
Maconomy RESTful Web Services

Programmer’s Guide
2018

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published April 2018.

© 2018 Deltek Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result
in severe civil or criminal penalties. All trademarks are the property of their respective owners.

ii ©Deltek Inc., All Rights Reserved

Contents

1 Introduction 1
1.1 The Container Abstraction . 1

1.1.1 Card panes . 1
1.1.2 Table panes . 1
1.1.3 Filter panes . 2

1.2 REST . 2
1.2.1 Resources . 3
1.2.2 Hyperlinks . 3
1.2.3 Other Styles of Web Services . 3
1.2.4 Further Reading . 4

1.3 Example . 4
1.4 curl . 8
1.5 Proxy Requirements . 9

2 Basics 11
2.1 JSON and XML . 11
2.2 Language . 12
2.3 Formats . 13
2.4 Specifications . 14

2.4.1 Actions . 16
2.4.2 Fields . 17
2.4.3 Foreign Keys . 19
2.4.4 Related Containers . 21

2.5 Data Types . 22
2.5.1 Integer . 22
2.5.2 Real . 23
2.5.3 Amount . 23
2.5.4 Boolean . 23
2.5.5 String . 23
2.5.6 Date . 24
2.5.7 Time . 24
2.5.8 Enum . 25

iii

CONTENTS

2.5.9 Time Duration . 25
2.5.10 Auto Timestamp . 25

2.6 Structures . 25
2.6.1 Container Resource State . 26
2.6.2 Records . 28

2.7 Hyperlinks . 29
2.7.1 Link Relations . 29

2.8 Authentication . 31
2.8.1 HTTP Basic Authentication . 31
2.8.2 Suppressing the Browser’s Login Prompt 33
2.8.3 Using Domain Credentials with Basic Authentication 34
2.8.4 OpenID Authentication . 35
2.8.5 Expired User Passwords . 37
2.8.6 Kerberos via Negotiate (Single Sign-On) 39
2.8.7 Maconomy Reconnect . 39
2.8.8 Two-Factor Authentication . 41

2.9 Status Codes and Errors . 46
2.9.1 Error Response Entities . 49
2.9.2 Warnings and Notifications . 50

2.10 Compression . 51

3 Filtering 53
3.1 Paging . 55
3.2 Sorting . 55
3.3 Selecting Fields . 56
3.4 Restrictions . 57

4 Updating Data 59
4.1 Using the POST Method . 59
4.2 Concurrency Control . 61
4.3 Updating a Record . 62
4.4 Creating a Record . 64
4.5 Deleting a Record . 65
4.6 Running Actions . 66
4.7 Passing Arguments to an Action . 66

5 Advanced Topics 69
5.1 Singleton Containers . 69
5.2 Maintaining Mutable Variable State . 71
5.3 Working with Files . 74

5.3.1 Uploading a File and Using It in an Action 74
5.3.2 Maconomy-File-Callback . 78
5.3.3 Uploading Binary Data . 79
5.3.4 Uploading multipart/form-data . 79

iv ©Deltek Inc., All Rights Reserved

CONTENTS

5.3.5 Running an Action and Downloading a Resulting File 79
5.4 Foreign Key Searching . 80

5.4.1 Conditional foreign keys . 84
5.5 Web Access Configuration . 85

5.5.1 Access Rules . 86
5.5.2 Pattern Syntax . 87
5.5.3 Container Access Rules . 88
5.5.4 Field level Access Rules . 88
5.5.5 Named Access Rule Lists . 89

6 User Settings 91
6.1 Root Resource . 91

6.1.1 Method: GET . 91
6.2 User Settings Resource . 92

6.2.1 Method: GET . 92
6.2.2 Method: PUT . 93
6.2.3 Method: DELETE . 93

6.3 Example . 94

Bibliography 97

©Deltek Inc., All Rights Reserved v

CONTENTS

vi ©Deltek Inc., All Rights Reserved

Chapter 1

Introduction

The Maconomy RESTful Web Service Interface is a programmatic interface that provides
access to data and business functionality in the Deltek Maconomy ERP product.

1.1 The Container Abstraction

The web service exposes data and functionality through so-called containers. Containers
are an abstraction that gives a uniform interface to all functionality within the Maconomy
system. The same generic structure, conventions, and organization are used for data
retrieval and other interactions throughout the system.

A container is made up of a number of panes. Three types of panes exist:

• Card panes

• Table panes

• Filter panes

1.1.1 Card panes

Card panes contain a single record. Examples in Maconomy include the Jobs container
and the time sheet header part of the TimeSheets container.

1.1.2 Table panes

Table panes contain zero or more records. Examples in Maconomy include the job budget
lines part of the JobBudgets container and the time sheet lines part of the TimeSheets
container.

1

1.2. REST

1.1.3 Filter panes

Filter panes, like tables, contain zero or more records. Filters allow you to select subsets
of the potential content by applying certain restrictions. This can be used to provide
search functionality and filter options.

Filters also support functionality like paging (for example, showing records 1 to 25 of
3200), sorting, and limiting which fields are included in the data.

In the Maconomy Workspace Client, panes are composed into workspaces. In a workspace
panes are tied together by key bindings that govern how data is distributed in the
workspace.

In the web service interface, you interact directly with containers and programmatically
navigate the key bindings, similar to how the automatic data distribution occurs in the
workspace engine.

The following example shows how a user workflow in the Workspace Client is similar to
the workflow of a client program that interacts with the web service:

1. The user opens the Expense Sheets workspace.

2. The user uses the topmost panel List of Expense Sheets and locates needed expense
sheets.

3. The user clicks on an expense sheet in the List of Expense Sheets and the corre-
sponding card and table pane data is shown in Expense Sheet and Expense Sheet
Lines respectively.

This interaction is closely mirrored by the interactions that a client program connecting
to the web service performs:

1. The client program gets the ExpenseSheets container resource.

2. The client program follows a hyperlink to the filter pane of the ExpenseSheets
container, and interacts with the filter to find the specific expense sheets for the
task at hand.

3. The client program follows a hyperlink to view the card and table pane data for a
specific expense sheet in the ExpenseSheets container.

1.2 REST

The preceding example touched upon some of the central concepts in REST such as
resources and hyperlinks. It is useful to know a little about what REST is, and the
concepts and terminology associated with it.

2 ©Deltek Inc., All Rights Reserved

CHAPTER 1. INTRODUCTION

REST stands for Representational State Transfer and is a style of web services that
conform to a set of principles and conventions. A web service that is built on REST
principles is said to be RESTful.

1.2.1 Resources

The central concept in REST is a resource. A resource is a domain object that is uniquely
identified by a URL. For example, each expense sheet in a Maconomy system has its own
URL.

When you access the URL for a resource, you get a representation of the current state
of the resource. For an expense sheet, this representation contains all of the data in
the card and table pane of the expense sheet. The same resource may have multiple
representations, for example XML or JSON. When interacting with a resource, a client
program can choose the representation it prefers. The payload of a request or response
in HTTP is called an entity.

Resources are manipulated (read, updated, deleted, and so on) by a fixed set of HTTP
verbs. The verbs used in the Maconomy RESTful web service interface are GET, POST,
and DELETE [5].

1.2.2 Hyperlinks

Hyperlinks is a well-known concept from the web, and they are pervasive in RESTful web
services. Hyperlinks work just like links on a web page and point to related resources.
For example, the expense sheet filter has hyperlinks that point to specific expense
sheets.

Hyperlinks are also used to represent available state transitions. For example, to update
an expense sheet line, the client program need to follow a specific hyperlink. Resources
have hyperlinks for all available state transitions.

Each link has an associated link relation, which is a value that defines what the link can
be used for (for example, accessing a related resource, updating, submitting, transferring,
and so on).

1.2.3 Other Styles of Web Services

REST is often contrasted with another style of web services exemplified by the SOAP
protocol.

Rather than interacting with stateful resources via a standard set of verbs and following
the standard HTTP application protocol used consistently across many web services from

©Deltek Inc., All Rights Reserved 3

1.3. EXAMPLE

different sources, a typical SOAP web service offers a list of custom procedures that may
be invoked over the network.

Instead of assigning each domain object a URL that can be used to retrieve and manipulate
the object, a SOAP web service uses IDs to refer to domain objects. The IDs must then
be supplied to appropriate procedure calls to operate on the objects. HTTP is only
incidentally used to transmit messages, but none of the useful features and properties of
the web architecture are leveraged.

Rather than being discoverable by representing the possible interactions as hyperlinks, a
typical SOAP web service relies on out-of-band means (such as detailed manuals and
specifications) to communicate the interaction protocol for the web service.

1.2.4 Further Reading

It is recommended for developers working with producing or consuming RESTful web
services to read the book “REST in Practice: Hypermedia and Systems Architecture”
[12].

1.3 Example

This section shows how these concepts work in a practical example. You can use the curl
command-line tool to get a representation of the current state of the service endpoint
resource for the shortname rest:
$ curl -i

'http://server/containers/v1/rest'
HTTP/1.1 200 OK
Date: Tue, 11 Nov 2014 12:55:40 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US-x-lvariant-W
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"shortname": "rest",
"authenticated": false,
"languages": [

{
"locale": "da_DK",
"tag": "da-DK",
"title": "Dansk (Danmark)"

},

4 ©Deltek Inc., All Rights Reserved

CHAPTER 1. INTRODUCTION

{
"locale": "en_US",
"tag": "en-US",
"title": "English (United States)"

}
],
"versions": {

"apu": {
"major": "17",
"minor": "0",
"patch": "0",
"hotfix": ""

},
"tpu": {

"major": "17",
"minor": "0",
"sp": "100",
"fix": "0",
"beta": ""

}
},
"authentication": {

"kerberos": {
"kdc": "PSO-DC.PSO.COM",
"realm": "PSO.COM",
"realms": {

"PSO.COM": {
"kdc": "PSO-DC.PSO.COM",
"name": "PSO.COM"

}
},
"serviceName": "MACONOMYSSO/PSO.COM"

},
"schemes": {

"basic": {
"name": "basic"

},
"negotiate": {

"name": "negotiate"
},
"x-changepassword": {

"name": "x-changepassword"
},
"x-reconnect": {

"name": "x-reconnect"
}

},
"useDomainCredentialsForBasicAuthentication": true

}

©Deltek Inc., All Rights Reserved 5

1.3. EXAMPLE

}

The first lines are the HTTP status code and response headers (curl outputs this
information when the -i option is used). The 200 OK status code indicates a successful
request.

The service endpoint provides a list of supported languages, basic version information
about the system, and information about the available authentication options. The
service endpoint resource does not require authentication, but interacting with most
other resources does require authentication. For example, this is evident when you access
the ExpenseSheets container:
$ curl -i

'http://server/containers/v1/rest/ExpenseSheets'
HTTP/1.1 401 Unauthorized
Date: Fri, 28 Nov 2014 14:42:26 GMT
Server: Jetty(8.1.14.v20131031)
Content-Type: application/json; charset=utf-8
WWW-Authenticate: Basic realm="Maconomy"
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked

{
"errorFamily": "service",
"errorMessage": "The request requires user authentication",
"errorSeverity": "error"

}

The HTTP status code 401 Unauthorized indicates a particular error condition, and the
request entity contains an error message as well as additional information about the kind
of error. Client programs normally use the status code to dispatch to the appropriate
error handling code.

To fix this error, you can authenticate by using the -u option in curl:
$ curl -i

-u 'Administrator:123456'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 200 OK
Date: Fri, 28 Nov 2014 14:42:53 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US-x-lvariant-W
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-transform, max-age=86400
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"containerName": "expensesheets",

6 ©Deltek Inc., All Rights Reserved

CHAPTER 1. INTRODUCTION

"links": {
"action:create": {

"href": "http://server/containers/v1/rest/expensesheets/data/card",
"rel": "action:create"

},
"action:insert": {

"href": "http://server/containers/v1/rest/expensesheets/data/card/init ←↩
",

"rel": "action:insert"
},
"data:any-key": {

"href": "http://server/containers/v1/rest/expensesheets/data;any",
"rel": "data:any-key"

},
"data:filter": {

"href": "http://server/containers/v1/rest/expensesheets/filter",
"rel": "data:filter"

},
"specification": {

"href": "http://server/containers/v1/rest/expensesheets/specification ←↩
",

"rel": "specification"
}

}
}

When you access the container resource (using the HTTP GET verb), you get a repre-
sentation that serves as an entry point for interacting with the container. It contains
hyperlinks to the specification, filter, and data subresources of the container. The rel
property contains the link relation used by client programs to distinguish the purpose
of each of the links. The link relation is also used as the key for each link in the links
object.

Use the URL pattern http://{host}/containers/v1/{shortname}/{container} to
access the entry point for a container. This is the only URL a client should construct
itself. All further interactions should happen by navigating hyperlinks. This allows
clients to keep working with future versions of the web service that use the existing link
relations, but with new URL patterns.

The default representation of the resource is in JSON format. The HTTP response
header Content-Type contains the media type for the representation. If you prefer to
work with the resource in an XML representation, ask specifically for XML by including
an Accept HTTP header in the request:

$ curl -i
-u 'Administrator:123456'
-H 'Accept: application/xml'
'http://server/containers/v1/rest/ExpenseSheets'

©Deltek Inc., All Rights Reserved 7

1.4. CURL

HTTP/1.1 200 OK
Date: Fri, 28 Nov 2014 14:43:24 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US-x-lvariant-W
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-transform, max-age=86400
Content-Type: application/xml; charset=utf-8
Transfer-Encoding: chunked

<?xml version="1.0" encoding="UTF-8"?>
<Overview xmlns="http://www.deltek.com/ns/webservices/container"

containerName="expensesheets">
<Links>

<Link href="http://server/containers/v1/rest/expensesheets/specification ←↩
"

rel="specification"/>
<Link href="http://server/containers/v1/rest/expensesheets/filter"

rel="data:filter"/>
<Link href="http://server/containers/v1/rest/expensesheets/data;any"

rel="data:any-key"/>
<Link href="http://server/containers/v1/rest/expensesheets/data/card/ ←↩
init"

rel="action:insert"/>
<Link href="http://server/containers/v1/rest/expensesheets/data/card"

rel="action:create"/>
</Links>

</Overview>

1.4 curl

This document uses the free curl tool for all examples. You can download the tool from:
http://curl.haxx.se/.

On Windows, the built-in Command Prompt has poor support for quoting and escaping
URLs and other parameters to curl. To use the curl examples in this document, you
must install and use a shell that supports Bash-style quoting and escaping. An easy way
to do this is to install Git for Windows, which comes with the Git Bash shell emulator
and the curl tool: http://msysgit.github.io/

curl allows a programmer to make HTTP requests from the command line, and is a
very valuable tool when developing client code that interacts with a web service. In this
document, curl is used to provide working examples for the functionality that document
on how to correctly interact with the service.

The full documentation is available from the curl website, but the following table lists
the options used in this document.

8 ©Deltek Inc., All Rights Reserved

http://curl.haxx.se/
http://msysgit.github.io/

CHAPTER 1. INTRODUCTION

Option Description
-i Include the HTTP response headers in the output.
-u username:passwd Use the specified username and password as HTTP

Basic Authentication credentials.
-H 'Header: Value' Include the specified HTTP request header in the

request.
-d @file Make an HTTP POST request with the contents of

file as the request entity.
-X POST Make an HTTP POST request. If the -d option is not

used, the request will have an empty request entity.
-X DELETE Make an HTTP DELETE request.

1.5 Proxy Requirements

To be secure, the Maconomy web services must be deployed behind an SSL/TLS ter-
mination proxy (a reverse proxy) that encrypts the traffic between the server and the
client. Clients must use the https protocol to access the web services and direct access
via http must be blocked.

In order for the web service hyperlinks to work correctly, the reverse proxy must be
configured to preserve the Host request header field.

The proxy must also indicate to the Maconomy RESTful web service that the client is
using the https protocol by setting the following request header field:
X-Forwarded-Proto: https

©Deltek Inc., All Rights Reserved 9

1.5. PROXY REQUIREMENTS

10 ©Deltek Inc., All Rights Reserved

Chapter 2

Basics

2.1 JSON and XML

Every container resource in the Maconomy RESTful web service interface can be repre-
sented in a JSON format [1, 2] or an XML format [7].

JSON is a lightweight data interchange format derived from JavaScript. It is widely
used in RESTful web services and is prominent in dynamically typed languages
such as JavaScript, Ruby, and Python. Mature tooling and library support is also
available for Java and .NET languages.

XML is a well-known standardized data interchange format that is heavily used in
enterprise software and has mature tooling and library support in Java and .NET
languages. It is less widely used in browser applications and dynamically typed
languages.

When implementing a client program, choose the appropriate format for the environment
where the client program is deployed. Factors that may contribute to the decision are
technology stack, corporate or programmer preference, and interoperability with existing
code. The formats are functionally equivalent in the sense that they both contain the
same data and support the same business functionality.

If no format is specified, the default is JSON.

To request another format, include the Accept HTTP request header to explicitly request
a particular media type [see 5, section 14.1]. The media types supported in the web
service interface are:

Media type Description
application/json A JSON representation of the resources in the Maconomy

RESTful web service interface.

11

2.2. LANGUAGE

Media type Description
application/xml An XML representation of the resources in the Maconomy

RESTful web service interface.

To update the state of a resource, a client program must send a request entity with the
new state of the resource. Like the response entity, the request entity can be in either
JSON or XML format. When a client program sends a request entity, it must always
specify the media type by including the Content-Type HTTP request header.

2.2 Language

You can specify the preferred language by including the Accept-Language HTTP request
header. As seen earlier, the state of the service endpoint includes a list of supported
languages:
$ curl -i

'http://server/containers/v1/rest'
HTTP/1.1 200 OK
Date: Fri, 28 Nov 2014 14:51:07 GMT
Server: Jetty(8.1.14.v20131031)
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked

...
"languages": [

{
"locale": "da_DK",
"tag": "da-DK",
"title": "Dansk (Danmark)"

},
{

"locale": "en_US",
"tag": "en-US",
"title": "English (United States)"

}
],
...

This system is configured to support two languages. To specify the preferred language
for a resource, include the Accept-Language HTTP request header with the language
tag as the header field value. To get the resource state in US English:
$ curl -i

12 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/expensesheets/specification'

HTTP/1.1 200 OK
Date: Fri, 28 Nov 2014 14:52:03 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-transform, max-age=86400
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

...
"title": "Expense Sheets"
...

To get the resource state in Danish:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: da-DK'
'http://server/containers/v1/rest/expensesheets/specification'

HTTP/1.1 200 OK
Date: Fri, 28 Nov 2014 14:55:39 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: da-DK
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-transform, max-age=86400
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

...
"title": "Udgiftsedler"
...

To unambiguously apply the language preference, it is recommended that client programs
always include the Accept-Language HTTP request header with all requests. The header
field value should be the exact language tag value of one of the supported languages
(obtained from the service endpoint resource).

2.3 Formats

You can indicate preferred formats by including the Maconomy-Format HTTP request
header. This is significant in the cases where the server will apply formatting to the data.
For example, when a user prints an expense sheet the user’s date format and decimal
separator should be used in the printed document. The formats do not apply to container
data values which are independent of the user’s locale and format preferences.

©Deltek Inc., All Rights Reserved 13

2.4. SPECIFICATIONS

Consider the following example:
Maconomy-Format: date-format="dd-MM-yyyy", time-format="HH:mm", thousand- ←↩

separator=".", decimal-separator=",", number-of-decimals=2

This example shows the possible format directives that the client may specify. Not all
possible date and time formats are supported by Maconomy.

Property Description
date-format This directive indicates how the server should format date

values.
time-format This directive indicates how the server should format time

values.
thousand-separator This directive indicates the character used as a thousand

separator.
decimal-separator This directive indicates the character used as a decimal

separator
number-of-decimals This directive indicates the number of decimals to include.

2.4 Specifications

Every container in the Maconomy RESTful web service interface has a specification
subresource.

The specification is used to programmatically determine the following:

1. The names and titles of the panes in the container

2. The names and titles of the actions supported by each pane

3. The names, titles, and data types of the fields present in records in each pane

To correctly interpret and manipulate records in the panes of a container, a client program
must read the specification resource to obtain the field names and data types.

In a previous example we accessed the ExpenseSheets container and obtained a link to
its specification subresource:
"specification": {

"href": "http://server/containers/v1/rest/expensesheets/specification",
"rel": "specification"

}

By looking a the rel property and discovering that the relation specification is present,
a client program can determine that this particular hyperlink points us to the specification
resource. The link relation is simply an identifier that tells client programs about the

14 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

meaning of a particular hyperlink. When writing client programs you should only rely
on the link relations and consider the links as opaque. You should not attempt to guess
the pattern for particular kinds of resources because only the link relation is guaranteed
to be stable.

If you follow the link, you acquire the specification for the ExpenseSheets container:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/expensesheets/specification'

HTTP/1.1 200 OK
Date: Fri, 28 Nov 2014 15:00:02 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-transform, max-age=86400
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"containerName": "expensesheets",
"panes": {

"filter": {
"paneName": "filter",
"title": "List of Expense Sheets",
"entity": "expensesheetheader",
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
"card": {

"paneName": "card",
"title": "Expense Sheets",
"entity": "expensesheetheader",
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
"table": {

"paneName": "table",
"title": "Expense Sheet Lines",
"entity": "expensesheetline",
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
},
"relatedContainers": { ... }

©Deltek Inc., All Rights Reserved 15

2.4. SPECIFICATIONS

}

The preceding example shows the high-level structure of the specification resource. If
you try this in curl, you will notice that the full response is substantially larger. The
omitted parts are discussed in the succeeding sections.

This JSON object tells that the ExpenseSheets container has 3 panes identified by the
names filter, card, and table. It also contains the title of each pane, which is a text
appropriate to display in a user interface. The entity property indicates which entity
the container pane is based on.

2.4.1 Actions

This is an example of the contents of the actions property omitted in the previous
example:

"table": {
"paneName": "table",
"title": "Expense Sheet Lines",
"entity": "expensesheetline",
"actions": {

"action:create": {
"rel": "action:create",
"title": "Save Expense Sheet Line"

},
"action:delete": {

"rel": "action:delete",
"title": "Delete Expense Sheet Line"

},
"action:add": {

"rel": "action:add",
"title": "Add Expense Sheet Line"

},
...

Each action is represented by an object that contains a rel property. The value of this
property uniquely identify the action within the container. The object also contains a
title property appropriate for display in a user interface. Notice that the rel property
is used as the key in the actions object.

The actions listed in the specification are a gross list. When interacting with a particular
expense sheet, the client program determines if an action can be invoked in the current
state of the resource by examining whether a hyperlink with the link relation corresponding
to the action’s rel property is present.

16 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

2.4.2 Fields

The following is an example of the contents of the fields property omitted in the
previous example:

"table": {
"paneName": "table",
"title": "Expense Sheet Lines",
"entity": "expensesheetline",
"actions": { ... },
"fields": {

"activitynumber": {
"autoSubmit": false,
"create": true,
"hidden": false,
"key": false,
"mandatory": false,
"maxLength": 255,
"multiLine": false,
"name": "activitynumber",
"references": [

"activitynumber_expensemileageactivity",
"activitynumber_activity"

],
"secret": false,
"suggestions": "onDemand",
"title": "Activity No.",
"type": "string",
"unfilterable": false,
"update": true

},
...
"currency": {

"autoSubmit": false,
"create": true,
"enumType": "CurrencyType",
"hidden": false,
"key": false,
"mandatory": true,
"multiLine": false,
"name": "currency",
"references": [],
"secret": false,
"subtypeContainer": "popup_currencytype",
"suggestions": "none",
"title": "Currency",
"type": "enum",
"unfilterable": false,
"update": true

©Deltek Inc., All Rights Reserved 17

2.4. SPECIFICATIONS

},
...

These are examples of field objects that contain metadata for the activitynumber and
currency fields. The field objects describe the fields that will be present in records in
the table pane in ExpenseSheets container. A very important property of a field object
is type. The value of type determines how client programs must interpret and represent
values for that field when interacting with records in the table pane of the container.
The specifics of each format are detailed in the Data Types section.

The following table provides a description of each of the properties of a field object in a
specification:

Property Description
name The identifier used to refer to the field in representations. This

is intended for use by the software, and is normally not visible
in a user interface.

title The human-readable name for the field. The title is an
appropriate label for the field in a user interface.

type The data type of the field. The data type is one of: integer,
real, amount, boolean, string, date, time, enum,
timeduration, or autotimestamp. See the section on Data
Types for a description of each data type.

subtypeContainer This property is defined for fields that have the enum data type,
and it contains the name of the container that supplies the
possible values for this particular enum type. For example, the
field currency in the preceding example has the container
popup_currencytype as the source of its enum values. To find
an appropriate link to this container, client programs should go
through the relatedContainers (see the following).

enumType This property is defined for fields that have the enum data type
and it contains the name of the enumeration type. This value
may be used when client programs need to construct
expressions used in filter restrictions, for example.

key This property indicates whether the field is a key field.
references This property indicates which foreign keys this field participates

in.
create This property defines whether the field is editable when a

record is created. If this value is false, a client program is not
permitted to change the value of this field in the template
record obtained from the init operation.

update This property defines whether the field can be updated after
the record is created. Some fields are immutable after the
record is created in the system.

18 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

Property Description
hidden This property indicates that a field is part of the protocol

between the client and server, but it should not be visible in a
user interface.

secret This property indicates that the contents of the field must not
be displayed unmasked in a user interface (for example, a
password).

unfilterable This property indicates that the field must not be used as part
of a filter restriction.

autoSubmit This property indicates to the client that it should
automatically update the resource when a user finishes editing
this field.

suggestions This property indicates how the client should present inline
searches from this field in a user interface. The value can be
one of: onDemand, automatic, none, or standard. onDemand
indicates inline search on demand. automatic indicates a
search-as-you-type style inline search. none indicates no inline
search. standard indicates that the client program should
apply its own preferred default, and use the behavior of either
onDemand, automatic, or none.

2.4.3 Foreign Keys

The following is an example of the contents of the foreignKeys property omitted in the
previous example:

"table": {
"paneName": "table",
"title": "Expense Sheet Lines",
"entity": "expensesheetline",
"actions": { ... },
"fields": { ... },
"foreignKeys" : {

"activitynumber_activity": {
"fieldReferences": [

{
"field": "activitynumber",
"foreignField": "activitynumber",
"supplement": false

},
{

"field": "activitytextvar",
"foreignField": "activitytext",
"supplement": true

©Deltek Inc., All Rights Reserved 19

2.4. SPECIFICATIONS

}
],
"incomplete": false,
"links": {

"data:search": {
"href": "http://server/containers/v1/rest/expensesheets/data/table ←↩

/search;foreignkey=activitynumber_activity",
"rel": "data:search"

}
},
"name": "activitynumber_activity",
"rel": "data:key:activitynumber_activity",
"searchContainer": "find_activity",
"searchPane": "filter",
"title": "Activity"

},
...

}
...

Each foreign key describes an association between resources in the system. In this
example, the foreign key activitynumber_activity is a reference between an expense
sheet line and the activity to which the expense is related. Foreign keys are used to search
for a value for one or more fields, and for navigating between related resources.

A foreign key has a number of field references, for example the field activitynumber
on the expense sheet line references the field activitynumber on the activity. If a field
reference is marked as supplement it does not directly participate in the foreign key
relationship, but is included as a signal to a client program to assign the value back
during a foreign key search. In this example, the client program should assign the
activitytext from the activity back to the activitytextvar on the expense sheet line
when performing a search.

The searchContainer and searchPane indicates a container name and container pane
of the container that performs the search for this foreign key. The relatedContainers
property will link to the specification resource for the search container. The link with
the link relation data:search is used to perform the foreign key search. For details on
how to perform a foreign key search, see Foreign Key Searching.

A foreign key can be either complete or incomplete as indicated by the incomplete
property. Incomplete foreign keys can only be used for searching. If the foreign key is
complete, then the combination of the values of the fields that participates in the foreign
key (excluding supplement fields) uniquely identifies another resource. A client program
can navigate a complete foreign key. For example, a client program can follow a link from
the expense sheet line to the activity. The property rel indicates to the client that links
on expense sheet lines with the link relation data:key:activitynumber_activity is a
link to the activity for that expense. The rel will only be present for complete foreign

20 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

keys. Here is an example of the link that will be available on an expense sheet line:
"data:key:activitynumber_activity": {

"rel": "data:key:activitynumber_activity",
"template": "http://server/containers/v1/rest/{container}/data; ←↩

activitynumber=505"
},

The foreign key navigation links have a template property instead of a href. The reason
is that the client program must replace the {container} placeholder with the name of
the container that it wants to navigate. The container must be based on the entity to
which the foreign key points. The entity can be discovered by accessing the specification
resource for the search container. If the set of fields that make up the foreign key reference
(excluding supplement fields) are not included in the response, for example if the fields
are not selected as part of a filter search, then the foreign key navigation link will not be
present in the response.

2.4.4 Related Containers

The relatedContainers property of a container consists of references to other related
containers that are related to this container. The containers that will be referenced
are:

1. Containers that supply enum values for enum types used in this container.

2. Search containers for the foreign keys in this container.

In the previous example, the currency field in the table pane has popup_currencytype
as its subtype container. The relatedContainers contains a reference that the client
program can use to obtain the possible values for this field:
"relatedContainers": {

...
"popup_currencytype": {

"containerName": "popup_currencytype",
"links": {

"data:enumvalues": {
"href": "http://server/containers/v1/rest/popup_currencytype/filter ←↩

",
"rel": "data:enumvalues"

},
"specification": {

"href": "http://server/containers/v1/rest/popup_currencytype/ ←↩
specification",

"rel": "specification"
}

}
},

©Deltek Inc., All Rights Reserved 21

2.5. DATA TYPES

...
}

2.5 Data Types

Maconomy uses eight primitive data types. In the container resources in the web service
interface these data types are embedded in XML and JSON documents and are encoded
in a locale independent way.

The XML and JSON representations of a resource differ slightly from each other. All
attributes in XML are quoted strings, while JSON permits numeric types that are not
quoted.

Several Maconomy data types use the number grammar rule of the JSON data interchange
format [2]. For reference the number grammar rule is defined as [11]:

number = [minus] int [frac] [exp]
decimal-point = %x2E ; .
digit1-9 = %x31-39 ; 1-9
e = %x65 / %x45 ; e E
exp = e [minus / plus] 1*DIGIT
frac = decimal-point 1*DIGIT
int = zero / (digit1-9 *DIGIT)
minus = %x2D ; -
plus = %x2B ; +
zero = %x30 ; 0

2.5.1 Integer

The integer data type consists of negative and non-negative integer values: {..., -1,
0, 1, ...}.

JSON Integer values are represented as a JSON number that must conform to the
number grammar rule [2] with the additional restriction that the number must be
an integer. Integers should not include a fraction or exponent part. Numbers may
be accepted if they include a fraction and/or exponent part as long as they are
integers. Examples of acceptable values are 1000 and -549.

XML Integer-valued attributes contain numbers that may start with an optional sign
(- or +) and must otherwise consist of one or more decimal digits. Examples of
acceptable values are "1000", "-549".

22 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

2.5.2 Real

The real data type is a floating point data type.

JSON Real values are encoded as JSON numbers. Values must conform to the
number grammar rule [2]. Examples of acceptable values are 100, .892, 2e10,
and 314159e-5.

XML Real-valued attributes contain numbers encoded similar to JSON numbers. The
contents of the attribute value must conform to the number grammar rule in the
JSON syntax [see 2]. Examples of acceptable values are "100", ".892", "2e10",
and "314159e-5".

2.5.3 Amount

The amount data type is used to represent monetary values as a number of hundredths
(cents).

JSON Amount values are encoded as integers that represent the number of hundredths
in the amount value. The restrictions and recommendations for encoding integers
in JSON also apply to amounts. Examples of acceptable values are 0, 1000, -5795.

XML Amount-valued attributes contain numbers that start with an optional sign (-
or +), and must otherwise consist of zero or more decimal digits followed by a
decimal point and two digits. Examples of acceptable values are "0.00", "10.00",
"-57.95".

2.5.4 Boolean

The boolean data type consists of the values true and false.

JSON Booleans are represented as the JSON values true and false.

XML Boolean-valued attributes have "true" and "false" as acceptable values.

2.5.5 String

The string data type is used to represent text. The character set used is determined by the
enclosing JSON or XML document, and may be indicated in the Content-Type header.
UTF-8 is the default and should be used for both JSON and XML. Note that Unicode
characters may be escaped using the \uXXXX where X is a hexadecimal digit.

JSON String values are represented as JSON string values and must conform to the
string grammar rule [2]. Examples of acceptable values are "" and "Hello world".

©Deltek Inc., All Rights Reserved 23

2.5. DATA TYPES

XML String-valued attributes are a standard XML quoted attribute value. Examples
of acceptable values are "" and "Hello world".

2.5.6 Date

The date data type is used to represent a date that is composed of the year, month, and
day.

Both the JSON and XML representations use the following date format: YYYY-MM-DD.
YYYY is the year (for example, 2014). MM is the month (01 is january, 02 is february, . . . ,
12 is december). DD is the day of the month (01, 02, . . . , 31). In addition to conforming
to the format, a date value must be a valid date in the Gregorian calendar.

The date data type also has a special null data value that is represented as an empty
string.

JSON Date values are represented as a JSON string [2] whose contents conform to the
date format described in the previous section. Examples of acceptable values are:
"", "1950-04-05", "1945-04-25", "1946-12-16", and "1945-11-15".

XML Date-valued attributes contain values that conform to the date format described
in the previous section. Examples of acceptable values are: "", "1950-04-05",
"1945-04-25", "1946-12-16", and "1945-11-15".

2.5.7 Time

The time data type is used to represent a time that is composed of hour, minutes, and
seconds.

Both the JSON and XML representations use the following time format: hh:mm:ss where
hh is the hour (00, 01, . . . , 23), mm are the minutes (00, 01, . . . , 59) and ss are the
seconds (00, 01, . . . , 59).

The time data type also has a special null data value that is represented as an empty
string.

JSON Time values are represented as a JSON string [2] whose contents conform to the
time format described in the previous section. Examples of acceptable values are:
"", "10:59:23", and "19:21:49".

XML Time-valued attributes contains values that conform to the time format described
in the previous section. Examples of acceptable values are: "", "10:59:23", and
"19:21:49".

24 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

2.5.8 Enum

The enum data type (also called popup types in Maconomy) is a class of types. Each
particular enum type has a list of possible values. One example of an enum type is
CountryType, where the possible values are the countries available in the system. In
other contexts (for example, expressions), enum values are usually written using the
notation PopupType'PopupLiteral. In the JSON and XML representations, only the
enum literal value is used to avoid the need to parse the enum notation client-side. For
example, the value CountryType'Norway is encoded as the literal string "norway".

All enum types have a special nil enum value which is represented as the string
"nil".

JSON Enum values are represented as a JSON string [2] that contain the enum literal
value of a valid value of the enum type of the field.

XML Enum-valued attributes contain an enum literal value of a valid value of the enum
type of the field.

2.5.9 Time Duration

The time duration data type is a special-purpose variant of the real data type. It has the
same JSON and XML representation as the real data type, but it specifically represents
a time duration and should be formatted accordingly by client programs if the value is
to be presented in a user interface, print, or similar context.

2.5.10 Auto Timestamp

The auto timestamp datatype is a special-purpose variant of the string data type. It has
the same JSON and XML representation as the string data type.

2.6 Structures

Client programs must interact with two basic structures used to encode resource
states:

1. A container resource state

2. A record resource state

©Deltek Inc., All Rights Reserved 25

2.6. STRUCTURES

2.6.1 Container Resource State

A container resource state encodes the state of a resource in a container. The resource
state includes the state of all panes and the data records within each pane.

For example, if you have at least one expense sheet in our system, you can use the
data:any-key link from the ExpenseSheets container that links to an unspecified
expense sheet:
"data:any-key": {

"href": "http://server/containers/v1/rest/expensesheets/data;any",
"rel": "data:any-key"

},

This kind of link is normally not very useful. A client program typically wants to interact
with a specific expense sheet, rather than any expense sheet in the system. To obtain a
link to a particular expense sheet, use the filter resource to search for the expense sheet.
However, to examine the general structure of a container resource state, you can use any
expense sheet:
$ curl -u 'Administrator:123456'

-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/expensesheets/data;any'

{
"meta": {

"containerName": "expensesheets"
},
"links": {

"self": {
"href": "http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016",
"rel": "self"

}
},
"panes": {

"card": {
"meta": {

"concurrencyControl": "",
"paneName": "card",
"rowCount": 1,
"rowOffset": 0

},
"links": { ... },
"records": [...]

},
"table": {

"meta": {
"concurrencyControl": "\"card\"=\"2 ←↩

e9af88884dcd0a1de7b0f6ad2c41afee1891c7b\"",

26 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

"paneName": "table",
"rowCount": 1,
"rowOffset": 0

},
"links": { ... },
"records": [...]

}
}

}

The preceding example gives you an idea of the overall structure of a resource state,
which is composed of three levels:

1. The first level is the container resource state

2. The second level consists of a number of panes in the container resource state

3. The third level consists of a number of records in each pane

The objects at each of these three levels have the meta and links properties.

The meta property contains metadata about the object. For example, the meta object for
a container resource state includes the containerName, while the meta object for a pane
object contain the paneName as well as other metadata. By convention, the paneName
for a filter pane is filter, card for a card pane, and table for a table pane.

The links property contains hyperlinks used to manipulate that particular object.

In the preceding example, the container resource state contains the very important self
link that uniquely identifies this resource (in this case, a particular expense sheet). Recall
that an any key link was used to obtain an unspecified expense sheet. The self link
provides a stable link to this particular expense sheet so that you can find this expense
sheet even if the any key link should point to another expense sheet in the future. A
client program should use the self link as its local identifier for a resource state, and
whenever it receives a new state for a particular resource, it should replace any existing
local copy with the new one.

In the same way, the links property in a pane object contains links that can operate on
the pane object. For an example of links for the table pane, refer to the following:
"links": {

"action:create": {
"href": "http://server/containers/v1/rest/expensesheets/data; ←↩
expensesheetnumber=10760016/table",
"rel": "action:create"

},
"action:add": {

"href": "http://server/containers/v1/rest/expensesheets/data; ←↩
expensesheetnumber=10760016/table/init",
"rel": "action:add"

©Deltek Inc., All Rights Reserved 27

2.6. STRUCTURES

}
},

The table pane object contains links that allow you to create rows in the table.

2.6.2 Records

Each pane contains zero or more records in the records list. Look at the record in the
preceding card pane:
{

"meta": {
"concurrencyControl": "\"card\"=\"2 ←↩
e9af88884dcd0a1de7b0f6ad2c41afee1891c7b\"",
"rowNumber": 0

}
"links": {

...
},
"data": {

"accountnumbervar": "",
"amountbase": 0,
"amountenterprise": 0,
...

},
}

The record object also has meta and links properties. The meta object contains the
rowNumber of the record. The links property contains various hyperlinks that represent
state transitions available for the particular record, for example, update fields, delete the
record, or run an application action.

The data property contains an object with each of the field values in the record.

State transitions such as updating, deleting, and application actions occur in the context
of a particular record. When you update data, you interact with the record subresource.
You must use the record structure as the request entity when, for example, updating data.
When sending a record structure as a request entity, a client program may omit the meta
and links properties as well as any untouched fields in the data object. The following is
a valid record structure for updating the value of the description field:
{

"data": {
"description": "New description"

}
}

28 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

Note that even though updates, actions, and so on, happen on a single record, the
response entity is always a copy of the full container resource state.

2.7 Hyperlinks

Hyperlinks are used for two purposes in a web service:

1. Referencing related resources

On websites such as Wikipedia one document, such as an article, may contain
references to other related documents. A link can have one or more of various
relations to the context resource: it may link to another article, a web page used as
source, or something else. Similarly, hyperlinks in a web service contain links to
other resources. An Expense Sheet can, for example, contain a hyperlink to the
employee who owns the expensesheet.

2. State transitions

On some websites, using hyperlinks can change the state of the page. On an online
store such as Amazon, hyperlinks are also used to change the state of a resource,
the shopping basket. When a user clicks the Add to Basket hyperlink, it performs
a state transition on the shopping basket resource (adding an item). If the user
later clicks the Delete link, another state transition occurs (removing an item). The
available links represent the available state transitions. If the shopping basket is
empty, there will not be a Delete link. The same principles are used in web services.
An expense sheet may, for example, have links to submit the expense sheet for
approval. If a client program interacts with a submitted expense sheet, it may have
a link that can be used to reopen the expense sheet for further entries.

2.7.1 Link Relations

On a web page the title of the link communicates its purpose. In a web service the purpose
of a link is communicated to client programs via the link relation. The link relation [9]
defines the relationship between the context resource (the resource that contains the link)
and the target resource. In other words, link relations are simple keywords that identify
the purpose of a hyperlink.

self The self link relation indicates a hyperlink to the context resource. This is useful
when a client program interacts with one resource and the web service responds
with the state of another resource.

specification Indicates a reference to the specification resource for the context resource
(a container).

file Indicates a reference to a file that is produced as part of handling the request.

©Deltek Inc., All Rights Reserved 29

2.7. HYPERLINKS

data:filter Indicates a reference to a container filter resource that can be used to
search for specific resources within the container. If, for example, a client program
wants to display and interact with a particular expense sheet, it uses the filter to
find the link to the resource state of that particular expense sheet.

data:enumvalues Indicates a reference to a container resource state that provides the
possible values of an enumeration type.

data:any-key Indicates a reference to a container resource state that is identified by
“any” key. This is often not very useful, since a client program often needs to
interact with a specific resource rather than just any resource. To find a reference
to the specific resource, a client program must use the filter resource to search for
the required resource. However, in some situations, notably in singleton containers
that conceptually contain exactly one record for each user, this is the only way to
access the resource state.

data:same-key Indicates a reference to a container resource state that is identified by
the same key as the context resource. This kind of link occurs when a record in a
filter contains a link to the full resource state for that particular resource. A record
in the filter pane of the ExpenseSheets container links to the full resource state of
that particular expense sheet.

action:insert Indicates a link that is used to perform the initialize state transition in
the insert variant. This resource computes a template to be used when creating
a record. The template record is pre-filled with the default value for each field in
the record. The insert variant is significant in a table pane, where the new record
will be inserted at the position of the record that contains the hyperlink. Client
programs must use the POST method with no request entity to perform this state
transition.

action:add Indicates a link that is used to perform the initialize state transition in the
add variant. This works like the insert variant described previously, but in a table
pane the new record is added at the end of the table. Client programs must use
the POST method with no request entity to perform this state transition.

action:create Indicates a link that is used to perform the create state transition. This
creates a record in a pane. In a card pane, for example, in the ExpenseSheets
container, this creates an expense sheet. In a table pane it creates a row in the
table, for example another line on the expense sheet. Client programs must use the
POST method with a record structure as the request entity.

action:read Indicates a link that is used to perform the read state transition. This
obtains a fresh copy of the current resource state. This maps naturally to the
HTTP GET method.

action:update Indicates a link that is used to perform the update state transition. This
state transition changes the values of one or more fields in a record. Client programs

30 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

must use the POST method with a record structure as the request entity.

action:delete Indicates a link that is used to perform the delete state transition. This
state transition deletes a record. In a card pane, for example, in the ExpenseSheets
container, this deletes the expense sheet including any expense sheet lines. In a
table pane this deletes a row in the table, such as an expense sheet line. Client
programs must use the HTTP DELETE method.

action:print Indicates a link that is used to perform the print state transition. This
state transition produces a print from the resource state. Client programs must use
the POST method with no request entity. A link to the resulting print is included as
an HTTP response header field as described in Running an Action and Downloading
a Resulting File.

action:... Indicates a link that is used to perform an action state transition. Actions
other than the previously described must be invoked using the HTTP POST method
with no request entity. The actual set of supported action state transitions must
be obtained by client programs from the specification. An expense sheet may, for
example, support submitting the expense sheet for approval. The link relation for
that particular action is: action:submitexpensesheet

2.8 Authentication

Each request must be authenticated by using HTTP Basic Authentication [6].

This method of authentication entails transmitting the username and password on each
request, and in itself offers very weak protection of the user credentials. To be secure, the
Maconomy web services must be deployed behind an SSL/TLS termination proxy that
encrypts the traffic between the server and the client. If an SSL/TLS termination proxy
is not deployed, the user credentials sent to the Maconomy web services are vulnerable
to stealing by an attacker.

Note that Franks et al. [6] implicitly requires the credentials to be encoded as ISO-8859-1
by using the TEXT grammar rule defined in Fielding et al. [5]. However, most (but not
all) modern browsers encode the credentials as UTF-8. The Maconomy RESTful web
service interface follows the modern convention and requires user credentials to be UTF-8
encoded. This allows a wider range of special characters to appear in usernames and
passwords.

2.8.1 HTTP Basic Authentication

HTTP client library code normally has the ability to send HTTP Basic Authentication
credentials to the server. For completeness, the following describes the simple, underlying
mechanism.

©Deltek Inc., All Rights Reserved 31

2.8. AUTHENTICATION

When a client program tries to interact with a resource that requires authentication, the
server responds with a status of 401 Unauthorized:
$ curl -i

-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 401 Unauthorized
Date: Fri, 28 Nov 2014 15:05:38 GMT
Server: Jetty(8.1.14.v20131031)
Content-Type: application/json; charset=utf-8
WWW-Authenticate: Basic realm="Maconomy"
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked

{
"errorFamily": "service",
"errorMessage": "The request requires user authentication",
"errorSeverity": "error"

}

To resolve this a client program must look at the WWW-Authenticate HTTP response
header to see the method of authentication that the server requires. The token Basic in
the header value in the preceding example indicates that the server requires the client to
use HTTP Basic Authentication. The client must construct HTTP Basic Authentication
credentials and retry the request.

The following is an example of a simple Python program that illustrates how to compute
the credentials:
username = u"Administrator"
password = u"123456"

1. Combine the username and password separated by colon
combined = username + ":" + password

2. Encode the string into UTF-8 yielding sequence of bytes
utf8_bytes = combined.encode("utf-8")

3. Encode the byte sequence into Base64
base64_chars = base64.b64encode(utf8_bytes)

4. Prepend the result with the string "Basic " to indicate the ←↩
authentication method

authorization = "Basic " + base64_chars

In this example the authorization string has the value Basic QWRtaW5pc3RyYXRvcjoxMjM0NTY=.
The client program must retry the request and supply this value in the Authorization
HTTP request header:
$ curl -i

32 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

-H 'Authorization: Basic QWRtaW5pc3RyYXRvcjoxMjM0NTY='
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 200 OK
Date: Fri, 28 Nov 2014 15:06:06 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-transform, max-age=86400
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

...

Note that while encoding the string as Base64 masks the password, it is trivially reversible
and completely insecure in itself. That is why the web service must be deployed behind
an SSL termination proxy to be secure.

2.8.2 Suppressing the Browser’s Login Prompt

Client programs that run in a web browser by default get the browser’s native login
prompt when the web service requires authentication. The reason is that the web service
signals that it needs authentication via the Basic authentication scheme by sending the
WWW-Authenticate HTTP response header:
$ curl -i

-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 401 Unauthorized
Date: Fri, 28 Nov 2014 15:08:05 GMT
Server: Jetty(8.1.14.v20131031)
Content-Type: application/json; charset=utf-8
WWW-Authenticate: Basic realm="Maconomy"
...

When the web browser detects this response header, it automatically intercepts the
response and shows its native login prompt.

If a browser-based client program prefers to handle logins itself using a web UI in-
stead of the native login prompt, it must include the custom HTTP request header
Maconomy-Authentication and set its value to X-Basic. This causes the server to mod-
ify its subsequent WWW-Authenticate challenge to advertise the X-Basic authentication
scheme rather than the Basic authentication scheme:
$ curl -i

-H 'Maconomy-Authentication: X-Basic'
-H 'Accept-Language: en-US'

©Deltek Inc., All Rights Reserved 33

2.8. AUTHENTICATION

'http://server/containers/v1/rest/ExpenseSheets'
HTTP/1.1 401 Unauthorized
Date: Fri, 28 Nov 2014 15:07:28 GMT
Server: Jetty(8.1.14.v20131031)
Content-Type: application/json; charset=utf-8
WWW-Authenticate: X-Basic realm="Maconomy"
...

Note that the client program must use the Basic authentication scheme, rather than
X-Basic, when it supplies the username and password via the Authorization HTTP
request header.

2.8.3 Using Domain Credentials with Basic Authentication

If the Maconomy system is set up to use Kerberos authentication, the web service will,
by default, interpret the username and password as Kerberos domain credentials. A
client program can use the endpoint resource to examine if and how Kerberos domain
credentials should be used.

Consider the following example:
$ curl -i

'http://server/containers/v1/rest'
HTTP/1.1 200 OK
Date: Tue, 11 Nov 2014 12:55:40 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US-x-lvariant-W
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"shortname": "rest",
...
"authentication": {

"kerberos": {
"kdc": "PSO-DC.PSO.COM",
"realm": "PSO.COM",
"realms": {

"PSO.COM": {
"kdc": "PSO-DC.PSO.COM",
"name": "PSO.COM"

}
},
"serviceName": "MACONOMYSSO/PSO.COM"

},
"schemes": {

34 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

"basic": {
"name": "basic"

},
"negotiate": {

"name": "negotiate"
},
"x-changepassword": {

"name": "x-changepassword"
},
"x-reconnect": {

"name": "x-reconnect"
}

},
"useDomainCredentialsForBasicAuthentication": true

}
}

In the endpoint resource, the useDomainCredentialsForBasicAuthentication indi-
cates if basic authentication credentials will be interpreted as Kerberos domain creden-
tials.

The kerberos properties contain information about the available kerberos realms.

If a client program needs to use Maconomy credentials on a Maconomy system that is
set up to use Kerberos domain credentials, it must indicate that via the request header
field Maconomy-Authentication:
Maconomy-Authentication: X-Force-Maconomy-Credentials

This request header field indicates to the server that the client is sending Maconomy
credentials with the request.

2.8.4 OpenID Authentication

If the Maconomy system is set up to use the OpenID Connect protocol [10] for authen-
tication, then the web service will accept authorization codes issued by the configured
OpenID provider, e.g. Microsoft Azure. This subsection assumes basic familiarity with
the OpenID protocol, and in particular with the Authorization Code Flow [10, Section
3.1].

A client program can use the endpoint resource to obtain the relevant metadata required
to initiate an Authorization Code Flow. Consider the following example:
$ curl -i 'http://server/containers/v1/rest'
HTTP/1.1 200 OK
...

{

©Deltek Inc., All Rights Reserved 35

2.8. AUTHENTICATION

"shortname": "rest",
...
"authentication": {

"useDomainCredentialsForBasicAuthentication": false,
"schemes": {

...
"x-oidc-code": {

"name": "x-oidc-code"
},
...

},
"openIDProviders": [

{
"authorizationEndpoint": "https://login.microsoftonline.com/ ←↩

d2a26c48-d40f-4406-8a62-68073368e07c/oauth2/authorize",
"redirectURI": "https://login.microsoftonline.com/common/oauth2/ ←↩

nativeclient",
"clientID": "29074461-0743-4bc2-a7cc-1e983ac3f2e7"

}
],
...

},
...
}

The values authorizationEndpoint, redirectURI and clientID in the endpoint meta-
data tells the client program how to initiate an authentication request to the OpenID
Provider (in this case Microsoft Azure) using the Authorization Code Flow. The
redirectURI is a redirect URI that is guaranteed to be accepted by the OpenID Provider,
and which typically resolves to an empty web page. Such a redirect URI can be used
by so-called native clients that has full control over an embedded user agent and thus
have the ability to extract values returned via query or fragment parameters directly
from the location of the user agent. The Workspace Client is an example of such a
client, but in principle a smartphone app could operate in the same way. All non-native
clients (i.e. pure web apps) will have to use their own redirect URI which has to be
pre-registrered with the OpenID provider.

Once the user has successfully authenticated with the identity provider and the client
program has obtained an authorization code, the code can be used as a one-time authen-
tication credential using the X-OIDC-Code authorization scheme. Since the credentials
can only be used once, be sure to include a Maconomy-Authentication header with the
X-Reconnect directive in order to obtain reconnect credentials to use for subsequent
requests. The string to put as the value in the Authorization header must follow the
format for the OIDC-Credentials production in the following grammar:
OIDC-Credentials = "X-OIDC-Code" SP Authz-Cookie
Authz-Cookie = <base64-encoded Authz-Grant (no newlines)>
Authz-Grant = "<" Redirect-URI ">" ":" Authz-Code

36 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

Redirect-URI = <URI-Reference, see [RFC3986], Section 4.1>
Authz-Code = *TEXT

The Redirect-URI and Authz-Code productions match the concrete strings encoding
the redirect URI and authorization code, respectively.

For example, if the client program has obtained the authorization code AABAQE1_2345
using the redirect URI https://example.com/oauth2/authorize, then the header to
include looks as follows:

Authorization: X-OIDC-Code ←↩
PGh0dHBzOi8vZXhhbXBsZS5jb20vb2F1dGgyL2F1dGhvcml6ZT46QUFCQVFFMV8yMzQ1

The base64-encoded string following the authentication scheme token encodes the
string

<https://example.com/oauth2/authorize>:AABAQE1_2345

2.8.5 Expired User Passwords

If the user’s password has expired a request fails with a 401 Unauthorized status:

$ curl -i
-u 'Anders Hansen:123456'
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 401 Unauthorized
Date: Fri, 28 Nov 2014 15:11:50 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Content-Type: application/json; charset=utf-8
WWW-Authenticate: X-ChangePassword realm="Maconomy"
Transfer-Encoding: chunked

{
"errorFamily": "service",
"errorMessage": "The password has expired. Please enter a new password.",
"errorSeverity": "error"

}

In this situation the server offers a custom authentication method X-ChangePassword.
This method authenticates the request and change the user’s password. The credentials
are computed in a similar way to the standard HTTP Basic Authentication described
previously.

©Deltek Inc., All Rights Reserved 37

2.8. AUTHENTICATION

username = u"Anders Hansen"
old_password = u"123456"
new_password = u"MyNewPassword"

1. Combine the username, old password and new password with the required ←↩
separators

combined = username + ":" + old_password + "\n" + new_password

2. Encode the string into UTF-8 yielding sequence of bytes
utf8_bytes = combined.encode("utf-8")

3. Encode the byte sequence into Base64
base64_chars = base64.b64encode(utf8_bytes)

4. Prepend the result with the string "X-ChangePassword " to indicate the ←↩
authentication method

authorization = "X-ChangePassword " + base64_chars

The difference here is that the combined credentials are appended with a single line feed
character followed by the new password. The line feed character is usually written as \n
in string literals in programming languages. The token that indicates the authentication
method is X-ChangePassword, rather than Basic.

With this in place the client program can resolve this situation by letting the user change
the password by retrying the request with the resulting credentials:

$ curl -i
-H 'Authorization: X-ChangePassword ←↩

QW5kZXJzIEhhbnNlbjoxMjM0NTYKTXlOZXdQYXNzd29yZA=='
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 200 OK
Date: Fri, 28 Nov 2014 15:13:52 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-transform, max-age=86400
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked
...

The user’s password is now changed to MyNewPassword, and the client program should
use regular HTTP Basic Authentication for the following requests.

Note that the X-ChangePassword authentication method may be used at any time to
allow a user to change the password.

38 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

2.8.6 Kerberos via Negotiate (Single Sign-On)

If the Maconomy system is setup of to use Kerberos SSO, the web service will offer
authentication via the Negotiate mechanism [5]. This purpose of this mechanism is to
allow single sign-on by letting the client program, for example the user’s web browser,
obtain a Kerberos ticket for the web service without user interaction. The web service
forwards these credentials to the Maconomy system for verification.

2.8.7 Maconomy Reconnect

The web services support an proprietary authentication mechanism known as Maconomy
reconnect authentication. This option allows the client to log in and acquire a token that
can be used for subsequent requests. This authentication option can improve performance
over HTTP Basic Authentication or Kerberos via the Negotiate when a client program
needs to issue a series of requests.

The workflow of using Maconomy reconnect authentication is:

1. The client program authenticates, for example using Basic Authentication or
Negotiate. When authenticating, the client program includes the request header
field Maconomy-Authentication: X-Reconnect to indicate that it intends to use
Maconomy reconnect authentication for subsequent requests.

2. The server’s response include the header field Maconomy-Reconnect that contains
a token that the client can use for subsequent requests.

3. The client performs subsequent request by sending the request header Authorization:
X-Reconnect TOKEN where TOKEN is replaced by the token received from the server.

4. Each response from the server may include the Maconomy-Reconnect response
header field and the client must use the new token on subsequent requests.

5. On the last request, the client includes the request header field Maconomy-Authentication:
X-Log-Out to indicate that the server can log out the user and release any cached
resources.

Consider the following example. A client program authenticates using HTTP Basic
Authentication and indicates via the Maconomy-Authentication request header field
that subsequent requests will use Maconomy reconnect authentication:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Authentication: X-Reconnect'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 200 OK
Date: Fri, 25 Sep 2015 09:32:35 GMT
Server: Jetty(8.1.14.v20131031)

©Deltek Inc., All Rights Reserved 39

2.8. AUTHENTICATION

Content-Language: en-US
Maconomy-Reconnect: Zjg3ZWMwNDMtMmQ0OS00YTlmLThkN2MtNTY3YmM5Zjk3NTdl: ←↩

QWRtaW5pc3RyYXRvcgkwMDAwMDAzMF8yNjAzQUUwNwllOWQ5MDAyODJhNzg1ZTI5OTNkMjk4YTFkNDI2NTAzMg ←↩
==

Cache-Control: no-cache,no-store
Content-Type: application/json; charset=utf-8
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked

...

The server includes the response header field Maconomy-Reconnect. The client can use
the value of this response header field for authenticating subsequent requests by sending
the token with the X-Reconnect authentication scheme:
$ curl -i

-H 'Authorization: X-Reconnect ←↩
Zjg3ZWMwNDMtMmQ0OS00YTlmLThkN2MtNTY3YmM5Zjk3NTdl: ←↩
QWRtaW5pc3RyYXRvcgkwMDAwMDAzMF8yNjAzQUUwNwllOWQ5MDAyODJhNzg1ZTI5OTNkMjk4YTFkNDI2NTAzMg ←↩
=='

-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 200 OK
Date: Fri, 25 Sep 2015 09:38:34 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Cache-Control: max-age=86400, public
Content-Type: application/json; charset=utf-8
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked

...

Note that when using the X-Reconnect authentication scheme, any response may include
the Maconomy-Reconnect response header field. The client must always use the most
recent token.

When the client program has finished its interaction, it should log out the user. Consider
the following example:
$ curl -i

-H 'Authorization: X-Reconnect ←↩
Zjg3ZWMwNDMtMmQ0OS00YTlmLThkN2MtNTY3YmM5Zjk3NTdl: ←↩
QWRtaW5pc3RyYXRvcgkwMDAwMDAzMF8yNjAzQUUwNwllOWQ5MDAyODJhNzg1ZTI5OTNkMjk4YTFkNDI2NTAzMg ←↩
=='

-H 'Accept-Language: en-US'
-H 'Maconomy-Authentication: X-Log-Out'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 200 OK

40 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

Date: Fri, 25 Sep 2015 09:43:08 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Cache-Control: max-age=86400, public
Content-Type: application/json; charset=utf-8
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked

...

In this example, the client program sends the Maconomy-Authentication request header
field with the value X-Log-Out to signal to the server, that the user should be logged
out. The client program must discard the reconnect token at this point.

2.8.8 Two-Factor Authentication

If the Maconomy 2FA system is enabled then a second authentication factor must be
provided along with the standard Authorization header. The second factor consists of
a six-digit one-time password (OTP) generated by a TOTP-compatible program, usually
in the form of a smartphone app.

The special header Maconomy-OTP is used along with the usual Authorization header
when REST clients need to authenticate using 2FA. The header is used both as a request
header when the client needs to send one-time passwords to the server, as well as a
response header when the server needs to communicate 2FA authentication statuses.

An OTP must be included with every authorization header and since an OTP can
only be used once, the user will have to enter a new OTP for every successfully au-
thenticated request. Since this is impractical, it is recommended to always include the
Maconomy-Authentication header with the X-Reconnect directive to obtain reconnect
credentials upon the first successfully authenticated request, since these can always be
used to authenticate without an OTP.

Request header usage

When used in requests, the format of the header is:
Maconomy-OTP-Request = "Maconomy-OTP" ":" otp-request-directive
otp-request-directive = "authenticate" ";" "otp" "=" 1*DIGIT

/ "reset" [";" "method" "=" otp-reset-method]
[";" "token" "=" reset-token]

reset-token = quoted-string

Clients must also include an Authorization header if the Maconomy-OTP-Request header
is present.

©Deltek Inc., All Rights Reserved 41

2.8. AUTHENTICATION

The authenticate directive is used to provide a one-time password as a second authen-
tication factor. For example:
Authorization: QWRtaW5pc3RyYXRvcjoxMjM0NTY=
Maconomy-OTP: authenticate;otp=012345

The reset directive requests a reset of the OTP settings, allowing the user to re-enroll
with a new device upon the next login attempt. The optional method parameter specifies
the reset method (the default is email-token).

If the accompanying Authorization header successfully authenticates the user, OTP is
required, and the reset process was successfully initiated, then the server responds with
the status 401 unauthorized, but will indicate in a Maconomy-OTP header that a reset
process is in progress. The absence of a reset parameter in the header field indicates
that the reset process could not be initiated, in which case the response body includes a
description of the error.

For example:
Authorization: QWRtaW5pc3RyYXRvcjoxMjM0NTY=
Maconomy-OTP: reset;method=email-token

Reset methods

The supported OTP reset methods are described by the following ABNF:
otp-reset-method = "email-token"

The email-token method sends an email with further instructions to an address known
to be owned by the user.

Response header usage

When used as a response header, the format of the header is:
Maconomy-OTP-Response = "Maconomy-OTP" ":" otp-response-directive
otp-response-directive = "required" [";" "reset" "=" otp-reset-method]

[";" "enroll" "=" "<" URI-Reference ">"]
URI-Reference = <URI-reference, see [RFC3986], Section 4.1>

The header may only be included in 401 unauthorized responses to provide details
about authentication failures. The required directive indicates that authentication failed
due to a missing or invalid one-time password.

The presence of the optional enroll parameter indicates that the user has not yet enrolled
a security token device. The value specifies a URI to a Maconomy TOTP key resource.
By following the link, a client will be able to configure a TOTP program to generate

42 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

one-time passwords. The client is thus able to include a valid Maconomy-OTP header
with the authenticate directive in the subsequent request to the resource requiring
authentication. Key URIs encode sensitive information, and thus clients must take
measures to ensure that they are not stored in browser histories or otherwise saved
somewhere where an adversary could get access to them.

The presence of the optional reset parameter indicates that an out-of-band reset process
is in progress. The value specifies the particular method (see otp-reset-method).

Examples:
Maconomy-OTP: required
Maconomy-OTP: required;reset=email-token
Maconomy-OTP: required;enroll=<https://server:8080/auth/v1/cust/totp/key? ←↩

account=jim&secret=czNjcjN0>

TOTP key resource

A TOTP key resource is a web service endpoint which serves a shared TOTP secret in
different formats suitable for enrollment with a compatible device. URIs to key resources
are discovered via the Maconomy-OTP header described in the previous sections.

The resource only supports the HTTP GET verb. The verb requires no authentication.
The Accept header must be one of the following:

Value Description

image/*, image/png Return a PNG image of a QR code encoding the shared TOTP
secret as a key URI. The code is suitable for scanning with a range of compatible
smartphone apps. application/json Return a JSON object containing the key URI in
plain text. ———————————————————————-

JSON objects returned from the resource contain the following fields:

Field Description
totp-key-uri A key uri encoding the shared secret.

Example

When the user attempts to authenticate for the first time, the server responds with an
enrollment header:
$ curl -i

-u 'Administrator:123456'

©Deltek Inc., All Rights Reserved 43

https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format

2.8. AUTHENTICATION

-H 'Accept-Language: en-US'
http://server/containers/v1/rest/ExpenseSheets

HTTP/1.1 401 Unauthorized
Content-Language: en-US
Maconomy-OTP: required;enroll=<http://server/auth/v1/rest/totp/keyURI? ←↩

account=Administrator&secret=FY5lYCVs8xIbqx8YDENI70nupSs%3D>
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
WWW-Authenticate: Basic realm="Maconomy"
WWW-Authenticate: X-ResetPassword realm="Maconomy"
Vary: Accept,Accept-Language,Accept-Charset,Accept
Transfer-Encoding: chunked
Server: Jetty(8.1.14.v20131031)

{"errorMessage":"Mandatory two-factor authentication must be configured.\ ←↩
nPlease scan the QR code using a supported smartphone app.","errorFamily ←↩
":"service","errorSeverity":"error"}

By following the key URI
http://server/auth/v1/rest/totp/keyURI?account=Administrator&secret= ←↩

FY5lYCVs8xIbqx8YDENI70nupSs%3D

we obtain a PNG image of a QR code which we scan with a compatible smartphone
app. Using the app, we generate a new OTP, say 980461, and then repeat the request
including the OTP header:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-OTP: authenticate;otp=980461'
-H 'Maconomy-Authentication: X-Reconnect'
http://server/containers/v1/rest/ExpenseSheets

HTTP/1.1 200 OK
Content-Language: en-US
Maconomy-Reconnect: NTkwZWU1OWEtNWQz...
Cache-Control: no-cache,no-store
Content-Type: application/json; charset=utf-8
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked
Server: Jetty(8.1.14.v20131031)

...

We can use the reconnect credentials for authentication without the Maconomy-OTP header
in subsequent requests:
$ curl -i

-H 'Authorization: X-Reconnect NTkwZWU1OWEtNWQz...'

44 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

-H 'Accept-Language: en-US'
-H 'Maconomy-Authentication: X-Reconnect'
http://server/containers/v1/rest/ExpenseSheets

HTTP/1.1 200 OK
Content-Language: en-US
Maconomy-Reconnect: NTkwZWU1OWEtNWQz...
Cache-Control: no-cache,no-store
Content-Type: application/json; charset=utf-8
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked
Server: Jetty(8.1.14.v20131031)

...

Since the user has now been enrolled, subsequent requests will no longer offer the key
URI:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/ExpenseSheets'

HTTP/1.1 401 Unauthorized
Content-Language: en-US
Maconomy-OTP: required
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
WWW-Authenticate: Basic realm="Maconomy"
WWW-Authenticate: X-ResetPassword realm="Maconomy"
Vary: Accept,Accept-Language,Accept-Charset,Accept
Transfer-Encoding: chunked
Server: Jetty(8.1.14.v20131031)

{"errorMessage":"Two-factor authentication required.","errorFamily":"service ←↩
","errorSeverity":"error"}

In case the user loses the 2FA device, a reset request can be initiated by using the reset
directive as follows:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-OTP: reset'
http://server/containers/v1/rest/ExpenseSheets

HTTP/1.1 401 Unauthorized
Content-Language: en-US
Maconomy-OTP: required
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
WWW-Authenticate: Basic realm="Maconomy"

©Deltek Inc., All Rights Reserved 45

2.9. STATUS CODES AND ERRORS

WWW-Authenticate: X-ResetPassword realm="Maconomy"
Vary: Accept,Accept-Language,Accept-Charset,Accept
Transfer-Encoding: chunked
Server: Jetty(8.1.14.v20131031)

{"errorMessage":"Enter Token [15d7e2d749f92a3340e61d336ea]","errorFamily":" ←↩
service","errorSeverity":"error"}

This will initiate a reset process where a reset token will be sent to the user via a trusted
channel, e.g. email. In the above example, however, a demo reset procedure is enabled
which returns the reset token directly in the response—in practice, the error message
would instruct the user to check his or her email account.

The reset process is finalized by including the reset token in an authenticated request
using the token parameter to the reset directive as follows (note the double quotes
around the token!):
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-OTP: reset;token="15d7e2d749f92a3340e61d336ea"'
http://server/containers/v1/rest/ExpenseSheets

HTTP/1.1 401 Unauthorized
Content-Language: en-US
Maconomy-OTP: required;enroll=<http://server/auth/v1/rest/totp/keyURI? ←↩

account=Administrator&secret=PhImtxfDQI9l7RTMJ50ONBLJFgY%3D>
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
WWW-Authenticate: Basic realm="Maconomy"
WWW-Authenticate: X-ResetPassword realm="Maconomy"
Vary: Accept,Accept-Language,Accept-Charset,Accept
Transfer-Encoding: chunked
Server: Jetty(8.1.14.v20131031)

{"errorMessage":"Mandatory two-factor authentication must be configured.\ ←↩
nPlease scan the QR code using a supported smartphone app.","errorFamily ←↩
":"service","errorSeverity":"error"}

We can now follow the enrollment link to enroll a new device.

2.9 Status Codes and Errors

Each response from the web service has an HTTP status code. The status code tells
whether the request was successful. If the request was unsuccessful the status code
indicates what kind of failure occurred which is used by client programs to decide how to
proceed.

46 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

Most people have encountered the 404 Not Found status code when browsing the web.
The three-digit integer status code (404) is the significant part that client programs use
to categorize the error. The text (Not Found) is called the reason phrase and is intended
for humans to help explain the error. The numeric status code is standardized and has
a particular meaning, while the reason phrase may differ in various ways (it may differ
between web server software, it may be localized, and so on).

Status codes are categorized into families, where the family is indicated by the first digit
of the status code. The important ones for the Maconomy RESTful web service interface
are:

Status
Codes Family Explanation
1xx Informational Request received, continuing process. This family is

not used in the Maconomy RESTful web service
interface.

2xx Success The action was successfully received, understood, and
accepted.

3xx Redirect Further action must be taken to complete the request.
4xx Client Error The request contains bad syntax or cannot be fulfilled.
5xx Server Error The server failed to fulfill an apparently valid request.

The following is a list of the status codes that are used in the Maconomy RESTful web
service interface along with their meanings:

Status
Code Reason phrase Explanation
200 OK The request has succeeded. If the request is

a GET request the response is a
representation of the requested resource. If
the request is a POST or DELETE request the
response may be the representation of the
resource that was affected by the request.

400 Bad Request The request entity or request headers
contained malformed or incomplete
information. This usually indicates a
programming error in the client program.

401 Unauthorized The request requires user authentication.
The client program must retry the request
with valid HTTP Basic Authentication
credentials.

403 Forbidden The requested resource or action is not
permitted with the supplied credentials.

©Deltek Inc., All Rights Reserved 47

2.9. STATUS CODES AND ERRORS

Status
Code Reason phrase Explanation
404 Not Found The requested resource was not found. It

may or may not have existed at an earlier
point in time and was subsequently deleted
by another user.

405 Method Not Allowed The HTTP method is not allowed for the
resource. For example, a resource may not
support GET, POST, or DELETE.

406 Not Acceptable The resource cannot be represented in the
media type specified in the Accept request
header.

408 Request Timeout The client did not produce a request within
the time that the server was prepared to
wait. The client may retry the request.

409 Conflict The request could not be completed because
of a conflict with the current state of the
resource. This indicates that the resource
was updated by another user. The client
may refresh its current state of the resource
and retry the request.

413 Request Entity Too
Large

The request entity was larger than the
maximum size supported by the server.

414 Request-URI Too Long The request URI/URL was larger than the
maximum length supported by the server.

415 Unsupported Media
Type

The server does not support the media type
specified in the Content-Type request
header.

422 Application Error The request could not be completed because
it violated application business logic.

500 Internal Server
Error

A catch-all status code for unexpected
errors.

Fielding et al. [5] contains a detailed specification of the semantics of each of the status
codes, except for 422 Application Error, which is adopted from Dusseault [4].

Note that when the Maconomy RESTful web services are deployed behind an HTTP
reverse proxy, the proxy server may use additional status codes. The status code 503
Service Unavailable may, for example, be used to indicate that the Maconomy system
is unreachable.

48 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

2.9.1 Error Response Entities

When an error occurs, the HTTP status code is typically used by client programs to
dispatch to error handling code that is appropriate for that particular type of error.
What is appropriate depends on the nature of the client program, but in many cases it
makes sense to log or display an error message. The response entity for an unsuccessful
request has an error message and metadata that can be used to signal the error.

The following example illustrates what happens if you try to register 30 hours on a
Monday on a time sheet:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"=" ←↩

b666368b8fb209c3e1e98dde6f7d39b3f5797281", "table"=" ←↩
a66cc1b06fdcc3275e4cccdd796c4d39927b2ff6"'

-H 'Content-Type: application/json'
-d '{ "data" : { "numberday1" : 30.0 } }'
'http://server/containers/v1/rest/timesheets/data;employeenumber=11; ←↩

periodstart=2012-05-28/table/0'
HTTP/1.1 422 Unprocessable Entity
Date: Fri, 28 Nov 2014 15:17:32 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"errorFamily": "application",
"errorMessage": "The employee's maximum hours are exceeded Monday",
"errorSeverity": "error",
"focus": {

"fieldName": "numberday1",
"paneName": "table",
"rowNumber": 0

}
}

The HTTP status code 422 Application Error indicates that the request was unsuc-
cessful because of an application error.

The errorMessage property contains an error message that is appropriate to display to
a user or report in the way that is appropriate for the client program.

The errorFamily property describes what kind of error occurred. The possible values
are:

©Deltek Inc., All Rights Reserved 49

2.9. STATUS CODES AND ERRORS

Family Explanation
application An application error indicates that the request was unsuccessful

because it violated business logic in the Maconomy system.
service A service error indicates a technical problem or other condition that

was not caused by the business logic. One example is trying to
interact with a record that was changed or deleted by another user.

internal An internal error is an unexpected error that can indicate a problem
in the system setup or a bug in the web service. The server log files
usually contain a message indicating the underlying cause. An
example could be that the database is not running.

The errorSeverity indicates the severity of the error. The possible values are:

Family Explanation
fatal The fatal severity indicates an unexpected error where an invariant

was violated.
error The error severity indicates a regular error condition, for example,

a business constraint was violated.
warning The warning severity indicates a warning to the user about a

potential problem.

The focus property may be present if the error relates to a particular field. It indicates
to client programs to put the focus in the field to help the user identify the cause of the
error. The property paneName indicates in which pane the field is located, the rowNumber
indicates which row the offending value is found, and the fieldName indicates which
field is related to the error.

2.9.2 Warnings and Notifications

Maconomy may raise warnings and notification messages. These are included in the
HTTP response header fields Maconomy-Warning and Maconomy-Notification. These
HTTP response header fields can appear multiple times.

In Maconomy a warning reports a message to the client and allows the user to continue or
abort the operation. In traditional Maconomy clients this is implemented by a synchronous
callback where the server waits for the human user or client program to continue or
abort. This protocol is not naturally encoded in an HTTP-based interface and by default
the containers in the Maconomy RESTful web service interface automatically accept
any warnings and include the messages of the accepted warnings in the HTTP response
header. This behavior can be customized using the Maconomy-Warning-Callback HTTP
request header field. Consider the following example:

50 ©Deltek Inc., All Rights Reserved

CHAPTER 2. BASICS

$ curl -u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="545203 ←↩

cdc94d01a2ec1848298be4d6186b6a57c6"'
-H 'Maconomy-Warning-Callback: reject'
-X DELETE
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/table/0'
HTTP/1.1 422 Unprocessable Entity
Date: Fri, 25 Sep 2015 08:44:01 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Cache-Control: no-cache, no-store
Maconomy-Warning: "The time sheet has not been approved-continue?"
Content-Type: application/json; charset=utf-8
Vary: Accept,Accept-Language,Accept-Encoding,Accept-Charset
Transfer-Encoding: chunked

{
"errorFamily": "application",
"errorMessage": "The time sheet has not been approved-continue?",
"errorSeverity": "warning"

}

In this example, the clients sets the Maconomy-Warning-Callback request header field
to reject to indicate that the server should abort the request in case of an application
warning. This causes the server to respond with a 422 Application Error and include
the message with the response.

2.10 Compression

The web services support gzip compression via the standard HTTP mechanism [see
5, section 14.4]. The client program includes the Accept-Encoding HTTP request
header to indicate to the server which kinds of compression it supports. If the client
includes the gzip encoding, the server compresses the entity in the response. HTTP
client library code normally supports this transparently. In curl this is enabled by using
the --compress option.

©Deltek Inc., All Rights Reserved 51

2.10. COMPRESSION

52 ©Deltek Inc., All Rights Reserved

Chapter 3

Filtering

A previous example obtained an expense sheet by using the any key hyperlink. This
provided the resource state of some unspecified expense sheet in the system. A client
program typically wants to interact with a specific expense sheet rather than any expense
sheet in the system. The way to obtain a link to a particular expense sheet is to use the
filter resource to search for the expense sheet.

The container resource obtained earlier contains a link to a filter resource:
"data:filter": {

"href": "http://server/containers/v1/rest/expensesheets/filter",
"rel": "data:filter"

},

You can use that to search for expense sheets in the system:
$ curl -u 'Administrator:123456'

-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/expensesheets/filter'

{
"meta": {

"containerName": "expensesheets"
},
"links": {

"self": {
"href": "http://server/containers/v1/rest/expensesheets/filter",
"rel": "self"

}
},
"panes": {

"filter": {
"meta": {

"paneName": "filter",
"rowCount": 25,

53

"rowOffset": 0
},
"links": {},
"records": [...]

}
}

}

The filter resource has the same structure as any other resource state, but it supports
additional features that are relevant for searching for resources:

• Paging

• Sorting

• Selecting fields

• Restrictions

Look at the first record in the filter:

{
"meta": {

"rowNumber": 0
},
"links": {

"data:same-key": {
"href": "http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760001",
"rel": "data:same-key"

}
},
"data": {

"amountbase": 8200,
"amountenterprise": 1100,
"approvaldate": "",
...
"expensesheetnumber": 10760001,
...

}
}

This record contains fields that are appropriate to display in a user interface where
the user is searching for a particular expense sheet. The links object for this record
contains a link that points to this particular expense sheet resource, indicated by the
data:same-key link relation. A client program must follow this link to interact with the
expense sheet.

54 ©Deltek Inc., All Rights Reserved

CHAPTER 3. FILTERING

3.1 Paging

You may notice that you get exactly 25 records in the filter even though the system
contains more than 25 expense sheets. This is because the filter resource splits the results
into pages. Two query parameters control the paging.

Query
Parameter Function
limit Defines the maximum number of records the filter will contain. The

default value is 25. Setting this value to 0 indicates to the server
that it should include all of the results in the response.

offset Skips the first offset results. The default value is 0.

The following provide examples:

.../expensesheets/filter Using the default values for limit (25) and offset (0):
Find up to 25 records, starting from zero.

.../expensesheets/filter?limit=25&offset=0 With explicit values for limit and
offset: Find up to 25 records, starting from zero.

.../expensesheets/filter?limit=25&offset=25 Find up to 25 records, starting from
record number 25.

.../expensesheets/filter?limit=11&offset=8 Find up to 11 records, starting from
record number 8.

3.2 Sorting

The filter resource supports changing the sort order of the results in the filter. This is
controlled by the orderby query parameter.

The orderby parameter takes a comma-separated list of field names in the filter. For
example:

.../expensesheets/filter?orderby=DateSubmitted Sort using the field DateSubmitted
in ascending order.

.../expensesheets/filter?orderby=DateSubmitted,EmployeeName Sort using the field
DateSubmitted in ascending order. Records having the same DateSubmitted are
then sorted by EmployeeName in ascending order.

If you provide only a a field name, it sorts in ascending order. You can also prefix the
field name with + to indicate ascending order, or - to indicate descending order:

©Deltek Inc., All Rights Reserved 55

3.3. SELECTING FIELDS

.../expensesheets/filter?orderby=+DateSubmitted Sort using the field DateSubmitted
in ascending order.

.../expensesheets/filter?orderby=-DateSubmitted Sort using the field DateSubmitted
in descending order.

.../expensesheets/filter?orderby=-DateSubmitted,EmployeeName Sort using the
field DateSubmitted in descending order. Records having the same DateSubmitted
are then sorted by EmployeeName in ascending order.

.../expensesheets/filter?orderby=-DateSubmitted,+EmployeeName This is the same
as the preceding example above: Sort using the field DateSubmitted in descending
order. Records having the same DateSubmitted are then sorted by EmployeeName
in ascending order.

3.3 Selecting Fields

The filter resource supports fetching a subset of the available fields. This is controlled by
the fields query parameter that takes a comma-separated list of fields. If the fields
query parameter is not used, all available fields are included in the response. Note that
key fields are always included in the response.

For example, if you get .../expensesheets/filter?fields=EmployeeName,Description,
it returns these records:
...
{

"data": {
"description": "Meals, working weekend",
"employeename": "J\u00f8rgen Jansen",
"expensesheetnumber": 10760001

},
"links": { ... },
"meta": {

"rowNumber": 0
}

},
{

"data": {
"description": "Conference",
"employeename": "J\u00f8rgen Jansen",
"expensesheetnumber": 10760012

},
"links": { ... },
"meta": {

"rowNumber": 1
}

56 ©Deltek Inc., All Rights Reserved

CHAPTER 3. FILTERING

},
{

"data": {
"description": "Customer Visit",
"employeename": "J\u00f8rgen Jansen",
"expensesheetnumber": 10760014

},
"links": { ... },
"meta": {

"rowNumber": 2
}

},
...

This explicitly selects the fields description and employeename. The field expensesheetnumber
is a key field and is therefore automatically included in the result.

If you select only fields that are actually used by the client program, performance when
searching improves.

3.4 Restrictions

You can select only a subset of the records that satisfies an expression. This works similar
to a WHERE clause in SQL. This is controlled by the restriction query parameter. The
syntax used is the Expression Language which is also used in MDML and other XML
specification languages in Maconomy. See the MDML Language Reference [3] for a full
description of the Expression Language.

Note that this and all other query parameters must be URL-escaped (sometimes called
percent encoded). This is normally done automatically by the HTTP library code, but
when you use the command-line, you might need to perform the conversion first:

.../expensesheets/filter?restriction=CreatedDate%20>%20date(2014,7,1) Here
the expression CreateDate > date(2014,7,1) returns the expense sheets that
were created after July 1, 2014.

.../expensesheets/filter?restriction=Submitted Here the expression Submitted
returns the expense sheets that have been submitted for approval.

.../expensesheets/filter?restriction=Submitted%20and%20EmployeeName%20like%20%22Bob*%22
Here the expression Submitted and EmployeeName like "Bob*" returns the ex-
pense sheets that have been submitted for approval where the employee’s name
starts with “Bob”.

©Deltek Inc., All Rights Reserved 57

3.4. RESTRICTIONS

58 ©Deltek Inc., All Rights Reserved

Chapter 4

Updating Data

The containers in the Maconomy RESTful web service interface support various state
transitions for the resources:

• Create a record

• Update a record

• Delete a record

• Run an action (in the context of a record)

4.1 Using the POST Method

All of the preceding examples have just used a curl with a URL as a parameter. When
you do that you use the GET HTTP method. This method is used to get a copy of the
state of a resource, but it should not have any effect on the system.

When you need to change the state of a resource or create a resource, you use the POST
HTTP method. You can use the POST method with or without a request entity, depending
on what you want to happen. The following are some examples:

• Before creating a record the client program use the initialize transition to get a
template record structure with default values. The client program must use the
POST HTTP method without a request entity.

• The client program wants to use the update transition to change some of the values
in a record. The client program must use the POST method with a record structure
with the updated data fields as the response entity.

• The client program wants to run an application action. It must use the POST
method without a request entity.

59

4.1. USING THE POST METHOD

When a client program uses the POST method with a request entity, it must always
specify the media type of the request entity by including the Content-Type HTTP
request header. Recall that the media type is either application/json when using
JSON format, or application/xml when using XML format.

In curl the -X parameter allows you to set the HTTP method to something other than
the default GET method.

For example, try the initialize transition. Recall that you obtained this link from the
ExpenseSheets container earlier:

"action:insert": {
"href": "http://server/containers/v1/rest/expensesheets/data/card/init",
"rel": "action:insert"

},

When you look at the description of the link relations in this document, you see that you
must use the POST method with no response entity:

$ curl -u 'Administrator:123456'
-H 'Accept-Language: en-US'
-X POST
'http://server/containers/v1/rest/expensesheets/data/card/init'

{
"meta": {

"concurrencyControl": "",
"rowNumber": 0

},
"links": {

"action:create": {
"href": "http://server/containers/v1/rest/expensesheets/data/card",
"rel": "action:create"

}
},
"data": {

"accountnumbervar": "",
"amountbase": 0,
"amountenterprise": 0,
...

}
}

The response entity is a template record structure. The template record contains a link
that you can use to create the record.

60 ©Deltek Inc., All Rights Reserved

CHAPTER 4. UPDATING DATA

4.2 Concurrency Control

In a system like Maconomy, with support for multiple concurrent users, sometimes more
than one user tries to work on the same data concurrently. This can cause a problem
known as a lost update. Consider this series of events:

1. Alice fetches the state of a particular job resource and starts editing her local copy

2. Bob fetches the state of the same job resource and starts editing his local copy

3. Alice finishes and sends her updates to the server

4. Sometime later, Bob finishes and sends his updates to the server

In a system without concurrency control, Bob’s updates can overwrite Alice’s updates
with neither Bob nor Alice realizing it.

In Maconomy, Bob’s update is rejected and he is informed that the record was changed
by another user since he last refreshed his data. The client program must then refresh
the data and possibly try the update operation again.

In the containers in the Maconomy RESTful web service interface this is implemented
using a concurrency control tag, which can be thought of as a fingerprint of the cur-
rent resource state. When using the POST method, a client program must include the
Maconomy-Concurrency-Control HTTP request header with the concurrency control
tag. To find the correct tag for a particular link, the client program must include the
value of the concurrencyControl property in the meta object on the same level as the
links object that contains the link. Consider this example from a record in an expense
sheet resource state:

{
"meta": {

"concurrencyControl": "\"card\"=\"13 ←↩
d35dc81751aa5dc76c7cc8726e4600f69d2265\"",
"rowNumber": 0

},
"links": {

...
"action:update": {

"href": "http://server/containers/v1/rest/expensesheets/data; ←↩
expensesheetnumber=10760016/card/0",

"rel": "action:update"
},
...

},
"data": { ... },

}

©Deltek Inc., All Rights Reserved 61

4.3. UPDATING A RECORD

Note that the value of the concurrencyControl property is string-escaped in both JSON
or XML format. Normally, unescaping is handled automatically by the JSON or XML
library code, but when you experiment on the command line you must unescape the string
value manually. For example "\"card\"=\"13d35dc81751aa5dc76c7cc8726e4600f69d2265\""
in the above example must be unescaped to "card"="13d35dc81751aa5dc76c7cc8726e4600f69d2265".

4.3 Updating a Record

Now you are ready to try to update a record. This continues the preceding example:
$ curl -u 'Administrator:123456'

-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="13 ←↩

d35dc81751aa5dc76c7cc8726e4600f69d2265"'
-H 'Content-Type: application/json'
-d '{ "data" : { "description": "New Description" } }'
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/card/0'
...

When you perform this update, the web service responds with a full copy of the updated ex-
pense sheet resource state (http://server/containers/v1/rest/expensesheets/data;expensesheetnumber=10760016).
Notice that the state transitions in Maconomy occur on record subresources, but the
result is always the full container resource state.

This example includes the concurrency control tag in the Maconomy-Concurrency-Control
HTTP request header. This example also includes the media type of the request entity
in the Content-Type HTTP request header. This example uses the -d parameter to
specify the request entity directly on the command line. Notice that when you use the
-d parameter curl automatically use the POST method.

The following is the result if you forget to include the concurrency control tag:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Content-Type: application/json'
-d '{ "data" : { "description": "New Description" } }'
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/card/0'
HTTP/1.1 400 Bad Request
Date: Wed, 03 Dec 2014 14:23:57 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8

62 ©Deltek Inc., All Rights Reserved

CHAPTER 4. UPDATING DATA

Connection: close
Transfer-Encoding: chunked

{
"errorFamily": "service",
"errorMessage": "Missing concurrency digest for pane 'card'. Please check ←↩

the value of the 'Maconomy-Concurrency-Control' HTTP header.",
"errorSeverity": "error"

}

This returns a response with the status 400 Bad Request and a message advising you
to check the Maconomy-Concurrency-Control HTTP request header.

The following is an example of what happens if another user changed the record since
you last refreshed the resource state:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="13 ←↩

d35dc81751aa5dc76c7cc8726e4600f69d2265"'
-H 'Content-Type: application/json'
-d '{ "data" : { "description": "New Description" } }'
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/card/0'
HTTP/1.1 409 Conflict
Date: Wed, 03 Dec 2014 14:25:56 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"errorFamily": "service",
"errorMessage": "The operation cannot be performed because the data was ←↩

changed by another user. Please refresh and retry the request.",
"errorSeverity": "error"

}

The web service responds with the status 409 Conflict. This indicates to the client
program that the request could not be performed because the same resource was updated
by another user. In this situation the client program must refresh its resource state, and
possibly retry the operation.

©Deltek Inc., All Rights Reserved 63

4.4. CREATING A RECORD

4.4 Creating a Record

When creating a record, for example another line in an expense sheet, the client program
should use the initialize state transition to obtain a template record:
$ curl -u 'Administrator:123456'

-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"=" ←↩

f39c251d85a4482c40ab3880fb401aea4b61da18"'
-X POST
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/table/init?row=0'
{

"meta": {
"concurrencyControl": "\"card\"=\" ←↩
f39c251d85a4482c40ab3880fb401aea4b61da18\"",
"rowNumber": 0

},
"links": {

"action:create": {
"href": "http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/table?row=0",
"rel": "action:create"

}
},
"data": {

"activitynumber": "",
"activitytextvar": "",
"amountbase": 0,
...

}
}

The client program can then edit the template record and use the create link in the
template record to actually create the record in the database. Notice that the template
record also contains the necessary concurrencyControl tag. In the following example
the template record was saved to the file new-record.json and subsequently edited.
This request completes the creation of the record on the server:
$ curl -u 'Administrator:123456'

-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"=" ←↩

f39c251d85a4482c40ab3880fb401aea4b61da18"'
-H 'Content-Type: application/json'
-d '@new-record.json'
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/table/init?row=0'
...

64 ©Deltek Inc., All Rights Reserved

CHAPTER 4. UPDATING DATA

Again, this creates the record and returns a full copy of the container resource state.

4.5 Deleting a Record

To delete a record, a client program must use the DELETE method on a link with the link
relation action:delete.

For example, the following deletes a line in the expense sheet:

$ curl -u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"=" ←↩

f39c251d85a4482c40ab3880fb401aea4b61da18", "table"="2 ←↩
d6cf7f5263d2272eaf794d41303b1d1b0f2867f"'

-X DELETE
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/table/0'

Again, this deletes the record and returns a full copy of the container resource state.

But what happens if you delete the card record? Consider the following example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="9 ←↩

f6f6c07dc4edf1457b03fd52c221b7230e0c09d"'
-X DELETE
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760016/card/0'
HTTP/1.1 204 No Content
Date: Wed, 03 Dec 2014 14:31:59 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Length: 0

This is a special case that the client program must handle correctly. When a client
program deletes the card record (the expense sheet) the expense resource itself is gone.
The web service responds with the status 204 No Content to indicate that the request
was successful, but because there is no longer a resource state, there is no response
entity.

©Deltek Inc., All Rights Reserved 65

4.6. RUNNING ACTIONS

4.6 Running Actions

In Maconomy each container can define state transitions specific to that container, known
as application actions. If the record state contains a hyperlink for an application action,
the client program can use the link to perform the state transition. The following example
uses this link from an expense sheet card record:
"action:submitexpensesheet": {

"href": "http://server/containers/v1/rest/expensesheets/data; ←↩
expensesheetnumber=10760015/card/0/action;name=submitexpensesheet",

"rel": "action:submitexpensesheet"
}

When a client program invokes an application action, it must use the POST HTTP method
without a request entity. For example:
$ curl -u 'Administrator:123456'

-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="33731 ←↩

bc47b290740e31f56838a5286361de7cd76"'
-X POST
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760015/card/0/action;name=submitexpensesheet'

Again, this runs the SubmitExpenseSheet action and returns a full copy of the resulting
container resource state.

4.7 Passing Arguments to an Action

Some container actions expect arguments to be passed when running the action. Ar-
guments are expression in the Expression Language that is also used for filter restric-
tions.

To pass an argument, the client program appends a query string to the action URL.
Consider the following example:
$ curl -u 'Administrator:123456'

-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="490 ←↩

a7ba2fccbfe01bba2094f0fe46e5a899fba84"'
-X POST
'http://server/containers/v1/rest/trifolium:customcontainer/data; ←↩

customnumber=42/card/0/action;name=myaction?argument:parameterName=date ←↩
(2015,9,25)'

In this example the container trifolium:customcontainer has the myaction action
in its card pane. The client passes the value date(2015,9,25) for the parameter

66 ©Deltek Inc., All Rights Reserved

CHAPTER 4. UPDATING DATA

parameterName. Each argument binding must be prefixed with argument: so the format
is:
argument:PARAMETER=VALUE

PARAMETER is the name of the action parameter and VALUE is an expression that contains
the argument value.

©Deltek Inc., All Rights Reserved 67

4.7. PASSING ARGUMENTS TO AN ACTION

68 ©Deltek Inc., All Rights Reserved

Chapter 5

Advanced Topics

Some containers have special functionality that requires client programs to use more
complex interaction patterns:

Singleton Containers Some containers conceptually expose a single resource rather
than a collection of resources.

Mutable Variable State Some containers have mutable variables that serve as param-
eters to actions.

Consuming and Producing Files Some containers have actions that consume or
produce files.

Foreign Key Searching Advanced clients can perform foreign key searches to let a
user obtain a suitable value for a field.

This chapter covers these more advanced topics.

5.1 Singleton Containers

A container generally holds a collection of resources. For example the ExpenseSheets
container can hold a number of separate expense sheets. But some containers—singleton
containers—hold only a single resource. A container can be a per-user singleton or a
global singleton.

The special thing about a singleton container is how the resource is addressed. To access
a particular resource in a non-singleton container, a client program must access the filter
resource and navigate the link with the data:same-key link relation. To access the
resource in a singleton container the link with the data:any-key link relation must be
used.

69

5.1. SINGLETON CONTAINERS

The reason for this is that behind the scenes a particular resource in a non-singleton
container is identified by key field values that are included in the link target. A singleton
container must not be addressed using the key fields even if it defines a key in its
specification. Instead it must always be addressed by “any” key to indicate that you
access the single resource that is available in the container.

One example of a singleton container is TimeRegistration. This container is a per-user
singleton container that provides access to the current user’s time sheets. A mutable
variable DateVar in the card pane of the container is used to control which time sheet
lines to show and interact with in the table part.

Singleton containers use their card parts to represent selection criteria such as the DateVar
variable in TimeRegistration. The selection criteria can be used to parameterize an
action or a select particular set of lines in the table part.

The following example accesses the container entry point for TimeRegistration:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/TimeRegistration'

HTTP/1.1 200 OK
Date: Wed, 03 Dec 2014 14:33:06 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-transform, max-age=86400
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"containerName": "timeregistration",
"links": {

"data:any-key": {
"href": "http://server/containers/v1/rest/timeregistration/data;any",
"rel": "data:any-key"

},
"specification": {

"href": "http://server/containers/v1/rest/timeregistration/ ←↩
specification",

"rel": "specification"
}

}
}

If you contrast that with the entry point for ExpenseSheets you see that TimeRegistration
has no filter resource and no links to create a resource. These are not useful in a singleton
container, because the container only holds a single resource.

70 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

The only choices that you have are accessing the specification and accessing the single
resource via the data:any-key link.

5.2 Maintaining Mutable Variable State

A record in a container resource is generally composed of fields that may be:

• Fields that are persisted in the database and make up the resource state. Such
fields may be writable or read-only.

• Fields that are derived or calculated from the resource state, sometimes called
variables. Such fields are read-only.

• Mutable variables. Mutable variables are not persisted in the database, but may
be set by the client program anyway. Mutable variables are often used to transmit
values that serve as parameters to an action.

Maconomy client programs have traditionally transmitted the entire state of all mutable
variables on each request, which requires complex program logic in the client programs.
Since one of the main goals of the Maconomy RESTful web service interface is to make
it easy to write client programs, the containers in the web service interface offer a more
limited mechanism for maintaining mutable variables on an as-needed basis by providing
the variable values as query parameters.

Consider the following examples. The container JobTasks has an action in its card pane
that copies the job tasks from another job:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/jobtasks/data;jobnumber=10250001'

HTTP/1.1 200 OK
Date: Wed, 03 Dec 2014 14:34:06 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

...
"action:copyjobtasks": {

"href": "http://server/containers/v1/rest/jobtasks/data;jobnumber ←↩
=10250001/card/0/action;name=copyjobtasks",

"rel": "action:copyjobtasks"
},
...

©Deltek Inc., All Rights Reserved 71

5.2. MAINTAINING MUTABLE VARIABLE STATE

The following tries to run the action:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="4 ←↩

f1d086b148ebf0f15b9126e3da239b6d00e680b"'
-X POST
'http://server/containers/v1/rest/jobtasks/data;jobnumber=10250001/ ←↩

card/0/action;name=copyjobtasks'
HTTP/1.1 422 Unprocessable Entity
Date: Wed, 03 Dec 2014 14:38:28 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"errorFamily": "application",
"errorMessage": "A job number must be entered",
"errorSeverity": "error",
"focus": {

"fieldName": "copyfromjobvar",
"paneName": "card",
"rowNumber": 0

}
}

This actions fails because the mutable variable CopyFromJobVar in the card pane is
used to indicate the job number of the job to copy from. The variable acts as a
parameter to the action. To run this action successfully the client program must sup-
ply the job number. This is done by adding a query parameter in the URL that
gives the value for the CopyFromJobVar variable in the pane card. If the job to
copy from has the job number Job-0042 then the query parameter takes the form
card.copyfromjobvar=Job-0042.

Values in query parameters are encoded as described in Data Types. Values must also
be URL-escaped (sometimes called percent encoded). HTTP library code normally does
this automatically.

If you retry the action with the query parameter added to the URL, the action runs
successfully:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="4 ←↩

f1d086b148ebf0f15b9126e3da239b6d00e680b"'

72 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

-X POST
'http://server/containers/v1/rest/jobtasks/data;jobnumber=10250001/ ←↩

card/0/action;name=copyjobtasks?card.copyfromjobvar=Job-0042'
HTTP/1.1 200 OK
Date: Wed, 03 Dec 2014 14:40:32 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json
Transfer-Encoding: chunked

...

In this example, the client program only needs to set the variable when it runs the
particular action that uses the variable as a parameter. But in other situations it
is important that the client program sends one or more mutable variables on every
interaction. One example is in the TimeRegistration singleton container which provides
access to the current user’s time sheets. A mutable variable DateVar in the card pane
controls which time sheet lines are included in the table pane.

If you simply access the link as-is:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/timeregistration/data;any'

HTTP/1.1 200 OK
Date: Wed, 03 Dec 2014 14:41:56 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

...
"datevar": "2014-12-03",
...

Then the table part gives access to show and interact with the time registration for the
time sheet associated with the current date: the application business logic set the default
variable value to today’s date.

To work on time registrations that belongs to a particular time sheet, you include the
variable value in the query parameter: card.datevar=2014-12-24.
$ curl -i

-u 'Administrator:123456'

©Deltek Inc., All Rights Reserved 73

5.3. WORKING WITH FILES

-H 'Accept-Language: en-US'
'http://server/containers/v1/rest/timeregistration/data;any?card. ←↩

datevar=2014-12-24'
HTTP/1.1 200 OK
Date: Wed, 03 Dec 2014 14:43:08 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

...
"datevar": "2014-12-24",
...

For example, if you want to update a time sheet line in the table pane, you must include
the DateVar variable value. If you do not, then the update operation would potentially
be applied to a completely different time sheet line and would fail due to the concurrency
control mechanism. In fact, on every request in the TimeRegistration container the
client program should set the variable.

In similar containers where mutable variables in the card part control which records are
displayed in the table part, the mutable variable state should always be set on every
request.

5.3 Working with Files

Maconomy supports actions that produce a file as output, for example, a print or data
export; and actions that consume a file, for example, attaching a receipt to an expense
sheet. In the Maconomy RESTful web service interface the filedrop endpoint enables
this.

A file drop is a temporary file store where a user can upload a single file. A file drop has
a very simple state space:

1. Unresolved: The file drop does not contain a file.

2. Resolved: The file drop contains a file.

5.3.1 Uploading a File and Using It in an Action

Consider the following example. In a client program you want to attach a receipt to an
expense sheet. This is done by invoking the action AttachDocumentToLine:

74 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Maconomy-Concurrency-Control: "card"="919 ←↩

fa16d3df3a66516372fbb2e98d06ab0f43db5", "table"="4707 ←↩
fce4f4e756b3b5b2909024d78ebcbd703963"'

-X POST
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760040/table/0/action;name=attachdocumenttoline'
HTTP/1.1 400 Bad Request
Date: Wed, 03 Dec 2014 10:59:29 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Connection: close
Transfer-Encoding: chunked

{
"errorFamily": "service",
"errorMessage": "Missing file callback. Please check the value of the ' ←↩

Maconomy-File-Callback' HTTP header.",
"errorSeverity": "error"

}

The request fails because the action consumes a file (the receipt), and you did not provide
the file. To perform the action you need to create a file drop containing the file and pass
the file drop URI in the Maconomy-File-Callback HTTP request header field when you
invoke the action.

First you create a file drop:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-X POST
http://server/filedrop/v1/rest/new

HTTP/1.1 201 Created
Date: Wed, 03 Dec 2014 12:48:06 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Location: http://server/filedrop/v1/rest/3404797840542625411/
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{

©Deltek Inc., All Rights Reserved 75

5.3. WORKING WITH FILES

"location": "http://server/filedrop/v1/rest/3404797840542625411/"
}

You use the POST HTTP method, and the URL pattern for the new resource is:
http://{host}/filedrop/v1/{shortname}/new

The location of the file drop is included both in the response entity and in the Location
HTTP response header field. Try to get the state of the file drop at this point:
$ curl -i

http://server/filedrop/v1/rest/3404797840542625411/
HTTP/1.1 404 Not Found
Date: Wed, 03 Dec 2014 12:48:41 GMT
Server: Jetty(8.1.14.v20131031)
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Vary: Accept,Accept-Language,Accept-Encoding
Transfer-Encoding: chunked

{
"errorFamily": "service",
"errorMessage": "The file drop exists, but no file has been uploaded.",
"errorSeverity": "error"

}

This produces an error that indicates that the file drop has not been resolved yet. You
can resolve it by uploading a file:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Content-Type: application/octet-stream'
-H 'Content-Disposition: attachment; filename="receipt.jpg"'
--data-binary '@receipt.jpg'
http://server/filedrop/v1/rest/3404797840542625411/

HTTP/1.1 100 Continue

HTTP/1.1 204 No Content
Date: Wed, 03 Dec 2014 12:50:47 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Length: 0

This example makes an HTTP POST request with the contents of the file receipt.jpg as
the payload. You use the media type application/octet-stream as Content-Type to in-
dicate that the request entity is the raw binary content of the file. The Content-Disposition

76 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

header field is used to suggest a filename that the server may use to store the file. The
response has a status of 204 No Content, which means that the request was success-
ful.

If you try to get the state of the file drop you get back the file contents:
$ curl -I http://server/filedrop/v1/rest/3404797840542625411/
HTTP/1.1 200 OK
Date: Wed, 03 Dec 2014 13:12:55 GMT
Server: Jetty(8.1.14.v20131031)
Content-Type: image/jpeg
Cache-Control: no-cache, no-transform
Content-Length: 33888

If you try to upload a file to the same file drop you get an error:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Content-Type: application/octet-stream'
-H 'Content-Disposition: attachment; filename="receipt.jpg"'
--data-binary '@receipt.jpg'
http://server/filedrop/v1/rest/3404797840542625411/

HTTP/1.1 100 Continue

HTTP/1.1 409 Conflict
Date: Wed, 03 Dec 2014 13:15:19 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"errorFamily": "service",
"errorMessage": "Cannot upload file. A file has already been uploaded to ←↩

this file drop.",
"errorSeverity": "error"

}

Since the file drop has already been resolved, the request fails with a status of 409
Conflict.

Now you can retry the AttachDocumentToLine action, supplying the uploaded file
through the Maconomy-File-Callback HTTP request header field:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'

©Deltek Inc., All Rights Reserved 77

5.3. WORKING WITH FILES

-H 'Maconomy-Concurrency-Control: "card"="919 ←↩
fa16d3df3a66516372fbb2e98d06ab0f43db5", "table"="4707 ←↩
fce4f4e756b3b5b2909024d78ebcbd703963"'

-H 'Maconomy-File-Callback: <http://server/filedrop/v1/rest ←↩
/3404797840542625411/>'

-X POST
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760040/table/0/action;name=attachdocumenttoline'
HTTP/1.1 200 OK
Date: Wed, 03 Dec 2014 13:24:12 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Content-Type: application/json
Transfer-Encoding: chunked

...

This time the action succeeded, and the file was supplied from its temporary location
in the file drop. The AttachDocumentToLine has now saved the file into a document
archive in Maconomy where it can be retrieved later.

The preceding examples shows the basic workflow:

1. Create a file drop.

2. Upload a file to the file drop.

3. Run an application action that consumes a file and pass the file drop URI in the
Maconomy-File-Callback HTTP request header field.

5.3.2 Maconomy-File-Callback

The Maconomy-File-Callback HTTP request header field is used for requests that need
one or more files from the client program. The format for the header field is:

Maconomy-File-Callback = "Maconomy-File-Callback" ":" 1#file-uri-value
file-uri-value = "<" URI-Reference ">"
URI-Reference = <URI-reference, see [RFC3986], Section 4.1>

Each file drop URI must be enclosed in angle brackets. To supply multiple file drop URIs
for the same request, client programs can either include the Maconomy-File-Callback
header field multiple times, or supply the values comma-separated in the same header
field value [see 5, section 4.2].

78 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

5.3.3 Uploading Binary Data

The simplest way for the client program to upload a file to a file drop is to POST the
binary data as the previous example showed.

In this case you include the following HTTP headers:

HTTP request
header Description
Content-Type Value must be application/octet-stream to indicate that

the request entity of the POST request is unstructured binary
data.

Content-DispositionValue is attachment; filename="myfile.txt" where
‘myfile.txt is the client program’s suggestion for the filename
the server should use when storing the file.

The request entity of the POST request is the binary file contents.

5.3.4 Uploading multipart/form-data

The file drop also supports using the multipart/form-data media type. This enables
client programs to upload a file through a classic HTML form [see 8, for technical details].
The name of the file part must be file. The following is an example of an HTML form
that uploads a file to a file drop:
<form action="http://server/filedrop/v1/rest/3404797840542625411/"

method="post"
enctype="multipart/form-data">

<input type="file" name="file"><!-- name must be "file" -->
<input type="submit" value="Upload file">

</form>

5.3.5 Running an Action and Downloading a Resulting File

Actions in containers may also produce one or more files. When an action produces files,
links will be included in the Link HTTP response header field.

The following example retrieves the receipt that the previous example attached to the
expense sheet by running the ShowDocument action:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'

©Deltek Inc., All Rights Reserved 79

5.4. FOREIGN KEY SEARCHING

-H 'Maconomy-Concurrency-Control: "card"="919 ←↩
fa16d3df3a66516372fbb2e98d06ab0f43db5", "table"=" ←↩
f648c00d3ec40456b08f59f495a60c362653c203"'

-X POST
'http://server/containers/v1/rest/expensesheets/data; ←↩

expensesheetnumber=10760040/table/0/action;name=showdocument'
HTTP/1.1 200 OK
Date: Wed, 03 Dec 2014 14:04:08 GMT
Server: Jetty(8.1.14.v20131031)
Content-Language: en-US
Vary: Accept,Accept-Language,Accept-Encoding
Cache-Control: no-cache, no-transform
Link: <http://server/filedrop/v1/rest/2274162197919216380/>;rel=file;type= ←↩

image/jpeg
Content-Type: application/json
Transfer-Encoding: chunked

...

The response includes a Link HTTP response header field value. The file link relation
indicates that this is a file produced by the request, while the image/jpeg indicates the
media type of the linked resource.

See Nottingham [9] for the details of the Link header field format. A library function for
parsing the Link header field value is often available on client platforms.

5.4 Foreign Key Searching

In preceding examples, you used filter resources as an entry point to search for particular
resources such as expense sheets.

Another use case for performing a search is to find a suitable value for one or more fields.
For example, if you are editing a project and want to assign a project manager, you
can search for employees and assign the employee number back to the project manager
number field on the project. This kind of search is called a foreign key search. It is also
sometimes referred to as a Ctrl+G search, after the keyboard shortcut in the Maconomy
clients.

In a simple filter search, the client program is interacting with a single container filter
pane. In a foreign key search two container panes are participating:

1. The host pane from which the search is launched.

2. The search pane that supplies the search result.

The reason why the host pane is involved is because it supplies a restriction based on the
current record state in the client. For example, when a user searches for a task on a time

80 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

sheet line takes, only tasks belonging to the job on the time sheet line is included in the
search result. The restriction that the host pane supplies is based on the client record
state which may not be committed to the database yet.

The following outlines the workflow of performing a foreign key search:

1. A user selects a field in the host pane in the UI and initiates a search, for example
via the Ctrl+G keyboard shortcut.

2. The client program consults the specification resource of the container that holds
the host pane.

3. On the description of the field from which the search is launched, the references
property will list the foreign keys that the field participates in.

4. The description of the foreign key in the specification will contain a link with the
link relation data:search.

5. The foreign key description will also contain the container name and pane name of
the search pane.

6. The client program will look in the relatedContainers property in the specification
to find a link to the specification for the search container.

7. The client program sends a POST request with the current unsaved record state
from the host pane along with any filter options (paging, sorting, fields, restriction)
that should be applied to the search.

8. On the server, the host pane contributes the restriction and delegates to the search
pane.

9. The server will reply with a response for the search pane.

Consider the following example, where the workflow is applied to the case of a user
searching for a project manager for a job:

1. In the card pane of the jobs container, the user selects the projectmanagernumber
field in the UI and presses Ctrl+G.

2. The client program looks in the specification for the projectmanagernumber field:
"projectmanagernumber": {

"autoSubmit": false,
"create": true,
"hidden": false,
"key": false,
"mandatory": false,
"maxLength": 255,
"multiLine": false,
"name": "projectmanagernumber",
"references": [

"projectmanagernumber_employee"

©Deltek Inc., All Rights Reserved 81

5.4. FOREIGN KEY SEARCHING

],
"secret": false,
"suggestions": "automatic",
"title": "Project Manager No.",
"type": "string",
"unfilterable": false,
"update": true

},

3. The references property lists the foreign keys in which the field participates. In
this case there is only one foreign key projectmanagernumber_employee. This is
the description of the foreign key in the specification:
"projectmanagernumber_employee": {

"fieldReferences": [
{

"field": "projectmanagernumber",
"foreignField": "employeenumber",
"supplement": false

},
{

"field": "projectmanagernamevar",
"foreignField": "name1",
"supplement": true

}
],
"incomplete": false,
"links": {

"data:search": {
"href": "http://server/containers/v1/rest/jobs/data/card/search; ←↩

foreignkey=projectmanagernumber_employee",
"rel": "data:search"

}
},
"name": "projectmanagernumber_employee",
"rel": "data:key:projectmanagernumber_employee",
"searchContainer": "find_employee",
"searchPane": "filter",
"title": "Project Manager"

},

4. The description of the foreign key contains the link the with data:search link
relation which the client is going to use for the search.

5. The description of the foreign key also contains the name of the search container
find_employee and the search pane name filter.

6. In order to interpret the search result, the client needs the specification for the
find_employee container. It will look in the relatedContainers property to find

82 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

a link to the specification:
"find_employee": {

"containerName": "find_employee",
"links": {

"specification": {
"href": "http://server/containers/v1/rest/find_employee/ ←↩

specification",
"rel": "specification"

}
}

},

The client can now perform a POST request to the search URL with the current card
record state (here assumed to be stored in the file current-record.json) to perform
the search:
$ curl -u 'Administrator:123456'

-H 'Accept-Language: en-US'
-H 'Content-Type: application/json'
-d '@current-record.json'
'http://server/containers/v1/rest/jobs/data/card/search;foreignkey= ←↩

projectmanagernumber_employee'
HTTP/1.1 200 OK
Date: Thu, 24 Sep 2015 17:10:46 GMT
Server: Jetty(8.1.14.v20131031)
Vary: Accept,Accept-Language,Accept-Encoding
Content-Language: en-US
Cache-Control: no-cache, no-store
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked

{
"meta": {

"containerName": "find_employee"
},
"panes": {

"filter": {
...

}
},
"links": {

"self": {
"href": "http://server/containers/v1/rest/find_employee/filter",
"rel": "self"

}
}

}

As expected, the server responds with the filter pane from the find_employee container.

©Deltek Inc., All Rights Reserved 83

5.4. FOREIGN KEY SEARCHING

When performing the foreign key search, the client program can supply the normal filter
query parameters such as restriction to further restrict the result, fields to only
select some fields, orderby for sorting, and offset and limit for paging.

5.4.1 Conditional foreign keys

Some containers define conditional foreign keys. In the container generaljournal the
field accountnumber in the table pane has this definition:

"accountnumber": {
"autoSubmit": false,
"create": true,
"hidden": false,
"key": false,
"mandatory": false,
"maxLength": 255,
"multiLine": false,
"name": "accountnumber",
"references": [

"accountnumber_account",
"accountnumber_customer",
"companycustomer",
"accountnumber_vendor",
"companyvendor"

],
"secret": false,
"suggestions": "automatic",
"title": "Account No.",
"type": "string",
"unfilterable": false,
"update": true

},

The accountnumber field participates in five foreign key relationships, but the foreign key
descriptions are annotated with switch conditions. Consider the following example:

"accountnumber_account": {
"fieldReferences": [

{
"field": "accountnumber",
"foreignField": "accountnumber",
"supplement": false

}
],
"incomplete": false,
"links": {

"data:search": {

84 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

"href": "http://server/containers/v1/rest/generaljournal/data/table/ ←↩
search;foreignkey=accountnumber_account",

"rel": "data:search"
}

},
"name": "accountnumber_account",
"rel": "data:key:accountnumber_account",
"searchContainer": "find_account",
"searchPane": "filter",
"switchField": "typeofentry",
"switchValue": "g",
"title": "Account"

},

The description of the foreign key accountnumber_account has the properties switchField
and switchValue. The switch field is always of an enumeration type and the switch
value is the enum literal value that the switch field must have in order for the foreign key
to be enabled. When searching from the accountnumber field the client program must
consider each of the foreign keys in turn and use the first one (if any) for which the value
of the field typeofentry matches the switch value on the foreign key.

5.5 Web Access Configuration

Even though the REST API is subject to the core access control setup in Maconomy it
lacks the additional data “filtering” provided by the screen layouts of other clients. Fields
which would normally not be exposed in the UI are therefore still available through the
REST API and this can sometimes be viewed as a potential security breach.

To address this issue a REST-specific access control file (webaccess.ini) has been intro-
duced. This access control file can contain a number of web access rules (whitelists
and/or blacklists) that are matched against all containers and container-fields accessed
via the REST API.

Accessing blacklisted containers result in a ‘403 Forbidden’ error, while blacklisted
container-fields are not included in the data responses.

The file should be placed in the ‘Definitions’ folder in the Maconomy Application server’s
custom search path:
/CustomizationDir/Custom.<shortname>/Definitions/webaccess.ini
/CustomizationDir/Custom/Definitions/webaccess.ini

Important note:

The web access control file was introduced in the following Maconomy versions:
2.2.6, 2.3.3, 2.4.1.

©Deltek Inc., All Rights Reserved 85

5.5. WEB ACCESS CONFIGURATION

5.5.1 Access Rules

Access rules can be specified for the following container endpoints:

• Specification: The ‘<container>/specification’ endpoint

• Filter: The ‘<container>/filter’ endpoint

• Data: Other ‘<container>/. . . ’ endpoints

For each of the above cases two access lists can be specified; an ‘include’ list and an
‘exclude’ list.

The semantics of these lists are as follows:

• If only an ‘include’ list is specified then access will be granted only if the contain-
er/field name matches one of the listed entries.

• If only an ‘exclude’ list is specified then access will be granted unless the contain-
er/field name matches one of the listed entries.

• If both an ‘include’ list and an ‘exclude’ list have been specified then the ‘include’
list contains exemptions from the ‘exclude’ list. I.e. if the container/field name
matches one of the entries in the ‘exclude’ list then access is granted only if the
container/field name also matches an entry in the ‘include’ list.

Access rules can also be specified at the field level in order to restrict which field values
can be accessed via the REST API. These rules can be specified either for a specific
container or for specific fields across all containers.

Field level access rules are also specified with an ‘include’ list and an ‘exclude’ list, with
the same semantics as described above.

Important note:

The REST API must have access to the key fields of a container. If field level
access rules apply to the fields of a container they must grant access to all
key fields.

Examples

Access lists for the ‘<container>/specification’ endpoint:
specification.include = ...
specification.exclude = ...

Access lists for the ‘<container>/filter’ endpoint:
filter.include = ...
filter.exclude = ...

86 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

Access lists for other ‘<container>/. . . ’ endpoints:
data.include = ...
data.exclude = ...

Access lists for field level access control:
field.include = ...
field.exclude = ...

5.5.2 Pattern Syntax

The access lists may contain zero or more patterns delimited by whitespace. Lists can
be distributed across multiple lines by putting a backslash (‘\’) at the end of each line
except for the last:
<access-list> = <pattern#1> <pattern#2> \

<pattern#3> \
<pattern#4> <pattern#5>

Each access list pattern can be:

• A literal pattern.

• A wildcard pattern consisting of literal string segments separated by wildcards in
the form of an asterisk (‘*’).

• A regular expression pattern surrounded by forward slashes (‘/’).

Regular expression patterns must conform to the Java regex pattern syntax:
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Important note:

All access list patterns are case-insensitive.

Examples

The literal pattern ‘literal’ will only match the exact string ‘literal’.

The wildcard pattern ‘li*te*’ will match any the following strings:
limited
listen
literal

-but none of the following strings:

©Deltek Inc., All Rights Reserved 87

5.5. WEB ACCESS CONFIGURATION

climate
satellite

The regular expression pattern ‘/li.*te.*/’ will match the same strings as the wildcard
pattern shown above.

5.5.3 Container Access Rules

For the container endpoint rules the patterns should match container names formatted
as:
<namespace>:<container>

Examples

Match the standard Maconomy ‘Jobs’ container:
maconomy:jobs

Match all standard Maconomy containers:
maconomy:*

Match the ‘Jobs’ container in any namespace:
*:Jobs

Like ‘maconomy:*’ but written as a regular expression:
/maconomy\:.*/

5.5.4 Field level Access Rules

For field level access rules the patterns should match container pane field references
formatted as:
<namespace>:<container>/<pane>.<field>

Examples

Match the field ‘JobNumber’ in the filter pane of the standard Maconomy ‘Jobs’ con-
tainer:
maconomy:jobs/filter.JobNumber

88 ©Deltek Inc., All Rights Reserved

CHAPTER 5. ADVANCED TOPICS

Match all fields in all panes of the standard Maconomy ‘Jobs’ container:
maconomy:jobs/*

Match the field ’NameOfUser in any container pane:
/.nameofuser

5.5.5 Named Access Rule Lists

Managing long lists of access rule patterns can be a challenge. We recommend that you
create named lists for related rules, for example those related to a specific container or
business area.

The syntax of a named list is exactly the same as for the access lists described above:
<list-name> = <pattern#1> <pattern#2>

The contents of a named list can be referenced in another access rule list by prefixing the
list name with a ‘$’.

Examples

Declare the named list ‘my-list’:
my-list = <pattern#1> <pattern#2>

Declare another named list that includes the rules of ‘my-list’:
another-list = $my-list <pattern#3>

Include ‘my-list’ in the container data exclude list:
data.exclude = $my-list

Include ‘another-list’ in the container filter include list:
filter.exclude = $another-list

©Deltek Inc., All Rights Reserved 89

5.5. WEB ACCESS CONFIGURATION

90 ©Deltek Inc., All Rights Reserved

Chapter 6

User Settings

The user settings endpoint provides a simple mechanism for storing user-specific settings
on the server. Settings are stored as JSON documents identified by document keys chosen
freely by the client. The server will only accept and produce valid JSON, but the schema is
otherwise unconstrained. A user settings document can only be accessed by the Maconomy
user that owns it, and hence all interaction with this endpoint must be authenticated,
meaning that all request headers must satisfy the following requirements:

Authorization Must contain valid Maconomy credentials. See the Authentication
Section.

The remainder of this chapter documents the resources and media types of the API.

6.1 Root Resource

The root resource is the entry point to the API, and can be located by the URI
scheme
http{s?}://{hostname}/usersettings/v1/{shortname}

The values for {hostname} and {shortname} vary between deployments.

6.1.1 Method: GET

Retrieves the state of the user settings root resource. Apart from the general require-
ments stated in the chapter introduction, request headers must satisfy the following
requirements:

Accept Must be one of application/json or application/xml or a more general media
type.

91

6.2. USER SETTINGS RESOURCE

Possible response codes are:

Code Explanation
200 The user is authenticated and the root resource state can be read.
401 The Maconomy credentials included in the request were missing or invalid.

A successful response includes a body with Content-Type application/json or application/xml.
The response body encodes a state representation containing the following fields:

Field Type Description
links Links Link relations to User Settings Resources for the current user

The family of valid link relation types are defined as follows:

user-settings:key:{document-key} For any alphanumeric string {document-key},
specifies a link to a User Settings Resource identified by the key {document-key}.
The resource existed at the time when the Root Resource state was retrieved, but
is otherwise not guaranteed to exist. The root resource state may contain zero or
more link relations of this type.

user-settings:key-template Specifies a URI template with one parameter, {document-key},
which must be replaced by an alphanumeric key to yield a concrete URI to a User
Settings Resource. The root resource state is guaranteed to contain exactly one
link relation of this type.

6.2 User Settings Resource

Represents a single user settings document. The resource can be in one of two states:
existing or non-existing. Clients can create, update and delete user settings resources
using appropriate HTTP verbs as described in the following.

6.2.1 Method: GET

Retrieves the state of the user settings resource. Apart from the general requirements
stated in the chapter introduction, request headers must satisfy the following require-
ments:

Accept Must be application/json.

Possible response codes are:

92 ©Deltek Inc., All Rights Reserved

CHAPTER 6. USER SETTINGS

Code Explanation
200 The user is authenticated and the resource state is included in the response

body
401 The Maconomy credentials included in the request were missing or invalid.
404 The resource was in a non-existing state at the time of the request.
406 The Accept header was set to an unsupported value.

A successful response includes a body with Content-Type application/json. The
schema of the encoded document is assumed to be known by the client.

6.2.2 Method: PUT

Creates or overwrites the state of the user settings resource. Apart from the general
requirements stated in the chapter introduction, request headers must satisfy the following
requirements:

Content-Type Must be application/json.

Furthermore, the request body must be a valid document of the MIME type application/json.
The JSON schema is unconstrained.

Possible response codes are:

Code Explanation
204 The user is authenticated and the resource was successfully created or

updated.
400 The request was malformed. This error is returned if the request body is not

valid according to the application/json MIME type.
401 The Maconomy credentials included in the request were missing or invalid.
415 The Content-Type header was set to an unsupported value.

6.2.3 Method: DELETE

Deletes any existing resource state and puts the resource in the non-existing state. The
request body must be empty. Possible response codes are:

Code Explanation
200 The user is authenticated and the resource was successfully deleted.
404 The resource was in a non-existing state at the time of the request.
401 The Maconomy credentials included in the request were missing or invalid.

©Deltek Inc., All Rights Reserved 93

6.3. EXAMPLE

6.3 Example

We begin by fetching the root resource state and save it to a file:
$ curl -u 'Administrator:123456' \

'http://server/usersettings/v1/rest' \
> root.json

$ jq . root.json
{

"links": {
"user-settings:key-template": {

"template": "http://server/usersettings/v1/rest/{document-key}",
"rel": "user-settings:key-template"

}
}

}

The returned state tells us that there are currently no existing documents for the
Administrator user. We use the key template link to create a URI for a new user settings
document with the key settings by replacing the template parameter {document-key}:
$ URI=$(jq -r '.links."user-settings:key-template".template' root.json \

| sed 's/{document-key}/settings/')

We now create the resource by performing a PUT request to its URI with a valid JSON
document in the request body. For this example, we will assume the existence of a local
file settings.json:
$ cat settings.json
{

"key": 42,
"hello": "world"

}
$ curl -u 'Administrator:123456' \

-H 'Content-Type: application/json; charset=utf-8' \
--upload-file 'settings.json' \
"$URI"

The response from the server is empty on success. Refreshing the root resource state
reveals the newly created resource:
$ curl -u 'Administrator:123456' \

'http://server/usersettings/v1/rest' \
> root.json

$ jq . root.json
{

"links": {
"user-settings:key-template": {

"template": "http://server/usersettings/v1/rest/{document-key}",

94 ©Deltek Inc., All Rights Reserved

CHAPTER 6. USER SETTINGS

"rel": "user-settings:key-template"
},
"user-settings:key:settings": {

"href": "http://server/usersettings/v1/rest/settings",
"rel": "user-settings:key:settings"

}
}

}

We follow the link to download its contents:
$ curl -u 'Administrator:123456' \

"$(jq -r '.links."user-settings:key:settings".href' root.json)"
{"key":42,"hello":"world"}

©Deltek Inc., All Rights Reserved 95

6.3. EXAMPLE

96 ©Deltek Inc., All Rights Reserved

Bibliography

[1] JSON. URL http://www.json.org.

[2] ECMA-404: The json data interchange format, October 2013. URL http://www.
ecma-international.org/publications/standards/Ecma-404.htm.

[3] CMdml. Deltek Maconomy—MDML Language Reference Guide. Deltek Inc.

[4] L. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV). RFC 4918 (Proposed Standard), June 2007. URL http://www.ietf.
org/rfc/rfc4918.txt.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June
1999. URL http://www.ietf.org/rfc/rfc2616.txt.

[6] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart. HTTP Authentication: Basic and Digest Access Authentication. RFC
2617 (Draft Standard), June 1999. URL http://www.ietf.org/rfc/rfc2617.txt.

[7] Eve Maler, Jean Paoli, Tim Bray, François Yergeau, and Michael Sperberg-McQueen.
Extensible markup language (XML) 1.0 (fifth edition). W3C recommendation,
November 2008. URL http://www.w3.org/TR/2008/REC-xml-20081126/.

[8] L. Masinter. Returning Values from Forms: multipart/form-data. RFC 2388
(Proposed Standard), August 1998. URL https://tools.ietf.org/rfc/rfc2388.
txt.

[9] M. Nottingham. Web Linking. RFC 5988 (Proposed Standard), June 2010. URL
http://www.ietf.org/rfc/rfc5988.txt.

[10] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID
Connect Core 1.0 incorporating errata set 1, 2014. URL http://openid.net/
specs/openid-connect-core-1_0.html.

[11] Ed. T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 7159 (Proposed Standard), March 2014. URL http://www.ietf.org/rfc/
rfc7159.txt.

97

http://www.json.org
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ietf.org/rfc/rfc4918.txt
http://www.ietf.org/rfc/rfc4918.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.w3.org/TR/2008/REC-xml-20081126/
https://tools.ietf.org/rfc/rfc2388.txt
https://tools.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc5988.txt
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://www.ietf.org/rfc/rfc7159.txt
http://www.ietf.org/rfc/rfc7159.txt

BIBLIOGRAPHY

[12] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia
and Systems Architecture. O’Reilly Media, 2010.

98 ©Deltek Inc., All Rights Reserved

	Introduction
	The Container Abstraction
	Card panes
	Table panes
	Filter panes

	REST
	Resources
	Hyperlinks
	Other Styles of Web Services
	Further Reading

	Example
	curl
	Proxy Requirements

	Basics
	JSON and XML
	Language
	Formats
	Specifications
	Actions
	Fields
	Foreign Keys
	Related Containers

	Data Types
	Integer
	Real
	Amount
	Boolean
	String
	Date
	Time
	Enum
	Time Duration
	Auto Timestamp

	Structures
	Container Resource State
	Records

	Hyperlinks
	Link Relations

	Authentication
	HTTP Basic Authentication
	Suppressing the Browser’s Login Prompt
	Using Domain Credentials with Basic Authentication
	OpenID Authentication
	Expired User Passwords
	Kerberos via Negotiate (Single Sign-On)
	Maconomy Reconnect
	Two-Factor Authentication

	Status Codes and Errors
	Error Response Entities
	Warnings and Notifications

	Compression

	Filtering
	Paging
	Sorting
	Selecting Fields
	Restrictions

	Updating Data
	Using the POST Method
	Concurrency Control
	Updating a Record
	Creating a Record
	Deleting a Record
	Running Actions
	Passing Arguments to an Action

	Advanced Topics
	Singleton Containers
	Maintaining Mutable Variable State
	Working with Files
	Uploading a File and Using It in an Action
	Maconomy-File-Callback
	Uploading Binary Data
	Uploading multipart/form-data
	Running an Action and Downloading a Resulting File

	Foreign Key Searching
	Conditional foreign keys

	Web Access Configuration
	Access Rules
	Pattern Syntax
	Container Access Rules
	Field level Access Rules
	Named Access Rule Lists

	User Settings
	Root Resource
	Method: GET

	User Settings Resource
	Method: GET
	Method: PUT
	Method: DELETE

	Example

	Bibliography

