used to calculate dates.

Function Description

DayOf (the date:date) : integer Retrieves the day's number in the month, using the
date defined by the argument. Thus,
@DayOf("22.12.61") = 22.

MonthOf (the date:date) :

integer

Retrieves the month using the date defined by the

argument. Thus, @MonthOf ("22.12.61") = 12.

YearOf (the date:date) : integer Retrieves the year from the date defined by the

argument. Thus, @YearOf ("22.12.61") =
1961.

Date (day : integer,

 month : integer,

 year : integer) : date

Constructs the date from the three arguments. Thus,
@Date(22,12,1961) = "22.12.61".

AddDays (the date : date,

 days : integer) :

date

Calculates the date by adding the number of days in
argument 1 to the date in argument 2.

AddWeeks (the date : date,

weeks : integer) : date

Calculates the date by adding the number of weeks in
the second argument to the date in the first argument.

AddYears (the date : date,

year : integer) : date

Calculates the date by adding number of years in the
second argument to the date in the first argument.

WeekDay (the date : date) :

integer

Returns the weekday as an integer between 1
(Sunday) and 7 (Saturday).

Week (the date : date) : integer

Returns the week number as an integer between 1
and 53.

MonthName (the month : integer)

: string

Returns a string containing the month's name. E.g.
January, when the value of the argument is one. If the
month's number is not between 1 and 12, the program

returns the string "*****".

DayName (the date : integer) Returns a string containing the day's name. E.g.
Sunday, when the value of the argument is one. If the

Maconomy Report Designer

Maconomy Reporting for Report Developers 90

Function Description

: string days’ number is not between 1 and 7, the program

returns the string "*****".

NoOfDays(StartDate : date

EndDate : date) : integer

Calculates how many days separate the two dates.

NoOfWeeks (StartDate : date

EndDate : date) : integer

Calculates how many (whole) weeks separate the two
dates.

NoOfYears (StartDate : date

EndDate : date) : integer

Calculates how many (whole) years separate the two
dates.

Examples

Calculate (in the variable NoDaysLeft) how many days are left of this quarter year.

Quarter2 := @date (1, 4, @yearof(ThisDay))

Quarter3 := @date (1, 7, @yearof(ThisDay))

Quarter4 := @date (1, 10, @yearof(ThisDay))

Quarter5 := @date (1, 1, @yearof(ThisDay)+1)

-- find out which quarter starts after

-- today's date.

NextQuarter :=

@if (ThisDay Quarter4,

Quarter5 ,

@if (ThisDay Quarter3,

Quarter4,

@if (ThisDay Quarter2,

Quarter3,

Quarter2)))

No.DaysLeft :=

@NoOfDays (NextQuarter, ThisDay)

Calculate (in the variable LastDay) the last day in this month.

ThisYear := @YearOf()

ThisMonthStart:= @date(1, @monthOf(ThisDay), ThisYear)

-- If we are in December, then next month starts

-- next year.

NextMonthStart :=

@if (@monthOf(ThisDay) = 12,

@date(1, 1, @yearof(ThisDay)+1),

@date(1, @monthOf(ThisDay) + 1, ThisYear)

LastDay := @AddDays (NextMonth'sStart, -1)

Time functions
Time functions are used to calculate at the time of day within 24 hours.

Maconomy Report Designer

Maconomy Reporting for Report Developers 91

Function Description

Time (hours : integer, minutes :

integer, seconds : integer) :

time

Constructs the time from the value of the three

arguments. Thus, @Time(14, 43, 11) =
"14:43:11"

AddSeconds(TheTime : time

seconds : integer) : time

Calculates the time by adding the number of seconds in
the second argument to the time of the first argument.

AddMinutes(TheTime : time

minutes : integer) : time

Calculates the time by adding the number of minutes in
the second argument to the time of the first argument.

AddHours(TheTime : time

hours : integer) : time

Calculates the time by adding the number of hours in
the second argument to the time of the first argument.

SecondOf(TheTime : time) :

integer

Returns the number seconds in the time specification.

Thus, @SecondOf ("14:43:11") = 11.

MinuteOf(TheTime : time) :

integer

Returns the number minutes in the time specification.

Thus, @MinuteOf("14:43:11") = 43.

HourOf(TheTime : time) :

integer

Returns the number hours in the time specification.

Thus, @HourOf("14:43:11") = 14.

NoOfSeconds(End : time,

Start : time) : integer

Calculates the number of seconds between the two
times.

NoOfMinutes(End : time,

Start : time) : integer

Calculates the number of minutes between the two
times.

NoOfHours(End : time,

Start : time) : integer

Calculates the number of hours between the two times.

String functions
String functions process string arguments.

Function Description

Image (Arg : ?

) : STRING

Returns the argument as a string. The argument
can be of any type.

Concat (Arg1 : ?,

... ArgN : ?

) : STRING

The result is calculated by placing together the
string representations of the arguments. There
can be as many as 30 arguments, separated by
commas. The arguments can be of any type.

Maconomy Report Designer

Maconomy Reporting for Report Developers 92

Function Description

SubStr (Str : STRING,

From : INTEGER,

Number : INTEGER

) : STRING

The result is the string which is produced by

taking Number characters out of the string Str,

from and to the position from. Thus, SubStr

("123456", 2, 3) = "234". If From

or Number are 0 or negative, the empty string is

returned.

StringToInteger (Str : STRING

) : INTEGER

Returns the integer type value of Str. The value

of Str must follow the syntax of an INTEGER

literal.

StringToAmount (Str : STRING

) : AMOUNT

Returns the amount type value of Str. The value

of Str must follow the syntax of an AMOUNT

literal.

StringToReal (Str : STRING

) : REAL

Returns the real type value of Str. The value of

Str must follow the syntax of an REAL literal.

StringLength (Str : STRING

) : INTEGER

Returns the length, i.e. the number of characters,

of Str.

StringPos (Str1 : STRING,

Str2 : STRING,

CaseSensitive : BOOLEAN

) : INTEGER

Returns the position, i.e. the character number, of

the first occurrence of Str1 within Str2. The

CaseSensitive parameter controls whether the

matching is case sensitive. If Str1 does not occur

within Str2, the result is 0.

StringDelete (Str : STRING,

Position : INTEGER, Number :

 INTEGER

) : STRING

Returns the STRING value obtained by deleting

Number characters, beginning at position

Position, from Str. If the deletion specified

exceeds the end of the string, the result is Str

truncated from Position.

UpperCase (Str : STRING

) : STRING

Returns the upper case image of Str.

Examples

S := @concat ("There are " ,

@Image(NumberOfEntries),

" customer entries")

If NumberOfEntries has the value 124, the string variable S will contain the string:

Maconomy Report Designer

Maconomy Reporting for Report Developers 93

"There are 124 customer entries"

The following expressions yield the following results:

@StringToInteger ("234") 234

@StringToInteger ("-345") -345

@StringToAmount ("12.45") 12.45

@StringToAmount ("33.126,75") 33126.75

@StringToReal ("627.5") 627.5

@StringLength ("abcde") 5

@StringPos ("DE", "abcdefDEF", FALSE) 4

@StringPos ("DE", "abcdefDEF", TRUE) 7

@StringPos ("BC", "abcdefDEF", TRUE) 0

@StringDelete ("abcdef", 3, 2) "abef"

@UpperCase ("aBcDeF") "ABCDEF"

Miscellaneous functions
The following describes the functions which cannot naturally be grouped under the other functions.

Function Description

If (condition : logic,

 IfValue : ?,

 ElseValue : ?) : ?

If the condition is true, the value of the second argument is
returned.

Otherwise the value of the third argument is returned. The
second and third arguments must be of the same arbitrary
type. The result of the function is also this type.

Minimum (Arg1 : ?,

 ..., ArgN : ?) : ?

Returns the smallest value of the arguments. You can have
up to 30 arguments, separated by commas. The arguments
must be of the same arbitrary type. The result of the
function is also this type.

Maximum (Arg1 : ?,

 ..., ArgN : ?) : ?

Returns the largest value of the arguments. You can have
up to 30 arguments, separated by commas. The arguments
must be of the same arbitrary type. The result of the
function is also this type.

Example
@if (v1 = 0.00, 0.00, v2 / v1)

If v1’s value is 0, 0 is returned. Otherwise v2 / v1 is returned. This means you avoid the undefined value,
which is the result of dividing by 0.

Error Messages
As you develop your reports, you will sometimes find that the report designer finds an error in the report
definition. It then writes a file with an error message. This subsection explains all the possible error
messages.

Often the message will contain a reference to a line number in the report text. The text within the <
 > contains information from the report definition.

Maconomy Report Designer

Maconomy Reporting for Report Developers 94

Message Description

String exceeds maximum allowed length.

You have written a string longer than the
maximum permitted 255 characters. This is often
due to the absence of a string terminator (").

Incompatible types for operation.

Illegal type assignment to variable <name>.

Expressions have been used in a context in which
the types are not compatible. For instance, you
cannot assign a string value to an integer variable.

Neither can you use the AND and OR operators on

numeric expressions.

Unknown type <name>. A type is expected. Shown in connection with
attributes. The error can e.g. be caused by a
misspelling of an enumerated type.

Field <cursorname>.<fieldname> not found. The specified field name does not occur in the
selection for the cursor specified in

<cursorname>. Check the list of relations and

their fields (the Database Description document).

Cursor <name> not found. Displayed if the name of IS at a level is not a

cursor.

Attribute VAL only applies to enumeration types

Attribute POS only applies to enumeration types

The VAL and POS attributes are only permitted for

enumeration types.

First level not 1

Level < 1

Level > previous + 1

A level number which is wrong in this context was
specified. Level numbers may only be one greater
than the previous level number. First level number
must be 1.

Level specification: level no. not an integer. Level numbers must be integers.

ORDER BY field list not part of selection. In the ORDER BY part in a cursor declaration

some fields are specified which do not belong to
the cursor selection.

Level GROUP BY part not included in ORDER BY
part of cursor <cursorname>.

Shown when translating the GROUP BY parts of

levels. All fields specified here must also occur in

the ORDER BY part of the primary cursor.

Furthermore, the fields in the ORDER BY part of

the primary cursor must be in the sequence of the

fields in (the longest) GROUP BY part.

Function call: Function <name> not found. @ <name> was specified, but <name> is not a

predefined function. See the list of functions in the
subsection 21, “Predefined functions”.

Maconomy Report Designer

Maconomy Reporting for Report Developers 95

Message Description

Attribute "<name>" not found. The specified attribute is not defined.

Function call: Wrong no. of arguments. The number of parameters in the function call
does not correspond to the definition of the
function. See the list of functions in the subsection
21, “Predefined functions”.

Attribute call: Wrong no. of arguments. The number of parameters in attribute call does
not correspond to the definition.

Relation <name> not found. A name was specified after FROM, which is not the

name of a database relation. Check the list of
relations and their fields (the Database
Description document).

Descending ordering not supported. All ordering specifications must have the same

sort order, which is ascending order (ASC).

ORDER BY field list not unique. A field may only occur once in the ORDER BY part

of a cursor.

Selections must be either all simple or all
functions.

It is not permitted to mix simple selections, i.e.

selections which only consist of field names, ALL

or *, with SQL functions (SUM, COUNT, MIN, MAX,

or AVG).

GROUP BY field list not unique. The field of the specified name occurs more than

once in the GROUP BY part of a cursor

declaration.

Warning: HAVING clauses are not supported.

Warning: GROUP BY clauses in cursor
declarations are not supported.

HAVING and GROUP BY for cursors are ignored

and should be removed.

SUM may only be applied to INTEGER, AMOUNT
or REAL fields

AVG may only be applied to INTEGER, AMOUNT
or REAL fields

The calculation of sums and averages is only
permitted for arithmetic types.

Cursor <name> already declared.

Variable <name> already declared

The name has already been used. Use another
name for this cursor or variable.

Variable <name> declared twice. Variables can only be assigned a value once in a
target group specification. Introduce a new
variable.

Maconomy Report Designer

Maconomy Reporting for Report Developers 96

Message Description

Variable <name> not declared The PREFERENCES part specifies that variables

must be type declared (VARDECL MANDATORY).

Declare the specified variable.

Default value specification <value> not allowed. You cannot assign a default value for popup fields
(i.e. enumeration values) in the target group
dialog.

Two default value specifications for variable
<name>.

Remove one default value specification.

Target dialog title not a string. The title of a target group dialog must be entered
as a string literal.

Target dialog prompt string not a string. Each target group line must begin with a string
literal, not a variable.

Target dialog element must be string or variable. Each target group element must be a string literal
or a variable.

Warning: Could not infer type for variable
<name>, assuming STRING.

Not enough information is available to deduce the
type of the variable. The variable typically appears
only in a print statement and is not used in any
other context.

Consider declaring the variable.

Warning: Variable '<name>' is never initialized. The variable is never assigned a value. This may
of course be intentional, if the defined default
value (e.g. 1 for integer variables or today’s date
for a date variable) makes sense in the
calculations. But the warning can also be due to
an error such as a misspelled variable name.

"HEADER", "LINES”, or "TRAILER" expected. After LEVEL..., a HEADER, LINES, or TRAILER

must be specified before any statements.

"HEADER" unexpected.

"LINES" unexpected.

"TRAILER" unexpected.

HEADER, LINES, and TRAILER parts are

specified in the wrong order.

';' should not be used between variable
declarations (remove it)

';' should not be used between cursor declarations
(remove it)

';' should not be used between statements
(remove it).

In many programming languages, such as C and

Pascal, the character ‘;’ is used as the separator.

In the Report Designer language (RGL), no
separators are used.

Maconomy Report Designer

Maconomy Reporting for Report Developers 97

Message Description

'=' not allowed for assignment, use ':='. In many programming languages, such as C, the

character ‘=’ is used for assigning values. In the

Report Designer language, the symbol ‘:=’ is

used.

Parse error, expecting <symbol>, read <symbol>. A construction was specified with the wrong
syntax.

Array lower bound greater than upper bound

The lower bound for an array must be less than or
equal to the upper bound.

Array index type must be integer The index of an array must be of the type

INTEGER.

Array variable <navn> not declared Variables of the type ARRAY must be declared in

the report’s variable declaration part.

Incompatible array types for assignment The declared array type does not correspond to
the type of the expression assigned to the array.

Array-to-array assignment not supported An array cannot be assigned the value of another
array.

Unrecognized report language specification
<navn>

The expression REPORTLANGUAGE takes one of

three values: Danish, English, or

<empty>. If no value is specified, English is

assumed.

DirectAccessControl: Argument list not allowed This expression takes no arguments.

IndirectAccessControl: wrong no of. arguments
<n> - should be 2

This expression takes two arguments:

FieldName and RelationName.

About Deltek
Better software means better projects. Deltek is the leading global provider of enterprise software and
information solutions for project-based businesses. More than 23,000 organizations and millions of users
in over 80 countries around the world rely on Deltek for superior levels of project intelligence,
management and collaboration. Our industry-focused expertise powers project success by helping firms
achieve performance that maximizes productivity and revenue. www.deltek.com

http://www.deltek.com/

