

Deltek Maconomy 2.3 GA
MWSL Quick Reference Guide

December 2, 2016

MWSL Quick Reference Guide ii

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published December 2016.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result in
severe civil or criminal penalties.

All trademarks are the property of their respective owners.

MWSL Quick Reference Guide iii

Contents

Overview .. 1

Preamble Tags .. 2

<Definitions>-tag ... 2

<Function>-tag .. 2

Component Tags ... 3

<Filter>-tag .. 3

<Card>-tag .. 4

<Table>-tag ... 6

<Hidden>-tag ... 8

<Workspace>-tag (embedded) ... 9

<Section>-tag .. 9

Container Tags .. 12

<Workspace>-tag (outermost level) .. 12

<Expansions>-tag ... 12

<Assistants>-tag .. 13

Initial Collection of Tabs .. 14

<Formation>-tag .. 14

Connection Tags.. 15

<Mount>-tag .. 15

<Bind>-tag ... 15

<Restrict>-tag .. 15

<With>-binding .. 16

<Through>-binding .. 17

Overview

MWSL Quick Reference Guide 1

Overview

This document is a quick reference to MWSL. It briefly describes all of the tags and associated
attributes.

Attributes of a given tag are described using a table like the following.

Attribute Name Type Usage

Attr1 Type of attr1 This attribute is used to…

Attr2 Type of attr2 Indicates…

The referred types of the attributes can be one of the following.

Attribute Description

Boolean A Boolean attribute is true or false.

Expression An expression in the general Expression Language (EL).

Key A string that is case-insensitive and never exposed to an end user. Use it
for references (internally or from other parts in the spec/other specs).

A key must be in the form: (_a-zA-Z)(_a-zA-Z0-9)*, for example:
“myName1.”

NsKey A name-spaced string that is case -insensitive and never exposed to any
end user. Use it for reference (internally or from other parts in the
spec/other specs).

An NsKey must be in the form: (Key:)?(Key), for example:
“myNS:myName2” or “myName3.”

Display A string that is meant to be displayed to an end user (and that is therefore
localized). It can never be used for reference.

Id A case-sensitive string that is used to reference items in environments that
are not controlled by Maconomy. It is never exposed to an end user.

Enumeration An enumerated set of string values.

Preamble Tags

MWSL Quick Reference Guide 2

Preamble Tags

<Definitions>-tag

Use the <Definitions>-tag to contain various forms of definitions that are available when parsing
the workspace. Only functions can be specified.

There are no attributes for the <Definitions>-tag.

<Function>-tag

The <Function>-tag is embedded within the <Definitions>-tag. This tag declares a named function
that can be accessed in expressions throughout the workspace.

Attribute Name Type Usage

name Key The name of the function. Use this name to refer to
the function from within expressions.

type Enumeration This is the return type of the function. The default
type of expression is Boolean, but functions of other
types can be created.

value Expression This is the function body. The function body is itself
an expression and may refer other functions that
are declared above or functions that are available
as “built-in” functions or functions that are “plugged
in.”

Parameters Key list Here you specify the formal names of the
parameters, (the input parameters) for the function.
When invoking a function, you must invoke it with
as many parameters as are declared in this list.

Example

<Function name=”mult”

 type=”real”

 value=”x * y”

 parameters=”x y”/>

This defines a “mult” function that returns a value of the type real. It takes two parameters, “x” and
“y,” and returns these two values multiplied.

Examples of invoking this function are:

 2 + mult(2, 17.3)

 mult(mult(6,4), mult(2,6))

Component Tags

MWSL Quick Reference Guide 3

Component Tags

<Filter>-tag

The <Filter>-tag specifies the presence of a filter pane at this level in the workspace. The filter
pane can contain bindings to other panes, and these can be organized in different compositional
structures (Expansions, Assistants). “Initial filters” are compactable. An initial filter is a filter that
either has no parents, or only has initial filters as parents. Also, an initial filter must have either no
siblings or filter-pane siblings only. In this case, the filter is treated as part of “the initial data
finding.” Such filters (tab rows) can be “compacted,” thereby only showing the selected filter in a
very compacted mode. Compacting is not supported by the client.

A filter that is not bound by any other pane can show any record that is referred by the where
clause of the default cursor and corresponding dialog.

Attribute Name Type Usage

source

Not available if filter
is bound using a
<With>-binding

NsKey Indicates the name of the dialog that is used to
define the content of the filter. For example, if the
dialog is “InvoiceSelection,” the filter shows jobs
(this is the entity that is shown in the upper part of
that dialog). It also unconditionally applies the
filtering that is defined by the where-clause of the
upper pane cursor of that dialog. (In this case,
meaning that it is not possible to see jobs that are
not able to be invoiced.)

Title Display The title of the tab that represents access to the
filter pane. If not specified, the title of the associated
MDML layout is used, or if that title is undefined the
default title that is specified for that FilterPane in
DDL is applied.

Layout NsKey Name of the MDML file that contains the layout that
should be applied for this pane (excluding
“.mdml.xml”). If this value is an empty string, no
layout is applied, and a blank pane is displayed.
(This is useful to quickly make a mockup
workspace.) If this attribute is not specified, the
layout called dialogName.mdml.xml is used.

If the pane is bound by a <With>-binding, the layout
value from its parent is used as the default when no
value is explicitly specified.

view Key/Expression Name of the layout view to apply. In a layout file,
each type of pane can have many different layout
views defined. Laying out a pane requires one view.
The first view that has the name specified by this
attribute is applied. If no value is specified, the first
view (for the relevant pane) is applied.

It is possible to give arguments to a view (provided
that the view is declared with corresponding
parameters in MDML). In this case, you can add a

Component Tags

MWSL Quick Reference Guide 4

Attribute Name Type Usage

number of expressions in a comma-separated list,
for example:

 view=”myView(true, 33 – 2,

currentDate())”

If the pane is bound by a <With>-binding, the view
value from its parent is the default if no value is
explicitly specified.

Name NsKey The internal name of the pane in this workspace.
Currently unused, but may eventually be used to
address a specific pane in a workspace from, for
example, links, notifications, and so on.

pluginId Id The ID of the plug-in that implements the filter pane
to apply. If left unspecified, the default filter-
implementation is used.

<Card>-tag

The <Card>-tag specifies the presence of a card pane at this level in the workspace. The card
pane can contain bindings to other panes, and these can be organized in different compositional
structures (for example, Expansions and Assistants).

A card that is not bound by any other pane shows a random record from the set of records
identified by the where clause of the default cursor of the corresponding dialog. This is useful for
dialogs that are capable of showing only one record, such as SystemInformation. The Card tag is
used to reference normal card-parts as well as “action cards.”

Attribute name Type Usage

source

Not available if card
is bound using a
<With>-binding

NsKey Indicates the name of the dialog that is used to
define the content of the card. For example, if the
dialog is “TimeSheets,” the card may show time
sheet headers plus variables that are defined for the
card part of the dialog “TimeSheets.”

Title Display The title of the tab that represents access to the card
pane. If not specified, the title of the associated
MDML layout is used, or if that title is undefined, the
default title specified for that CardPane in DDL is
applied.

layout NsKey Name of the MDML file that contains the layout that
should be applied for this pane (excluding
“.mdml.xml”). If this value is the empty string, no
layout is applied and a blank pane is displayed.
(This is useful to quickly make a mockup
workspace.) If this attribute is not specified, the
layout called dialogName.mdml.xml is used.

If the pane is bound by a <With>-binding, the layout

Component Tags

MWSL Quick Reference Guide 5

Attribute name Type Usage

value from its parent is the default if no value is
explicitly specified.

View Key/Expression Name of the layout view to apply. In a layout file,
each type of pane can have many different layout
views defined. Laying out a pane requires one view.
The first view that has the name specified by this
attribute is applied. If no value is specified, the first
view (for the relevant pane) is applied.

It is possible to give arguments to a view (provided
that the view is declared with corresponding
parameters in MDML). In this case, you can add a
number of expression in a comma-separated list, for
example:

 view=”myView(true, 33 – 2,

currentDate())”

If the pane is bound by a <With>-binding, the view
value from its parent is the default if no value is
explicitly specified.

Name NsKey The internal name of the pane in this workspace. It
is currently unused, but may eventually be used to
address a specific pane in a workspace from, for
example, links, notifications, and so on.

pluginId Id The ID of the plug-in that implements the card pane
to apply in this instance. If left unspecified, the
default filter-implementation is used.

hidden Expression If the expression evaluates to true, this card (and all
of its children) are not visible in the workspace; they
are hidden. This means they may as well not be
there.

The expression is evaluated in the context of the
current card. This means that all fields, functions,
and expressions that are exposed to the card can be
used for calculation on the visibility of the card.

For this particular attribute, three special functions
are available:

hasNoSeed()

The hasNoSeed()function is true if the pane does

not have any data, not even “0 rows.” Basically, this
means that the underlying dialog pane cannot be
read using the foreign key, for example if the foreign
key is not enabled, if the dialog cannot show the
designated record, or if the record does not exist in
the database.

Component Tags

MWSL Quick Reference Guide 6

Attribute name Type Usage

hasNoRecords()

The hasNoRecords()function is true if the pane

shows 0 rows, including the case where the dialog
pane (a table) is associated with an existing record
(from the card pane), but where there are just no

rows in the table. Thus, the hasNoRecords()

function should be used with great caution, because
it might prevent a user from populating the table
(because the “insert” or “add” row are not accessible
when the pane is not shown). Thus, the

hasNoRecords() function should only be used in

cases where it is never possible to add new rows to
a table.

hasNoRecords()covers all cases that are covered

by hasNoSeed() plus the case where data has

been read; there just happen to be 0 rows in the
result.

hasNoChildren()

The hasNoChildren()function is true if the pane

does not have any children. The number of children
is dynamically calculated from the hidden-attribute of
all of the children of the current pane. This means
that if the current pane has a number of children,
which are all dynamically hidden from their state, the
parent (current) pane is also hidden.

<Table>-tag

The <Table>-tag specifies the presence of a table pane at this level in the workspace. A table
pane always corresponds to the table part of a card-table dialog. The table pane can contain
bindings to other panes, and these can be organized in different compositional structures (for
example, Expansions, Assistants). Technically, a table pane is always bound by referring the
record in the upper pane of the same dialog.

A table that is not bound by any other pane shows the table part of a random upper-pane record
that is identified by the where clause that defines the upper-pane cursor in the corresponding
dialog. This can be useful for card/table-dialogs that are only capable of showing one upper-pane
record.

Attribute Name Type Usage

source

Not available if table
is bound using a
<With>-binding

NsKey Indicates the name of the dialog that is used to
define the content of the table. For example, if the
dialog is “TimeSheets,” the table shows time sheet
lines plus variables defined for the table part of the
dialog “TimeSheets.”

title Display Represents access to the table pane. If not

Component Tags

MWSL Quick Reference Guide 7

Attribute Name Type Usage

specified, the title of the associated MDML layout is
used, or, if that title is undefined, the default title
specified for that TablePane in DDL is applied.

layout NsKey Name of the MDML file that contains the layout that
should be applied for this pane (excluding
“.mdml.xml”). If this value is the empty string, no
layout is applied. A blank pane is displayed. (This is
useful to quickly make a mockup workspace.) If this
attribute is not specified, the layout called
dialogName.mdml.xml is used.

If the pane is bound by a <With>-binding, the layout
value from its parent is the default if no value is
explicitly specified.

view Key/Expression Name of the layout view to apply. In a layout file,
each type of pane can have many different layout
views defined. Laying out a pane requires one view.
The first view that has the name specified by this
attribute is applied. If no value is specified, the first
view (for the relevant pane) is applied.

It is possible to give arguments to a view (provided
that the view is declared with corresponding
parameters in MDML). In this case, you can add a
number of expressions in a comma-separated list,
for example:

 view=”myView(true, 33 – 2,

currentDate())”

If the pane is bound by a <With>-binding, the view
value from its parent is the default if no value is
explicitly specified.

name NsKey The internal name of the pane in this workspace.
This is currently unused, but may eventually be used
to address a specific pane in a workspace from, for
example, links, notifications, and so on.

pluginId Id The ID of the plug-in that implements the table pane
to apply in this instance. If left unspecified, the
default filter-implementation is used.

hidden Expression If the expression evaluates to true, this table (and all
of its children) are not visible in the workspace; they
are hidden. This means that they may as well not be
there.

The expression is evaluated in the context of the
current table. This means that all fields, functions,
and expressions that are exposed to the table can
be used for calculation of the visibility of the table.

Component Tags

MWSL Quick Reference Guide 8

Attribute Name Type Usage

For this particular attribute, three special functions
are available.

hasNoSeed()

The hasNoSeed()function is true if the pane does

not have any data, not even “0 rows.” Basically, this
means that the underlying dialog pane cannot be
read using the foreign key, for example if the foreign
key is not enabled, if the dialog cannot show the
designated record, or if the record does not exist in
the database.

hasNoRecords()

The hasNoRecords() function is true if the pane

shows 0 rows, including the case where the dialog
pane (a table) is associated with an existing record
(from the card pane), but where there are just no

rows in the table. Thus, the hasNoRecords()

function should be used with great caution, because
it might prevent a user from populating the table
(because the “insert” or “add” row is not accessible
when the pane is not shown).The

hasNoRecords() function should only be used in

cases where it is not possible to add new rows to a
table.

hasNoRecords() thus covers all cases that are

covered by hasNoSeed() plus the case where data

has been read; there just happen to be 0 rows in the
result.

hasNoChildren()

The hasNoChildren()function is true if the pane

does not have any children. The number of children
is dynamically calculated from the hidden-attribute of
all of the children of the current pane. This means
that if the current pane has a number of children, all
dynamically hidden from there state, the parent
(current) pane is also hidden.

<Hidden>-tag

A hidden tag corresponds to a card pane that is not shown to a user. This can be handy to
“secretly” bind two dialog-panes that are not directly related. For example, if entity E1 points to a
record in entity E2, and E2 points to a record in entity E3. Then suppose that there are three
dialogs: D1 (containing E1), D2 (containing E2), and D3 (containing E3). You want a workspace
that contains a pane that shows D1 followed directly by one that shows D3 (where the record that
is displayed is the one that is identified by the record in D2, which was referred by the record in
D1). In this case, a workspace like the following can be used:

Component Tags

MWSL Quick Reference Guide 9

<Card dialog=”D1”>

 <Bind foreignKey=”E1toE2”>

 <Hidden dialog=”D2”>

 <Bind foreignKey=”E2toE3”>

 <Card dialog=”D3”/>

 </Bind>

 </Hidden>

 </Bind>

</Card>

This yields a workspace that shows a card pane at the top (D1) followed by another card pane
(D3).

A hidden pane that is not bound by any other pane behaves just like a corresponding <Card>
would behave, except that it is not shown.

Attribute Name Type Usage

Source NsKey Indicates the name of the dialog that is used to
define the content of the hidden card. For example, if
the dialog is “TimeSheets,” nothing is shown, but you
may create bindings from this pane using all foreign
keys that are defined for the card part of the Time
Sheets dialog.

Name NsKey The internal name of the pane in this workspace.
Currently unused, eventually it may be used to
address a specific pane in a workspace from, for
example, links, notifications, and so on.

<Workspace>-tag (embedded)

The <Workspace>-tag, in embedded form, is used to “include” the contents of another workspace
specification into this one. It can be used in situations where a pane can be referred. At that
position, the content of the referred workspace specification (excluding its outer-most workspace
tag) is inserted into this workspace. The embedded workspace can recursively embed other
workspace specs.

Attribute Name Type Usage

source NsKey The name of the workspace spec to “include” at this
place.

Name NsKey Currently unused, but may be used in the future to
reference this workspace inclusion.

<Section>-tag

The <Section>-tag marks a “titled” button/tab that has no direct content (for example, its content
is defined by its inner tags; alone it has no content). See the <Formation>-tag for more details.

Because a segment does not hold any data by itself, it is bypassed in the data binding. Therefore,
a segment must contain either a formation or a binding; the binding relates to the nearest pane
that precedes the segment. For example, consider the following specification:

Component Tags

MWSL Quick Reference Guide 10

<Filter dialog=”Jobs”>

 <Formation>

 <Segment title=”Home”>

 <Bind> … </Bind>

 <Bind foreignKey=”MainJob”> … </Bind>

 </Segment>

 <Segment title=”Budget”>

 <Bind> … </Bind>

 </Segment>

 </Formation>

</Filter>

Here the implicit “primary” bindings in segments “Home” and “Budget” refer to the current record
in the Jobs-filter. Similarly, the “MainJob” binding refers to the current record in the Jobs filter.

It is also possible to have “sections” (empty tabs) beside normal panes (for example, outside of
<Formation>s). In this case, the section is represented as an empty tab with its expansion
following directly.

In the following, you can see a section “Set-up” where tabs follow directly below.

Attribute Name Type Usage

name Key The internal name of the section in this workspace.
This is currently unused, but may eventually be used
to address a specific segment in a workspace from,
for example, links, notifications, and so on.

title Display The title of the section displayed in the button/tab.

hidden Expression If the expression evaluates to true, this section (and
all of its children) are not visible in the workspace;
they are hidden. This means that they may as well
not be there.

The expression is evaluated in the context of the
current section. This means that all fields, functions,
and expressions that are exposed to the section can
be used for calculation on the visibility of the section.

For this particular attribute, three special functions
are available:

hasNoSeed()

The hasNoSeed()function is true if the pane does

not have any data, not even “0 rows”. Basically, this
means that the underlying dialog pane cannot be
read using the foreign key, for example if the foreign
key is not enabled, if the dialog cannot show the
designated record, or if the record does not exist in

Component Tags

MWSL Quick Reference Guide 11

Attribute Name Type Usage

the database.

hasNoRecords()

The hasNoRecords() function is true if the pane

shows 0 rows, including the case where the dialog
pane (a table) is associated with an existing record
(from the card pane), but where there are just no

rows in the table. Thus, the hasNoRecords()

function should be used with great caution, because
it might prevent a user from populating the table
(because the “insert” or “add” row is not accessible
when the pane is not shown). Thus, the

hasNoRecords() function should only be used in

cases where it is never possible to add new rows to
a table.

hasNoRecords() thus covers all cases that are

covered by hasNoSeed() plus the case where data

has been read; there just happen to be 0 rows in the
result.

hasNoChildren()

The hasNoChildren() function is true if the pane

do not have any children. The number of children is
dynamically calculated from the hidden-attribute of
all of the children of the current pane. This means
that if the current pane has a number of children,
which are all dynamically hidden from there state,
the parent (current) pane is also hidden.

Container Tags

MWSL Quick Reference Guide 12

Container Tags

<Workspace>-tag (outermost level)

The <Workspace>-tag marks the contents of the workspace.

Attribute Name Type Usage

name NsKey Indicates the name of the workspace. It must be
identical to the file name (leaving out “.mwsl.xml”). A
namespace defines a sub-folder in the workspace-
folder. (For example, MyNamespace:MyFile must be
stored in: mynamespace/myfile.mwsl.xml.)

title Display The title of the workspace. This tag is largely unused.
(The title of the workspace is taken from the menu
spec.) If a workspace is loaded by other means than
the menu spec., this title is used. In time, the menu
spec. could be compiled from the titles that are
defined by the workspace specs.

<Expansions>-tag

The <Expansions>-tag groups together a number of panes. They are shown as a number of tabs.
The content of the expansion direction is assumed to indicate the primary purpose of a
workspace, which is reflected by current and future defaults.

Attribute Name Type Usage

name Key Indicates the name of the expansion collection. This
is currently unused, but may be used in the future to
reference a specific expansions collection.

horizontal Boolean The default is false. (This is currently true for
expansions following an initial filter. This will be
changed in the future.)

If true, the expansion tabs are displayed to the right
of the parent pane. Otherwise, the expansion tabs
are displayed below the parent panes.

minimized Boolean The default is false (except for the first expansion
that does not contain an initial filter).

If true, the expansions are minimized by default (so
not directly visible). Instead a reveal button is
displayed.

parentSize Enumeration This attribute specifies the ratio between this
expansion and its parent pane by defining the
relative size of the parent pane. Possible values
are:

Container Tags

MWSL Quick Reference Guide 13

Attribute Name Type Usage

tiny, small, medium, large, huge, vast

hidden Expression Determines the default expression for the hidden
attribute for panes in this expansion.

<Assistants>-tag

Assistants are used to group a number of panes. They are shown as a number of tabs. The
content of the assistant direction is assumed to contain information that is “occasionally needed”
(in contrast to Expansions, which are considered “prime content”). This fact is reflected by current
and future defaults. Apart from the defaults, there are no differences between what can be done
with assistants and what can be done with expansions.

Attribute Name Type Usage

name Key Indicates the name of the assistant collection. This
is currently unused, but may be used in the future to
reference a specific assistants collection.

horizontal Boolean The default is true. (Currently, false is for assistants
that follow an initial filter; this will be changed in the
future.)

If true, the assistant tabs are displayed to the right
of the parent pane. Otherwise, the expansion tabs
are displayed below the parent panes.

minimized Boolean The default is true. If true, the assistants are
minimized by default (that is, not directly visible).
Instead a reveal button is displayed.

enlarged Boolean The default is false. This attribute has effect only
when the parent pane has both assistants and
expansions. If true, the assistants are space-
prioritized over the expansions.

If false, the expansions are space-prioritized.

parentSize Enumeration This attribute specifies the ratio between this
assistant and its parent pane by defining the
relative size of the parent pane. Possible values
are:

tiny, small, medium, large, huge, vast

hidden Expression Determines the default expression for the hidden
attribute for panes in this assistant.

Container Tags

MWSL Quick Reference Guide 14

Parent Pane

Expansion area

Assistant area

Parent Pane

Expansion area

Assistant area

Initial Collection of Tabs

The “root” of a workspace can be thought of as “an initial expansion.” Thus, it is possible to
initially specify a number of parallel structures. Notice the difference between initial parallel
structures and a formation: A formation is a collection of “title buttons” (that is, no pane content)
rendered as “boxes,” whereas an initial parallel structure is a collection of panes (each of which
has a tab that represents access to that pane).

<Formation>-tag

A formation represents a collection of “title buttons” or “empty tabs.” Visually, formations are
rendered as a “ribbon that contains rectangular titled buttons” (specified by <Section>-tags).
There is no content that is directly associated with any of these title buttons. The only thing that
can follow is an Expansions-collection (for example, a collection of panes, each represented with
a tab), another formation, or a Mount-connection. (See <Mount>-tag.) Formations can be used to
offer a selection of what appears to be a “sub workspace” or can be seen as a “sub menu.”

Attribute Name Type Usage

name Key Indicates the name of the formation collection. This
is currently unused, but may be used in the future to
reference a specific formation collection.

Expansion is space prioritized Assistant is space prioritized

Connection Tags

MWSL Quick Reference Guide 15

Connection Tags

Connection tags are used to define how two consecutive panes are bound together by their data,
in other words, how the parent pane defines the content of the following pane.

<Mount>-tag

The mount connection defines that the parent binding has no influence on the contents of the
following pane. This implies that anything following a <Mount>-tag is populated in the same way
as it would be if it were the first pane in a workspace. A workspace always implicitly starts with a
<Mount>-binding. <Mount> is often used to specify the “beginning” in segments inside an initial
formation, or to connect to panes that do not have a formalized key (such as action cards). Also,
it is possible to start “anew” inside a workspace by using the <Mount>-connection.

There are currently no attributes for the <Mount>-tag.

<Bind>-tag

The bind connection is used to bind a parent pane to a single record. The content of the following
pane is defined by one single record.

Attribute Name Type Usage

name Key Indicates the name of the connection. It is currently
unused, but may be used in the future to reference
fields from child panes. If unspecified, the name
defaults to the name of the foreign key specified by
the foreignKey attribute.

foreignKey Key The name of the foreign key to use for this binding.
The referred name must exist in the parent pane,
and it must point to the entity that is contained by the
child pane.

If you just want the “record itself,” use the foreign
key that is by convention named “primary.”

<Restrict>-tag

The restrict connection is used to connect filter panes. The restriction denotes a set of records
that can be shown in the child filter pane based on the record that has focus in the parent filter
pane.

For the casual eye, there are two different uses of the restrict connection: one where a foreign
key from both the parent and the child pane is specified, and one where only a foreign key from
the child filter pane is specified.

Example: Foreign Key Specified on Child Pane only

The parent pane shows customers, and the child pane shows a job. The foreign key from the
child pane (referred to as the “reversed foreign key” because it points in the “reverse” direction of
the data flow) is “customer referred by a job.” This means that any record that is shown in the
child pane must point out (using that foreign key) exactly the record that has focus in the parent

Connection Tags

MWSL Quick Reference Guide 16

pane. In this case, it means that all jobs that are shown in the child pane must point to the
customer that is selected in the parent pane.

Example: Foreign Key Specified on both Child Pane and Parent Pane

The parent pane shows “customer,” and the child pane shows “employees.” The foreign key from
the child pane (in other words, the “reversed foreign key”) points out a zip code. The foreign key
from the parent pane (in other words, the “foreign key”) also points out a zip code. Both foreign
keys must point to the same entity. This means that any record that is shown in the child pane
must point out the same zip code that is pointed out by the selected record in the parent pane.
The “zip code” is used as a “stepping stone” between the parent and the child pane entities. In
this case, it means that selecting a customer, the second pane shows employees that live close
to that customer (in other words, in the same zip code area).

The two uses are actually the same: in the first case (in other words, only specifying a “reversed
foreign key”), the parent pane always implicitly points to itself.

Attribute Name Type Usage

name Key Indicates the name of the connection. This is
currently unused, but may be used in the future to
reference fields from child panes. If unspecified, the
name defaults to the name of the foreign key
specified by the reversedForeignKey attribute.

reversedForeignKey Key The name of the foreign key that points from the
child pane to the record/entity pointed out by the
foreign key from the parent pane. If the foreignKey
attribute is left unspecified, it defaults to “the current
record in the parent pane,” meaning that the
reversedForeignKey should point out the current
record in the parent pane in this case.

foreignKey Key The default is primary (in other words, the same
record as is found in the parent pane).

The name of the foreign key to use for this binding.
The referred name must exist in the parent pane,
and it must point to the same entity that is pointed to
by the reversed foreign key.

<With>-binding

<With>-bindings are used to connect panes from the same source container (for example, the
same dialog). Basically it means that whatever connection is used internally in the dialog to
populate data in several panes is used. It also means that panes that are bound together using
the <With>-binding share variable state space. This is most easily understandable for card/table
dialogs: the content of the table part is determined intrinsically by the application source code for
the dialog. In particular, the content of the table pane may depend on the value of variables that
are held by the card pane. Thus, to obtain the table that intrinsically belongs with a particular
card-record, you must use the <With>-binding. In many ways, a <With> binding is similar to <Bind
foreignKey=”primary”>, but the very important difference is that using the <With> binding, you are
guaranteed to get the pane that belongs with the one to which it is <With>-bound.

Connection Tags

MWSL Quick Reference Guide 17

As an oddity, binding a card and a table pane from the same dialog together using <Bind
foreignKey=”primary”> guarantees that if the table content depends on variables that are
manipulated in the card, the table does not reflect these values.

You can only bind panes together using <With> if they originate from the same container source
(dialog). In fact, the syntax makes certain of that. Thus, if you want to bind two panes of different
dialogs together you cannot use <With>. You must use <Bind foreignKey=”…”> or one of the
other bindings.

Typically, when you have panes from the same dialog, you want to bind them together using
<With>.

For dialogs, it is supported to connect Card, Table, and Filter using <With>.

There are currently no attributes for the <With>-binding.

<Through>-binding

The <Through>-binding is used when you insert a <Section> (empty tab) in the middle of a chain
of panes that data-wise depend on each other. Basically it means that the data context that is
immediately above is passed “through” the section and, thus, is available for the children of the
section.

An example is:

<MWSL xmlns="http://www.deltek.com/ns/mwsl" version="0.24">

 <Workspace name="MyWorkspace">

 <Filter source=”Jobs”>

 <With>

 <Card/>

 </With>

 <Through>

 <Section title=”This is an empty tab”>

 <With>

 <Card/>

 </With>

 <Bind foreignKey=”ProjectManagerNumber_Employee”>

 <Card source=”Employees”/>

 </Bind>

 </Section>

 </Through>

 </Filter>

 </Workspace>

</MWSL>

In this example, you start out with a filter of jobs. In the following, there is first the card of the
dialog “Jobs” that shows the job that is selected in the filter. Also below the filter, there is an
empty tab. And below that empty tab there again is access to the data that is selected in the filter.
This enables the showing of that job card-pane again, as well as an employee card that shows
the project manager of the selected job.

There are currently no attributes on the <Through>-binding.

Deltek is the leading global provider of enterprise software and information solutions for professional
services firms, government contractors, and government agencies. For decades, we have delivered
actionable insight that empowers our customers to unlock their business potential. Over 14,000
organizations and 1.8 million users in approximately 80 countries around the world rely on Deltek to
research and identify opportunities, win new business, optimize resource, streamline operations, and deliver
more profitable projects. Deltek – Know more. Do more.

®

deltek.com

http://www.deltek.com/

