

Deltek Maconomy 2.3 GA
MUL Reference Guide

December 2, 2016

MUL Reference Guide ii

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published December 2016.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result in
severe civil or criminal penalties.

All trademarks are the property of their respective owners.

MUL Reference Guide iii

Contents

Introduction .. 1

Separating Data Models from Queries .. 1

How Data Models Work... 2

Reading this Manual.. 3

Definition .. 4

Universe .. 4

Common Syntax Elements .. 22

Maconomy Functions .. 23

Version History .. 24

MUL 1.3 ... 24

MUL 1.2 ... 24

Introduction

MUL Reference Guide 1

Introduction

The Maconomy Universe Language (MUL) is used when defining a Maconomy universe. A
Maconomy universe is a specification of a data model or part of a data model. A universe is used
when interacting with the Maconomy database through the Maconomy Query Language (MQL).

Separating Data Models from Queries

When writing an SQL query, the developer must know the join structure of the relations in the
database. The join structure and semantic information about fields in the database, also called the
data model, is very complex in the Maconomy system.

An SQL query contains an implicit data model through the selection of relations and join
restrictions. But the query also contains a selection of fields, a definition of fields, and other
restrictions. The consequence of hiding the data model in one query is that the data model is
difficult to reuse and maintain. It is also impossible to create a query if you do not know the data
model very well.

The following example shows a simple SQL query, where it is difficult to see the data model.

 select activity.activitynumber,

 activity.activitytext,

 employee.Name1,

 SUM(timesheetline.numberofday1+ ...

 +timesheetline.numberofday7) as regtime

 from timesheetline, activity, employee

 where timesheetline.employeenumber = employee.employeenumber

 and timesheetline.periodestart = '2001.01.01'

 and activity.activitynumber = timesheetline.activitynumber

 and SUM(timesheetline.numberofday1 + ... +

 timesheetline.numberofday7) > 0

 group by activity.activitynumber, activity.activitytext,

 employee.Name1

By separating the data model from the query, you can reuse the data model in more than one
query. The separation also makes the data model visible and therefore easier to explore and
maintain. In addition, it enables a person who is not familiar with the data model to express a
query using an already defined data model.

In the following example, the data model implicitly defined in the preceding SQL query is explicitly

defined using a universe. The defined universe is called timesheetUniverse. Two different

queries are defined using this universe. The first query is the same as the SQL query:

 Universe:

 <mul 1.3>

 <universe timesheetUniverse>

 <join (TimeSheetLine, Employee)>

 .EmployeeNumber

 <end Join>

 <join (TimeSheetLine, Activity)>

 .ActivityNumber

 <End Join>

 <field regtime>

 SUM(timesheetline.numberofday1 + ... + timesheetline.numberofday7

)

 <end field>

 <end universe>

Introduction

MUL Reference Guide 2

 Query 1:

 mql 1.3

 mselect Activity.ActivityNumber, Activity.ActivityText,

 Employee.Name1, Regtime

 from timesheetUniverse

 where regtime > 0.0

 and timesheetline.periodstart = 2001.01.01

 order by Activity.ActivityNumber

 Query 2:

 mql 1.3

 mselect Employee.EmployeeNumber, Regtime

 from timesheetUniverse

 where timesheetline.periodstart inrange [2003.01.01 .. 2003.01.31

]

 order by Employee.EmployeeNumber

How Data Models Work

In an SQL query where the data model and the query are mixed, you can adapt the data model
so that it fits the given situation exactly. When separating the data model and the query, this kind
of exact fit is no longer possible, because the data model is to be used in many different queries
that are not available when designing the data model. When designing the data model, it is
therefore necessary to have an idea of how the data model and query are combined.

The data model can be seen as a graph, where objects are vertexes, and joins are bidirectional
edges. The graph defined by a universe may not contain cycles.

In the previous example, a universe was defined. The universe joins the three objects
TimeSheetLine, Employee, and Activity. These joins can be illustrated as the following tree.

 TimeSheetLine

 Employee Activity

A query selects fields from the objects used in the universe, thereby selecting vertexes in the
graph. The first field selected in the query selects the root of the tree. Now the least spanning tree
marks the objects needed in the query.

Note the implicit root selection specified in the first selected field of the query, because it might
result in different query results and unexpected behavior if two columns are switched around. In
particular, this can happen when outer joins are used. Additionally, the Workspace Client does not
keep the first column constant. The “first selected field” is the first field in the query, unless the
first field is a constant.

After finding the least spanning tree, objects not selected are removed from the tree. The effect is
that only objects needed in the query are used in the generated SQL query.

Introduction

MUL Reference Guide 3

In the following examples, the previously defined universe is used in two queries. In the first query,
the first selected field is ActivityNumber from the object Activity, and the least spanning tree
contains all of the objects in the universe. Note that the field Regtime is defined using the fields
numberofday1, ..., numberofday7 from the object TimeSheetLine.

 mql 1.3

 mselect Activity.ActivityNumber,

 Activity.ActivityText,

 Employee.Name1,

 Regtime

 from timesheetUniverse

 where regtime > 0.0

 and timesheetline.periodstart = 2001.01.01

 order by Activity.ActivityNumber

TimeSheetLine

periodestart

numberofday1 …numberofday7

Employee Activity

Name1 ActivityNumber

 ActivityText

In the second query, the first selected field is EmployeeNumber from the object Employee. The
least spanning tree does not contain the Activity object, indicating that the object is not needed in
the generated SQL query.

 mql 1.3

 mselect Employee.EmployeeNumber,

 Regtime

 from timesheetUniverse

 where timesheetline.periodstart inrange

 [2003.01.01 .. 2003.01.31]

 order by Employee.EmployeeNumber

TimeSheetLine

 Periodestart

 numberofday1 ... numberofday7

Employee

EmployeeNumber

Reading this Manual

The formal syntax of MUL is presented in BNF (Bachus Naur Form).

Definition

MUL Reference Guide 4

Definition

This section describes the current version of MUL. For a version history of MUL, see Version
History.

Effort has been made to turn MUL into a programmer-friendly language. The syntax of MUL is a
tag-based language, and it consists of elements and attributes just like XML. Unlike XML, every
attribute in MUL has an associated type and can have a short form.

Universe

The universe element defines a universe. The universe element can be used inside another
universe element, also known as an internal universe.

The following are attributes of the universe element, when defining a new universe.

Attribute Description

name The name of the universe. The universe
name is used when referring to the universe.

[title] The title of the universe.

In the following example, a very simple universe is defined. The universe name is
reference::U001, and uses the relation employee. Users of this universe can only access the
fields EmployeeNumber and EmployeeName. All of the other fields from the employee relation
cannot be accessed because they are not part of the universe interface.

mul ::=

(<MUL 1.3> | MUL 1.3)

universe

universe ::=

<universe (name = module|module) [(title = string|string)] >

[help]

object*

join*

parameter*

field*

restriction*

interface*

<end universe>

Definition

MUL Reference Guide 5

 <MUL 1.3>

 <universe reference::U001 "Reference Manual Universe 001">

 <object employee>

 <interface>

 .EmployeeNumber :employee.EmployeeNumber

 .EmployeeName :employee.Name1

 <end interface>

 <end universe>

Help

With the help element, external help information regarding the universe can be specified. Help for
a universe can be specified using five levels.

1. name is the identifier of the universe, and is used for referring to the universe. The name
is defined in the universe element.

2. title is a descriptive name for the universe, and is used in listings shown to the user. The
title is defined in the universe element.

3. description is a very short description of what the universe can be used for. The
description is for use in universe listings or mouse-over help.

4. summary is a short version of the help text.

5. text is an in-depth description of what the universe can be used for and how it works.

help ::=

<help [(description =

string|string)] > [summary]

[text]

<help end>

summary ::=

<summary>

[text]

<end summary>

text ::=

<text (text = text|text) /> | text

Definition

MUL Reference Guide 6

The following example defines a universe help element where all levels of help are defined.

 ...

 <help "MUL Reference Manual, Universe">

 <summary>

 #This Universe is for the MUL Reference Manual#

 <end summary>

 #

 This Universe illustrates the help element, and is used as an

 example

 in the MUL Reference Manual.

 #

 <end help>

 ...

Objects

An object is a relation in the Maconomy database. An object element in a universe refers to an
existing object, refers to an external universe, or creates a “new” object using one of the standard
database set operators.

Object Reference

An object is a relation in the Maconomy database, defined by Maconomy or added to the system
using MOL (Maconomy Object Language). See the Deltek Maconomy MOL Language Reference.

The following are attributes of the object element.

Attribute Description

name The name of the object used when referring to the object in
the universe definition. If the name is an existing object in the
Maconomy database, the basis attribute can be omitted.

[basis] The name of an existing object in the Maconomy database.

In the following example, two references to the Maconomy object Employee are defined and
named Employee and SeniorEmployee. This is useful when using the same object in different join
situations.

 ...

 <object Employee>

 <object SeniorEmployee basis=Employee>

 <join (Employee, SeniorEmployee) OuterNormal>

 .SeniorEmployee <-> .EmployeeNumber

 <end join>

object ::=

objectRef | universeRef | objectUnion

objectRef ::=

<object (name = id|id) [basis = id] >

Definition

MUL Reference Guide 7

Universe Reference

The universe reference element defines an alias for an existing universe. By using the alias, an
existing universe can be used just like any other object.

Using an external universe as an object can be used for modularization of a complex universe,
and for reuse of already defined universes.

The following are attributes of the universe element, when used for referring to an existing
universe.

Attribute Description

name The alias for the external universe.

basis The name of an existing universe

In the following example, the external universe reference::U001 is referred and given the name
SeniorEmployee. After the alias definition, the fields from the universe can be used just like any
other objects.

 ...

 <object Employee>

 <universe SeniorEmployee basis=reference::U001>

 <join (Employee, SeniorEmployee) OuterNormal>

 .SeniorEmployee <-> .EmployeeNumber

 <end join>

 ...

Set Operator, Union

The objectUnion element defines a “new” object using the standard database union operator on
two objects. The effect of the union operator is that a new object with the union of all rows in the
two objects is created.

The fields available from the object defined are the union of all of the fields defined in the two
objects. If a field only exists in one of the objects, a constant null value field is automatically
created.

universeRef ::=

<universe (name = id|id) basis = id />

objectUnion

::=

<objectUnion (name = id|id) [unionAll(+|-)] > object

object

<end objectUnion>

Definition

MUL Reference Guide 8

The following are attributes of the objectUnion.

Attribute Description

name The alias for “new” object created.

[unionAll] Controls the handling of duplicate rows. If unionAll- (default),
duplicate rows are eliminated. If unionAll+, duplicate rows
are retained.

The following example defines the union object MyUnionObject from two internally defined
universes. The object MyUnionObject has four fields: employeeNumber, employeeName, fieldX,
and fieldY. Note that the names of the objects X and Y are not used when referring to a field from
the object MyUnionObject.

 ...

 <objectUnion MyUnionObject>

 <universe X>

 <object Employee>

 <interface>

 .employeeNumber : Employee.EmployeeNumber

 .employeeName : Employee.Name1

 .fieldX : type=Boolean :value=true

 <end interface>

 <end universe>

 <universe Y>

 <object Employee>

 <interface>

 .employeeNumber : Employee.EmployeeNumber

 .employeeName : Employee.Name2

 .fieldY : type=Boolean :value=true

 <end interface>

 <end universe>

 <end objectUnion>

 ...

Join Definition

The join element defines how to join two objects. Together with the objects defined by the object
elements, the joins define a graph without cycles. That is, every object defined by an object
element must be joined to at least one other object. It is not necessary to define an object element
for a Maconomy object before using it in a join.

join ::=

<join (id, id) [(joinType = joinTypeEnum |

joinTypeEnum)] > (.id <-> .id | .id)*

<end join>

joinTypeEnum ::=

Normal | Required | Outer | NormalOuter | OuterNormal

Definition

MUL Reference Guide 9

A join between two objects contains a list of pairs of join fields. The first field in a pair must exist in
the first object, and the second field must exist in the second object. The two fields in the pair must
have the same type.

In the following example, the three objects MyEmployee, TimesheetLine, and
JobRegistrationBudgetRelation have been joined in a graph without cycles. In the join between
the objects TimeSheetLine and MyEmployee, one pair of join fields has been defined using the
field .EmployeeNumber as both the first and the second element of the pair. In the join between
the objects TimesheetLine and JobRegistrationBudgetRelation, two pairs of join fields are used.
Note that no object element is necessary for the objects TimesheetLine and
JobRegistrationBudgetRelation.

 ...

 <object MyEmployee basis=Employee>

 <join (TimeSheetLine, MyEmployee)>

 .EmployeeNumber

 <end Join>

 <join (TimeSheetLine, JobRegistrationBudgetRelation)>

 .EmployeeNumber

 .LineNumber <-> .TimeSheetLineNumber

 <end join>

 ...

A join is a bidirectional edge between the two objects, and for each direction a join type is
associated.

In the examples used for each join type, the following objects and contents are used.

TimeSheetLine Object Activity Object

EmployeeNumber LineNumber ActivityNumber

100 1 200

100 2 201

100 3 201

102 1

ActivityNumber ActivityText

200 Design

201 Programming

202 Verification

Join Type, Normal

The join type Normal between the two objects X and Y defines a database normal join from X to Y
and a database normal join from Y to X. A database normal join indicates that only rows from an
object that has at least one matching row in the other object is selected. The join is only supplied
when fields from both objects are selected. The join type Normal is the default value.

In the following example, the Normal join type is used in a universe to define the join between the
two objects TimeSheetLine and Activity. The first query selects the object TimeSheetLine as root,
and the second query selects the object Activity as root.

Definition

MUL Reference Guide 10

<mul 1.3>

<universe reference::U002 "Reference Manual Universe 002">

 <join (TimeSheetLine, Activity)>

 .ActivityNumber

 <end join>

<end universe>

 TimeSheetLine Activity

 Normal

Query 1:

mselect Timesheetline.EmployeeNumber,

 Timesheetline.ActivityNumber,

 Activity.ActivityText

from reference::U002

order by Timesheetline.EmployeeNumber

EmployeeNumber ActivityNumber ActivityText

100 200 Design

100 201 Programming

100 201 Programming

TimeSheetLine Activity

Query 2:

mselect Activity.ActivityNumber,

 Activity.ActivityText,

 Timesheetline.EmployeeNumber,

 Timesheetline.LineNumber

from reference::U002

order by Activity.ActivityNumber

ActivityNumber ActivityText EmployeeNumber LineNumber

200 Design 100 1

201 Programming 100 2

201 Programming 100 3

TimeSheetLine Activity

Join Type, Required

The join type Required is the same as the join type Normal, but the join is always supplied, even if
no fields from the objects are selected. This join type is to be used if the Normal join has a
semantic meaning. This join type reduces the optimization possibilities, so use it with care.

In the following example, the Required join type is used in a universe to define the join between
the two objects TimeSheetLine and Activity. The query only selects fields from the object Activity,
but as the result reveals, the join of the Object TimeSheetLine is enforced.

 <mul 1.3>

 <universe reference::U003 "Reference Manual Universe 003">

 <join (TimeSheetLine, Activity) Required>

 .ActivityNumber

db-normal

db-normal

Definition

MUL Reference Guide 11

 <end join>

 <end universe>

mselect Activity.ActivityNumber,

 Activity.ActivityText

from reference::U003

order by Activity.ActivityNumber

ActivityNumber ActivityText

200 Design

201 Programming

201 Programming

Join Type, Outer

The join type Outer between the two objects X and Y defines a database outer join from X to Y
and a database outer join from Y to X. A database outer join indicates that all rows from an object
are selected, even if no matching rows are found in the other object. The join is only supplied
when fields from both objects are selected.

If rows are found in the joined object, the database outer join behaves just like a database normal
join. If no rows are found in the joined object, fields from this object are filled with the Maconomy
null value matching the type of each field. Note that the null value is not the database null value.

Note that if one of the key fields of the outer joined object is the Maconomy null value, no rows
were found in the joined object.

In the following example, the Outer join type is used in a universe to define the join between the
two objects TimeSheetLine and Activity. The first query selects the object TimeSheetLine as root,
and the second query selects the object Activity as root. A new field outerExists has been defined
in the first query, indicating whether or not rows were found in the outer joined object.

<mul 1.3>

<universe reference::U004 "Reference Manual Universe 004">

 <join (TimeSheetLine, Activity) Outer>

 .ActivityNumber

 <end join>

<end universe>

TimeSheetLine Activity

Definition

MUL Reference Guide 12

Query 1:

mselect Timesheetline.EmployeeNumber,

 Timesheetline.ActivityNumber,

 Activity.ActivityText,

 Activity.ActivityNumber!=string’null as

outerExists

from reference::U004

order by Timesheetline.EmployeeNumber

Employee
Number

ActivityNumber ActivityText outerExists

100 200 Design true

100 201 Programming true

100 201 Programming true

102 string’null string’null false

TimeSheetLine Activity

Query 2:

mselect Activity.ActivityNumber,

 Activity.ActivityText,

 Timesheetline.EmployeeNumber,

 Timesheetline.LineNumber

from reference::U004

order by Activity.ActivityNumber

Activity
Number

ActivityText EmployeeNumber LineNumber

200 Design 100 1

201 Programming 100 2

201 Programming 100 3

202 Verification string’null integer’null

TimeSheetLine Activity

Join Type, NormalOuter

The join type NormalOuter is an asymmetric join between two objects X and Y. It defines a

database normal join from X to Y, but a database outer join from Y to X. The join is only supplied
when fields from both objects are selected.

In the following example, the NormalOuter join type is used in a universe to define the join
between the two objects TimeSheetLine and Activity. The first query selects the object
TimeSheetLine as root, and the second query selects the object Activity as root.

Definition

MUL Reference Guide 13

<mul 1.3>

<universe reference::U005 "Reference Manual Universe 005">

 <join (TimeSheetLine, Activity) NormalOuter>

 .ActivityNumber

 <end join>

<end universe>

TimeSheetLine Activity

Query 1:

mselect Timesheetline.EmployeeNumber,

 Timesheetline.ActivityNumber,

 Activity.ActivityText

from reference::U005

order by Timesheetline.EmployeeNumber

Employee
Number

ActivityNumber ActivityText outerExists

100 200 Design true

100 201 Programming true

100 201 Programming true

TimeSheetLine Activity

Query 2:

mselect Activity.ActivityNumber,

 Activity.ActivityText,

 Timesheetline.EmployeeNumber,

 Timesheetline.LineNumber

from reference::U005

order by Activity.ActivityNumber

Activity
Number

ActivityText EmployeeNumber LineNumber

200 Design 100 1

201 Programming 100 2

201 Programming 100 3

202 Verification string’null integer’null

TimeSheetLine Activity

Join Type, OuterNormal

The join type OuterNormal is an asymmetric join between two objects X and Y. It defines a
database outer join from X to Y, but a database normal join from Y to X. The join is only supplied
when fields from both objects are selected.

In the following example, the OuterNormal join type is used in a universe to define the join
between the two objects TimeSheetLine and Activity. The first query selects the object
TimeSheetLine as root, and the second query selects the object Activity as root.

Definition

MUL Reference Guide 14

<mul 1.3>

<universe reference::U006 "Reference Manual Universe 006">

 <join (TimeSheetLine, Activity) OuterNormal>

 .ActivityNumber

 <end join>

<end universe>

TimeSheetLine Activity

Query 1:

Mselect Timesheetline.EmployeeNumber,

 Timesheetline.ActivityNumber,

 Activity.ActivityText

From reference::U006

Order by Timesheetline.EmployeeNumber

EmployeeNumber ActivityNumber ActivityText

100 200 Design

100 201 Programming

100 201 Programming

102 string’null string’null

TimeSheetLine Activity

Query 2:

Mselect Activity.ActivityNumber,

 Activity.ActivityText,

 Timesheetline.EmployeeNumber,

 Timesheetline.LineNumber

From reference::U006

Order by Activity.ActivityNumber

Activity
Number

ActivityText EmployeeNumber LineNumber

200 Design 100 1

201 Programming 100 2

201 Programming 100 3

TimeSheetLine Activity

Parameter Definition

A universe can be parameterized, allowing fields and restrictions to be dependent on values
supplied at run time. The current use of parameters is subject to change and should be used with
care.

Definition

MUL Reference Guide 15

When a formal parameter is defined, it can be used in expressions just like any other field. If no
value is given to the parameter at run time, the default value is used.

Parameters defined in a universe are considered global. This means that if a universe uses an
external universe, and the external universe defines a parameter, that parameter is known in the
universe.

In the following example, the parameter parmEmployeeNumber is defined and used for
parameterization of a restriction.

 <mul 1.3>

 <universe reference::U007 "Reference Manual Universe 007">

 <join (TimeSheetLine, Activity)>

 .ActivityNumber

 <end join>

 <parameter parmEmployeeNumber type=string>

 <restriction>

 TimeSheetLine.EmployeeNumber = parmEmployeeNumber

 <end restriction>

 <end universe>

parameter ::=

(

<parameter (name = id|id) (type = typeid|typeid) [(title = string|string)]

[value = constExpressionShort|constExpressionShort]

/>

) |

(id :(type = typeid|typeid) [:(title = string|string)]

[:(value = constExpressionShort|constExpressionShort)]

)

Definition

MUL Reference Guide 16

Field Definition

New fields can be defined in a universe using the field definition element.

The following are attributes of the field definition element.

Attribute Description

name The name of the new field.

[title] The title of the new field.

[description] A short description of the new field.

field ::=

fieldExp | fieldValue | fieldBasis | fieldHidden

fieldExp ::=

<field (name = id|id) [title = string|string] [description =

string] > expressionShort

<end field>

fieldValue ::= (

<field (name = id|id) [title = string|string] [description =

string] (value =

constExpressionShort|constExpressionShort)

/>

) |

(.id [:(title = string|string)] [:description = string]

(:(value = constExpressionShort|constExpressionShort))

)

fieldBa

sis

::= (

<field (name = id|id) [title = string|string] [description =

string] (basis = qualifiedfieldid|qualifiedfieldid)

/>

) |

(

.id [:(title = string|string)] [:description =

string] (:(basis =

qualifiedfieldid|qualifiedfieldid))

)

Definition

MUL Reference Guide 17

Attribute Description

[value] The new field is defined as a constant with this value. Used
in connection with the short version of the field definition
element.

[basis] The new field is defined as an alias for this field. Used in
connection with the short version of the field definition

element.

A field is defined by an expression, and the type of the field is inferred from this expression. The
Maconomy functions available in the expression are listed in Maconomy Functions.

Two short versions of a field definition are available, one defining a constant, and one defining an
alias for another field.

In the following example, three fields are defined in a universe. The first field is defined using the
Maconomy function if, the second field is defined using the constant 42, and the third field is
defined as an alias for the field Employee.Name1.

 <mul 1.3>

 <universe reference::U008 "Reference Manual Universe 008">

 <object Employee>

 <field fieldFunction>

 if(Employee.SalesEmployee, "Sales person", "Not a sales person")

 <end field>

 .fieldConstant :value=42

 .fieldAlias :Employee.Name1

 <end universe>

Restriction Definition

A restriction can be defined in a universe using the restriction definition element.

A restriction specified in the universe is only in effect if a field from a selected object is used in the
restriction. If the attribute required+ is used, then the restriction is always in effect.

In the following example, a restriction using only fields from the object Activity is defined. The first
query only selects fields from the object TimeSheetLine. Because no fields are selected from the
object Activity, the restriction is not in effect. The second query selects fields from the object
Activity, and therefore the restriction is in effect. The data used in this example is defined in Join
Definition.

 <mul 1.3>

 <universe reference::U009 "Reference Manual Universe 009">

 <join (TimeSheetLine, Activity) OuterNormal>

 .ActivityNumber

 <end join>

 <restriction>

restictionDefinition ::=

<restriction [required+|required-] >

expressionShort

<end restriction>

Definition

MUL Reference Guide 18

 like("%mm%", Activity.ActivityText)

 <end restriction>

 <end universe>

Query 1:

mselect Timesheetline.EmployeeNumber,

 Timesheetline.ActivityNumber

from reference::U009

order by Timesheetline.EmployeeNumber

EmployeeNumber ActivityNumber

100 200

100 201

100 201

102 string’null

Query 2:

mselect Timesheetline.EmployeeNumber,

 Timesheetline.ActivityNumber,

 Activity.ActivityText

from reference::U009

order by Timesheetline.EmployeeNumber

EmployeeNumber ActivityNumber ActivityText

100 201 Programming

100 201 Programming

In the following example, a required restriction using only fields from the object Activity is defined.
The query only selects fields from the object TimeSheetLine, but because the restriction is
required, the join to the Activity is forced, and the restriction is in effect. The data used in this
example is defined in Join Definition.

 <mul 1.3>

 <universe reference::U010 "Reference Manual Universe 010">

 <join (TimeSheetLine, Activity)>

 .ActivityNumber

 <end join>

 <restriction required+>

 like("%mm%", Activity.ActivityText)

 <end restriction>

 <end universe>

Definition

MUL Reference Guide 19

Query 1:

mselect Timesheetline.EmployeeNumber,

 Timesheetline.ActivityNumber

from reference::U010

order by Timesheetline.EmployeeNumber

EmployeeNumber ActivityNumber

100 201

100 201

Interface Definition

An interface is a specification of how users are to see the universe. An interface can be seen as a
long list of fields, where the fields can be divided into groups.

The following are attributes of the interface elements.

Attribute Description

[name] The name of the interface. If a name is not assigned to an
interface, the interface is considered the default interface.

[basis] A list of object/interface group names. Fields and groups
from each element in the list are added to this interface.

[sumOnAmount] Indicates that amount fields added to the interface with the
basis attribute are wrapped with the group operator SUM.
The default value is sumOnAmount- indicating that amount
fields are not wrapped.

interface ::=

<interface [name = id|id] [basis = qualifiedfieldidList] [sumOnAmount(+|-)] /> |

<interface [name = id|id] [basis = qualifiedfieldidList] [sumOnAmount(+|-)] >

field | fieldHide | interfaceGroup | interfacegroupHide

<end interface>

fieldHide ::=

<field (name = id|id) hidden+ /> |

.id : hidden+

qualifiedfieldidList ::=

qualifiedfieldid | [qualifiedfieldid (, qualifiedfieldid)*]

Definition

MUL Reference Guide 20

A universe can contain more than one interface, but a query using a universe can only select
fields from one interface at a time. If no interface is specified, the objects and their fields are
visible and can be used directly in a query.

All of the fields and subgroups from an object/object-interfacegroup can be copied to the interface
with the basis attribute. If two items with the same name are added to the interface, the item from
the first-mentioned element in the basis attribute has precedence. If a field is defined using the
group operator SUM, the field added to the interface is also defined using the group operator
SUM.

Fields and subgroups can be hidden using the special hidden element, which hides a previously
defined field/subgroup.

In the following example, an interface is defined taking all of the fields from the objects
TimeSheetLine and Activity, except for the VATCode field, which is hidden. The field
ActivityNumber exists in both objects, but is taken from TimeSheetLine because it is mentioned
first in the list of basis objects.

 <MUL 1.3>

 <universe reference::U011 "Reference Manual Universe 011">

 <join (TimeSheetLine, Activity) OuterNormal>

 .ActivityNumber

 <end join>

 <interface basis = [TimeSheetLine, Activity] >

 .VATCode :hidden+

 <end interface>

 <end universe>

In the following example, an interface is defined taking all of the fields from the objects JobHeader
and JobEntry. Because the attribute SumOnAmount+ is used, all amount fields in the two objects
are added to the interface using the group operator SUM, for example, the field CostPriceInvoiced
available in the universe is defined by SUM(JobEntry.CostPriceInvoiced). The field
NumberHoursRegistered has the type real, and to turn the field into a SUM –field, an explicit
definition is used.

 <MUL 1.3>

 <universe reference::U012 "Reference Manual Universe 012">

 <join (JobHeader, JobEntry) OuterNormal>

 .JobNumber

 <end join>

 <interface basis = [JobHeader, JobEntry] SumOnAmount+>

 <field NumberHoursRegistered>

 SUM(JobEntry.NumberHoursRegistered)

 <end field>

 <end interface>

 <end universe>

In the following example, an interface is defined taking all of the fields from the previously defined
universe reference::U012. All fields are defined using a group operator SUM, that is, all amount
fields and the field NumberHoursRegistered are defined in the interface using the group operator
SUM.

 <MUL 1.3>

 <universe reference::U013 "Reference Manual Universe 013">

 <Universe MyUniverse basis=reference::U012 />

 ...

 <interface basis=[MyUniverse]/>

 <end universe>

Definition

MUL Reference Guide 21

Interfacegroup Definition

Fields in the interface can be grouped using the interfacegroup element. This can be used for
logical grouping of fields.

The following are attributes of the interfacegroup elements.

Attribute Description

name The name of the group.

[title] The title of the group.

[basis] A list of object/interface group names. Fields and groups
from each element in the list are added to this group.

[sumOnAmount] Indicates that amount fields added to the interface with the
basis attribute are wrapped with the group operator SUM.
The default value is sumOnAmount- indicating that amount
fields are not wrapped.

Fields can be copied to the interfacegroup with the basis attribute exactly as it is done in the
interface element.

In the following example, three interfaces are given to the same universe. The first interface is a
long list of fields, the second simulates the same grouping of fields as defined by the objects, and
the third defines a limited interface.

interfaceGroup ::=

<interfacegroup [name = id|id]

[basis = qualifiedfieldidList] [sumOnAmount(+|-)] [title

= string|string]

>

field | interfaceGroup | interfaceGroupHide

<end interfacegroup>

interfaceGroupHide ::=

<interfacegroup [name = id|id] (hidden+|hidden-) />

Definition

MUL Reference Guide 22

 <MUL 1.3>

 <universe reference::U014 "Reference Manual Universe 014">

 <join (TimeSheetLine, Activity) OuterNormal>

 .ActivityNumber

 <end join>

 <field regtime>

 SUM(timesheetline.numberofday1 + timesheetline.numberofday2)

 <end field>

 -- First interface, long list of fields

 <interface basis = [TimeSheetLine, Activity] >

 .regtime :.regtime

 <end interface>

 -- Second interface, Object grouping of fields

 <interface objectView>

 <interfacegroup TimeSheetLine basis=TimeSheetLine />

 <interfacegroup Activity basis=Activity />

 .regtime :.regtime

 <end interface>

 -- Second interface, limited interface

 <interface limitView>

 <interfacegroup TimeKeys>

 .Empoloyee :TimesheetLine.EmployeeNumber

 .Activity :Activity.ActivityNumber

 <end interfacegroup>

 <interfacegroup TimeNumbers>

 .Monday :timesheetline.numberofday1

 .Thursday :timesheetline.numberofday2

 .weekSum :.regtime

 <end interfacegroup>

 <end interface>

 <end universe>

Common Syntax Elements

See the Deltek Maconomy Language Reference MQL.

Maconomy Functions

MUL Reference Guide 23

Maconomy Functions

A wide range of functions is available for use in expressions. For each function, a type scheme is
defined. If the types of the arguments to a function do not match the type scheme, a type error is
given.

Note that even if the database is known, database functions are not available.

See the Deltek Maconomy Language Reference MQL for a list of functions.

Version History

MUL Reference Guide 24

Version History

MUL 1.3

Inheritance of SUM fields from sub-universe when using basis attribute on interface and
interfacegroup elements.

New SumOnAmount attribute on the interface and interfacegroup tags, for automatic generation
of SUM fields on all amount fields inherited using the basis attribute.

If no interface is defined in a universe, an interface is created to inherit SUM fields. Available
objects are created as matching interfacegroups and fields at the top level in the interface.

MUL 1.2

Initial version.

Deltek is the leading global provider of enterprise software and information solutions for government
contractors, professional services firms and other project- and people-based businesses. For decades, we
have delivered actionable insight that empowers our customers to unlock their business potential. 20,000
organizations and millions of users in over 80 countries around the world rely on Deltek to research and
identify opportunities, win new business, recruit and develop talent, optimize resources, streamline
operations and deliver more profitable projects. Deltek – Know more. Do more.®

deltek.com

http://www.deltek.com/

