
The Deltek Maconomy Extension Framework

Programmer’s Guide

Edited by

Jakob Lyng Petersen

c©2013–2019, Deltek Inc.

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published November 2019.

c© 2013–2019 Deltek Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result
in severe civil or criminal penalties. All trademarks are the property of their respective owners.

Version 1.4.021, software version 2.5.0 (21.0.sp100) ii c©Deltek Inc. 2013–2019, All Rights Reserved

Contents

1 Introduction 1
1.1 The Scope of Extensions . 1
1.2 General Coding Conventions . 2

1.2.1 General Naming Convention for Framework Types 2
1.2.2 null is Never Used . 2
1.2.3 The Java List, Set and Map are never used directly 4
1.2.4 On the Use of Strings . 7
1.2.5 Working with Data Types . 9

1.3 Coding Conventions Used in this Manual 16
1.4 A Note for PDM Developers . 17

1.4.1 Server-Side versus Client-Side . 18
1.4.2 Compositional Architecture . 19
1.4.3 All Extensions are First-Class Citizens 19

2 Overview 21
2.1 The Maconomy 2.0 Architecture . 21
2.2 Containers and Panes . 23
2.3 Extension Principles . 25

2.3.1 More on Container Events . 27
2.3.2 Using Data-Models . 29
2.3.3 “Mixing” Container Behaviors . 30
2.3.4 Names and Name Spaces . 31

2.4 OSGi . 31

3 Getting Started 33
3.1 A “Hello World” Extension . 33

3.1.1 Starting, Stopping and Debugging the Generated Code 37
3.1.2 A closer look at the code . 40

4 Container Events 45
4.1 Implementing a Container (Contribution) 45

4.1.1 Binding data-models to the container 46
4.2 Specifying the capabilities of a container 48

iii

CONTENTS

4.2.1 Field and Variable Properties . 59
4.2.2 Action Properties . 62
4.2.3 Foreign-Key and Search Properties 64
4.2.4 Using Name Spaces . 71

4.3 Implementing Data-Carrying Events . 75
4.3.1 Working with Data-Models . 78

4.4 Implementing Initialize Events . 99
4.4.1 Automatic Management of Line Positions 100

4.5 Implementing Create Events . 103
4.6 Implementing Update Events . 106
4.7 Implementing Delete Events . 110
4.8 Implementing Action Events . 112
4.9 Implementing Print Events . 119
4.10 Implementing Move Events . 120
4.11 Implementing Read Events . 122

4.11.1 Controlling Restrictions and Sorting 124
4.11.2 Refreshing Variable Values . 126
4.11.3 Refreshing Action States . 131
4.11.4 Pane-Level Read Data . 136

4.12 Parameterizing Events . 140
4.12.1 Parameters from the Layout . 141
4.12.2 Programmatic Event Parameters 142
4.12.3 Using Parameters . 142

4.13 Other Container Events . 145
4.13.1 Open and Close Events . 145
4.13.2 Restrict Events; Modifying Searches 145

5 Container Call-backs 153
5.1 The Call-Back Mechanism . 153

5.1.1 The General Call-Back Event Flow 154
5.2 Message Call-Backs . 154

5.2.1 Invoking Message Call-Backs . 156
5.2.2 Reacting on Message Call-Backs 160

5.3 Progress Call-Backs . 162
5.3.1 Invoking Progress Information . 163
5.3.2 Reacting on Progress Call-Backs 167

5.4 Document Call-Backs . 170
5.4.1 Invoking Document Call-Backs . 170
5.4.2 Reacting on Document Call-Backs 175

6 Programmatic Data Interaction 179
6.1 Accessing Containers . 179

6.1.1 Obtaining access to a container . 180

Version 1.4.021, software version 2.5.0 (21.0.sp100) iv c©Deltek Inc. 2013–2019, All Rights Reserved

CONTENTS

6.1.2 Obtaining Access to a Container with Automatic Management of
Open/Close . 182

6.1.3 Controlling the Scope of Container Operations 184
6.1.4 Invoking Operations using the Container Executor 186
6.1.5 Inspecting Data of a Container Executor 190
6.1.6 Navigating and Iterating through Records 193
6.1.7 Record Executors . 196
6.1.8 Working with Multiple Container Panes 204

6.2 Accessing System and Database Information 206
6.2.1 Accessing Environment Information 207
6.2.2 Accessing the Maconomy Database 208
6.2.3 Modifying Data in the Database 233
6.2.4 Database Access with Name-Spaced Fields 236
6.2.5 Obtaining Popup Values from the Maconomy Database 237
6.2.6 Data Caches . 238

6.3 Creating Asynchronous Background Tasks 251
6.3.1 Adding Attributes to a Background Task 253

7 Advanced Topics 283
7.1 Determining the Order of Container Contributions 283

7.1.1 Grouping of Container Contributions 285
7.1.2 Cloned containers and Ordering of Extension Contributions 287

7.2 Building Generally Applicable Extensions 288
7.3 Dynamically Changing an Event Flow . 290
7.4 Enforcing Full Data Refresh . 291
7.5 Sending Emails . 293
7.6 Accessing Configuration Settings and Integrating with 3rd-Party Systems 301
7.7 Defining Custom Popup Types . 307
7.8 Implementing You Own Persistence Strategy 309

7.8.1 Persistence Strategies for Storing Long Texts 311
7.9 Applying a Codec to a Persistence Strategy 316
7.10 The Transformation “Event” . 319
7.11 Supporting Multiple Languages . 320

7.11.1 Specifying a Localized Term . 321
7.11.2 Referencing a Term . 322
7.11.3 Using Text Factories . 323
7.11.4 Handling Terms with Variable Content 327
7.11.5 Annotating Terms with Comments 329
7.11.6 Locale Annotations . 330

7.12 Enabling Logging . 332
7.13 Miscellaneous Utilities . 334

7.13.1 Long-Text Splitting . 334

8 Tips and Tricks 337

c©Deltek Inc. 2013–2019, All Rights Reserved v Version 1.4.021, software version 2.5.0 (21.0.sp100)

CONTENTS

8.1 Filter Containers Based on Custom Universes 337
8.1.1 Mapping MOL Specifications . 339
8.1.2 Using the Mapping MOL Container 340
8.1.3 Filter Containers Based on Plain MOL Tables 343

8.2 Obtaining Universe Definitions . 343
8.2.1 Inspecting Specifications . 345

Bibliography 353

Migration Guidelines 355

New and Noteworthy 371

Document History 375

Index 377

Version 1.4.021, software version 2.5.0 (21.0.sp100) vi c©Deltek Inc. 2013–2019, All Rights Reserved

Listings

4.1 You can add and change capabilities using the defineDomesticSpec method 50
4.2 Changing several capabilities . 52
4.3 Using a Name Space . 73
4.4 Extracting Values from Original Data . 83
4.5 Checking and Modifying User-Data . 90
4.6 Modifying Result Data . 99
4.7 Implementing an Initialize event. 102
4.8 Implementing a Create event. 105
4.9 Implementing an Update event. 108
4.10 Implementing a Delete event. 111
4.11 Implementing Action events. 114
4.12 Implementing Action events for new actions. 116
4.13 Implementing Action events using an abstract class. 118
4.14 Custom data-restrictions and sorting. 125
4.15 Calculating Variables. 127
4.16 Preparing Variable Calculation. 130
4.17 Populating Directly. 130
4.18 Setting Action Enabledness. 135
4.19 Using onReadPane to fix budget type. 136
4.20 A Fixed-Budget Container. 139
4.21 Restricting Values Using an Option List. 149
5.1 Invoking Message Call-Backs. 158
5.2 Reacting on Message Call-Backs. 161
5.3 Invoking Progress Call-Backs. 165
5.4 Updating Status Messages During Progress Indication. 165
5.5 Reacting on Progress Call-Backs. 168
5.6 Show and Save Call-Backs. 172
5.7 Obtaining Documents From the User. 175
5.8 Reacting on Documents Being Shown. 177
5.9 Reacting on Documents Being Shown. 178
6.1 Operating on a New Container. 188
6.2 Operating on a New Container Without Explicit Open/Close. 189
6.3 Operating on the Current Container. 190

vii

LISTINGS

6.4 Inspect Data of a Container Executor. 193
6.5 Navigating to a Specific Record. 194
6.6 Iterating Over All Rows in a Table. 195
6.7 Iterating Over All Rows in a Table Using Record Executors. 198
6.8 Iterating Over All Rows in a Table Using Record Executors. 198
6.9 Deleting Lines Using Record Executors. 200
6.10 Deleting Lines Using Record Executors and Reverse Iteration. 201
6.11 Mixing Container Executors and Record Executors. 203
6.12 Working With Multiple Panes. 205
6.13 Accessing the Curernt User Name. 207
6.14 Accessing the Database Using MQL “Builder” 212
6.15 Accessing the Database Using MQL. 225
6.16 Accessing the Database Using SQL “Builder.” 226
6.17 Accessing the Database Using SQL. 227
6.18 Modifying Database Records. 234
6.19 Modifying Database Records using a Persistence Strategy. 236
6.20 Obtaining Maconomy Popup Values. 238
6.21 Defining Two All-Default Data Caches 244
6.22 Defining a Data Cache with Non-Default Behavior. 245
6.23 Defining a Data Cache with Custom Data Sources 245
6.24 Looking Up Data Through Data Caches 248
6.25 Using Data Caches to Optimize Variable Refresh 249
6.26 Working With Single-Key Data Caches . 251
6.27 Creating a Simple Background Task. 253
6.28 Setting User Input Fields of Background Task for Creation. 258
6.29 Setting User Input Fields of Background Task Using Expressions. 259
6.30 Setting User Input Fields of Background Task for Actions. 260
6.31 Restricting a Background Task to a Specific Key. 261
6.32 Restricting a Background Task to a Set of Keys. 262
6.33 Generating Individual Background Tasks in a Loop. 263
6.34 Generating Individual Background Tasks for All Keys. 263
6.35 Addressing Singleton Containers. 263
6.36 Guarding Card Action using Match-By. 265
6.37 Addressing a Specific Line in a Table Pane. 265
6.38 Matching Several Lines in a Table Pane. 265
6.39 Run Background Task on Behalf of a User Role. 267
6.40 Run Background Task on Behalf of an Employee. 268
6.41 Specifying E-mail Recipients for Output Documents. 274
6.42 Specifying File Destination for Output Documents. 275
6.43 Specifying an Input File Handler. 276
6.44 Absolute Time Schedule of a Background Task. 277
6.45 Relative Time Schedule of a Background Task. 277
6.46 Declaring Dependencies of Background Tasks. 278

Version 1.4.021, software version 2.5.0 (21.0.sp100) viii c©Deltek Inc. 2013–2019, All Rights Reserved

LISTINGS

6.47 Conditionally Declaring Task Dependencies. 279
6.48 Declaring Task Groups and Dependencies. 280
7.1 Declaration of Inter-Dependant Contributions. 284
7.2 Declaration of a Generic Extension. 290
7.3 Enforcing a Full Data Refresh . 292
7.4 Sending an Email . 297
7.5 Sending an Email with an Invoice Attachment 299
7.6 Sending Different Mails for Success and Failure 300
7.7 Obtaining File Path References from the System Configuration 304
7.8 Obtaining Partially Variable File Path References 305
7.9 Obtaining a URL from the System Configuration 305
7.10 Obtaining Email Configuration Properties from the System Configuration 306
7.11 Defining a Custom Popup Type . 308
7.12 Defining a Custom Popup Type . 309
7.13 Adding Two (Emulated) Long Text Field to Jobs 313
7.14 Adding an Emulated Long-Text Field to Purchase Orders Table 315
7.15 Using a Codec to Store Custom Popup Values 317
7.16 Declaring Terms in a .properties File. 321
7.17 Referencing Terms from Java Code. 324
7.18 Implementing Terms as Utility-Methods. 325
7.19 Referencing Terms from Java Code Using static Methods. 326
7.20 Declaring Terms with Placeholders . 327
7.21 Referencing Terms With Placeholders. 328
7.22 Implementing Placeholder Terms with Type-Safe Arguments. 328
7.23 Referencing Terms With Type-Safe Placeholders. 329
7.24 Annotating Terms with Comments . 330
7.25 Enabling Logging Output. 333
8.1 Regular MOL file containing additional customer fields. 338
8.2 Universe that we want to expose through new container. 338
8.3 Mapping MOL file establishing a link between a universe and a container. 340
8.4 Programmatic References to Universe Container 341
8.5 Obtaining Universe Specs Programmatically 344

c©Deltek Inc. 2013–2019, All Rights Reserved ix Version 1.4.021, software version 2.5.0 (21.0.sp100)

LISTINGS

Version 1.4.021, software version 2.5.0 (21.0.sp100) x c©Deltek Inc. 2013–2019, All Rights Reserved

Chapter 1

Introduction

The Extension Framework for Deltek Maconomy is a programming framework that
enables programmers to extend the functionality of the Deltek Maconomy ERP software.
Extensions made with this framework are safe in that it is not possible to compromise
the data integrity of the software.

This book describes the concepts of the Extension Framework, what kind of extensions
can be made and how to program such extensions. The expected audience of this book is
software developers with a thorough understanding of the Deltek Maconomy ERP system
and experience with Java.

1.1 The Scope of Extensions

The Extension Framework is meant to extend the functionality of the Deltek Maconomy
ERP system version 2.0 service pack 4 or higher. In version 2.0, a new server-side
component, the Coupling Service was introduced. This component is a central component
for users of the Maconomy Workspace Client.

Extensions to the workspace client have many facets. Some are “simple” ranging from
changing the content and presentation of the menu, changing or defining new workspaces,
changing the layout, to altering to do’s. Making such extensions are done declaratively
by modifying or adding special-purpose XML files using the Maconomy Extender IDE.
Extensions of this kind are documented elsewhere [QMm,QMw,QMd,QMn,QMc,CMd]
and are beyond the scope of this book.

Other kinds of extensions are closer related to extending the logic of the software
application. Such extensions are written as so-called plug-in’s to the Coupling Service and
must be programmed in JavaTM [GJSB05]. The scope of this book is such Java-based
extensions. The functionality offered thereby are available to the Workspace Client. They
will not be available to users of the “Jaconomy” client, the Maconomy Portal or mobile

1

1.2. GENERAL CODING CONVENTIONS

applications such as “Touch Time”1.

1.2 General Coding Conventions

The Extension Framework follows a number of standards and conventions. It is important
that you know of them. This section will take you through these. Also, this section will
highlight certain coding conventions that you are highly encouraged to follow in your
own code.

1.2.1 General Naming Convention for Framework Types

Generally, all types provided and used by the framework are prefixed with Mi (for
interfaces), Mc (for regular classes) and Me (for enum-classes.)

In fact, this naming convention is not a generally recommended naming convention for
Java types. It is, however, practical for extension developers to know that types provided
by the framework follow this naming convention. So, if a type is named like this, it is
provided by the Extension Framework. If you need to search for a type provided by the
framework, you can easily differentiate it from types offered by other libraries. Apart from
this little oddity, the remaining part of the type names follow widely accepted naming
patterns for Java: starting with an upper-case letter, using camel-casing to separate
words (not underscores ‘_’), and only upper-case acronyms less than three characters.
Examples:

• MiKey: the actual type name “key” starts with an upper case character. Not MiKEY,
Mikey or MiKeY.

• McStringDataValue: different words are separated by a change in casing. Not
McstringDataValue or McString_Data_Value.

• MiDatabaseApi: API is an acronym, but it is not upper-cased because it has three
characters. Not MiDatabaseapi or MiDatabaseAPI.

We do not recommend that you follow the same naming convention for your classes and
interfaces. Instead, we encourage you to choose a widely accepted naming convention
such as the naming convention used by Extension Framework-types (except the Mc, Mi or
Me prefix.) Also, it is a common naming convention to prefix all interface types with a
capital ‘I’ (like IJobCostDimensions which could be a name for an interface allowing
access to Maconomy Job Cost dimensions.)

1.2.2 null is Never Used

The general-purpose Java constant null is never used within the Extension Framework.
Period. The reason for this is that null is a valid value for any Java class- or interface-

1In the future, extensions may affect other end-user interfaces as well.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 2 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

type. This means that it is very easy to inadvertently make a programming error, because
the compiler cannot check for it.

For example, suppose that some method f(SomeClass argument) is invoked by f(null).
The Java compiler will accept this, because it is valid Java code. However, if the
implementer of the method ‘f’ attempts to invoke any method on the argument, a
run-time error will occur. Even if the implementer of the method ‘f’ attempts to handle
the possibility of receiving null, that method may invoke other methods directly or
indirectly, and some of them may fail on receiving null. Experience shows that such
run-time errors2 are very hard to avoid, and often such errors are hard to debug because
the error might not occur where the error was really made.

Obviously, null was invented for a reason. Sometimes it is practical to have the ability
to signal that “you don’t care” or that you have no sensible value to provide. Instead of
using null, the Extension Framework uses a generic type called MiOpt<T> indicating
an optional value of value type T. This type provides only a few methods:

Method Remarks
isDefined This method returns true if an actual value is available through

the get method.
isNone This method returns true if there is no value associated with this

object. Using such a value corresponds exactly to using null,
except that you cannot invoke methods of the T-type without
getting compile-time errors.

get This method returns the value of type T contained by this ob-
ject. This will only succeed if isDefined() yields true. But the
programmer has the chance to test for this before doing so. If
the get() method is invoked when there is no value this will not
be discovered at compile-time. However, a run-time error will be
thrown immediately where the programming error is, leading to
much easier debugging.

We strongly encourage you to follow this way of coding even “internally” in your own
code. We expect that you do it when working with the Extension Framework. Hence,
documentation will never explicitly state that null is not allowed, because it never is.
When methods take arguments of type MiOpt<...>, this means that the argument may
be a value that is not defined. Similarly, methods never state whether the returned
value may be null, because it never is. If the declared return type is MiOpt<...>, it
means that the returned value may or may not be defined. Naturally, 3rd-party libraries
may make use of null, and when using such libraries, null is a possibility you will have
to consider. In such cases, we encourage you to convert the potential null-values into

2Known as NullPointerExceptions

c©Deltek Inc. 2013–2019, All Rights Reserved 3 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.2. GENERAL CODING CONVENTIONS

MiOpt just before/after invoking such libraries.

The Extension Framework provides methods for creating values of type MiOpt by using
the utility class McOpt . In this way, McOpt . none() creates a “none” value, and
McOpt . opt(obj) 3 converts obj into a “defined” value, letting get() return obj.

1.2.3 The Java List, Set and Map are never used directly

Java has interfaces for lists (List), sets (Set) and maps (Map.) With the use of generics
introduced in Java 5, it has become much more type-safe to work with these interfaces
and related classes, compared to Java 1.4. For example, the compiler will yield an error
if you try to store an “apple” in a list containing “postal codes.” However, there are still
some operations that are not adequately type-safe. For example, with Java sets, it is
allowed to ask “is the apple, myApple, found in this set of postal-codes?” While you may
argue that this makes perfectly sense mathematically (the answer will always be “no”
since an apple is not a postal code), chances are that the programmer made a mistake if
the program ever needs to ask this question.

In order to remedy this, the Extension Framework uses and offers similar interface-types
which are adequately type safe. With these types, you will get a compile-time error,
if your program asks whether an apple is found in a list of postal codes. The types
offered by the Extension Framework are otherwise similar to the standard Java types.
In fact, they are instances of these types, so you can pass them to 3rd-party libraries
which does not know of the Extension Framework types. The types are called MiList ,
MiSet and MiMap . And just like the peer standard Java interfaces, they use generics,
so you can declare the type of objects contained by a specific instance of these types.
Since these types are also working as the standard Java equivalents, they have all the
same methods. So, technically, you can ask whether a specific apple is found in a list
of postal codes. However, that method is marked as “deprecated” which will make the
Maconomy Extender strike out the code and the compiler will make a warning, making
it immediately clear that something is wrong. Instead, the framework types introduces
methods with the same name, except that the name has the suffix TS4. This means
that

• Use containsTS (...) instead of contains(...)

• Use removeTS (...) instead of remove(...)

• Use containsAllTS (...) instead of containsAll(...)

• Use removeAllTS (...) instead of removeAll(...)

• Use retainAllTS (...) instead of retainAll(...)
3This can be shortened even further by using “static imports” introduced in Java 5, which will allow

you to simply write: opt(obj)
4For “TypeSafe.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 4 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

• Use indexOfTS (...) instead of indexOf(...)

• Use lastIndexOfTS (...) instead of lastIndexOf(...)

• Use subListTS (...) instead of subList(...)

• Use equalsTS (...) instead of equals(...)

• Use containsKeyTS (...) instead of containsKey(...)

• Use containsValueTS (...) instead of containsValue(...)

• Use getTS (...) instead of get(...)

• Use putTS (...) instead of put(...); although the standard put() method only
accepts arguments of the right type, it may return null. The type-safe variant
converts the result into an MiOpt.

• Use entrySetTS () instead of entrySet()

• Use valuesTS () instead of values()

• Use keySetTS () instead of keySet()

• Use depositTS (...) instead of deposit(...)

In addition to providing type-safe variants of the corresponding standard methods, these in-
terfaces offer a few convenience methods, e.g., getOptTS (...) and getElseTS (...).

By using the utility class McTypeSafe you can easily construct sets, maps and lists
of the types MiSet, MiMap and MiList. Using this class offers the following factory
methods:

Method Remarks
arrayList Returns an initially empty MiList which is based on

an array-list implementation.
collection Returns an empty MiCollection.
convertCollection Returns a MiCollection which is based on a given in-

put Collection, i.e., transforming the input-collection
to be of type MiCollection. In this way, you can turn
any Java-collection into a MiCollection.

convertDeque Returns a MiDeque from a specified Deque object.
convertIterable Returns a MiCollection based on the contents of the

specified Iterable.
convertList Returns a MiList from a specified List. The returned

list is based on the implementation of the provided list.
It merely wraps that List into being a MiList.

c©Deltek Inc. 2013–2019, All Rights Reserved 5 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.2. GENERAL CODING CONVENTIONS

Method Remarks
convertMap Returns a MiMap from a specified Map. The returned

map is based on the implementation of the provided
map. It merely wraps that Map into being a MiMap.

convertSet Returns a MiSet from a specified Set. The returned
set is based on the implementation of the provided set.
It merely wraps that Set into being a MiSet.

convertSortedMap Returns a MiSortedMap from a specified SortedMap.
The returned sorted map is based on the implementa-
tion of the provided sorted map. It merely wraps that
SortedMap into being a MiSortedMap.

convertSortedSet Returns a MiSortedSet from a specified SortedSet.
The returned sorted set is based on the implementa-
tion of the provided sorted set. It merely wraps that
SortedSet into being a MiSortedSet.

createArrayDeque Returns an initially empty MiDeque based on an
ArrayDeque.

createArrayList Returns an initially empty MiList based on an
ArrayList. An optional argument allows you to spec-
ify the initial capacity of the list.
Other variants of this method allows you to pre-
populate the list with values from any Iterable or by
specifying a comma-separated list of values.

createCollection Returns a MiCollection optionally containing speci-
fied values.

createConcurrentHashMap Returns a MiMap based on a concurrent HashMap.
createEnumMap Returns a MiMap based on an EnumMap.
createEnumSet Returns a MiSet based on an EnumSet.
createHashMap Returns a MiMap based on a HashMap. The map may

initially be empty or based on some provided key/value
elements.

createHashSet Returns a MiSet based on a HashSet. The set may be
empty or initially populated with specified values.

createLinkedDeque Returns a MiDeque based on a LinkedDeque implemen-
tation.

createLinkedHashMap Returns a MiMap based on a LinkedHashMap implemen-
tation.

createLinkedHashSet Returns a MiSet based on a LinkedHashSet implemen-
tation.

createLinkedList Returns a MiList based on a LinkedList implemen-
tation.

createSingletonList Returns a singleton MiList.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 6 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

Method Remarks
createStack Returns a MiStack which is a wrapping of a Stack

implementation.
createTreeMap Returns a MiMap based on a TreeMap implementation.
createTreeSet Returns a MiSet based on a TreeSet optionally with

a specified comparator.
emptyList Returns an empty MiList. The list cannot be modified.
emptySet Returns an empty MiSet. The set cannot be modified.
emptyMap Returns an empty MiMap. The map cannot be modified.
enumSetAllOf Returns a MiSet based on an EnumSet with specified

contents.
enumSetOf Returns a MiSet based on an EnumSet with specified

content.
singletonList Returns a singleton MiList.
singletonMap Returns a singleton MiMap.
singletonSet Returns a singleton MiSet.
unmodifiableList Returns an unmodifiable MiList based on a provided

List.
unmodifiableListCopy Returns an unmodifiable MiList which contains a copy

of a provided List.
unmodifiableMap Returns an unmodifiable MiMap based on a provided

Map.
unmodifiableMapCopy Returns an unmodifiable MiMap which contains a copy

of a provided Map.
unmodifiableSet Returns an unmodifiable MiSet based on a provided

Set.
unmodifiableSortedMap Returns an unmodifiable MiSortedMap based on a pro-

vided SortedMap.

1.2.4 On the Use of Strings

When programming against the Extension Framework and the Maconomy API’s, you
need to use textual identifiers for a lot of different purposes. For example, when referring
to a specific container, you need to specify the name of the container. When looking
up field values of some record, you need to refer to the name of that field. Also, when
displaying a message to the end-user, you need to describe the text to be shown.

Java has a generic type for handling strings: the String type. When you use Strings,
sometimes,the casing of the string-content matters, other times, it doesn’t. For example,
for any identifier (e.g., data-base field, container name, field name), the casing is irrelevant:

c©Deltek Inc. 2013–2019, All Rights Reserved 7 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.2. GENERAL CODING CONVENTIONS

the framework will always ensure this. Other times, casing is highly relevant (e.g, for
text shown to the end-user.)

If you think of the purpose of specifying the name of a field, and the purpose of specifying
a text which should eventually be presented to an end-user, there’s a huge difference!
A text presented to an end-user should be nice and easy to read. The name of the
field is some internal reference that has the purpose of uniquely identifying some value.
There is nothing fundamental in having a textual name—a field might as well have been
identified by a number. So the meaning and purpose of these usages are significantly
different. You never want to mix these two. And you don’t need things like advanced
string manipulation for identifies like field names. For example, why would you want to
slice out a small part of an id of some field?

Consequently, the framework internally5 completely separates the two uses of strings.
The identifiers are represented by a type called MiKey whereas texts that are meant to
be presented to an end-user are represented by a type called MiText . Although both
are implemented by internally keeping a String, they can’t be mixed up without leading
to compiler errors.

It is possible as an extension programmer using the Extension Framework to strictly
follow this pattern. However we acknowledge that it is sometimes slightly cumbersome
to do this rigorously. For example looking up a field with a certain name, or specifying a
message to the end user, it is sometimes a bit annoying to being forced into converting
Strings into the proper type. Therefore, the extension programmer is in many cases
offered the choice of being rigorous (always using either MiKey or MiText) or to use a
more sloppy (but more readable) approach that uses Strings directly6.

The two interfaces have companion factory classes, McKey and McText , with factory
methods for producing objects of the corresponding interface-type. By using Java’s static
import feature, the clutter can be minimized.

For example, record.getStr(key("EmployeeNumber")) is the rigorous way of obtaining
the value of the String-field “EmployeeNumber” from a record. record.getStr("Emp-
loyeeNumber") is the more straight-forward (but less ‘safe’) way of expressing the same
thing. For example:

// The r i g o r o u s approach (w i t h ou t s t a t i c impor t s)
containerRunner.error(McText.text("Negative amounts are not

allowed"));
// The r i g o r o u s approach (u s i n g s t a t i c impor t s)
containerRunner.error(text("Negative amounts are not allowed"));
// The s l i g h t l y more r e a d a b l e (bu t s l o p p y) approach
containerRunner.error("Negative amounts are not allowed")

5And to some degree also externally
6The Extension Framework will then immediately convert the String into the proper type

Version 1.4.021, software version 2.5.0 (21.0.sp100) 8 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

Although the compiler cannot check it, you should use the “sloppy” variant only when
referring to literal Strings. Whenever your argument is represented by some kind of
variable, you should use the rigorous approach. For example:

// L i t e r a l s t r i n g s are f i n e t o use
record.getInt("Quantity");
// ! Not recommended : s t o r i n g S t r i n g s in v a r i a b l e s f o r l a t e r use
String e = "EmployeeNumber";
String m = "Message for the end -user";
// . . . (l o t s o f code) . . .
/ / ! Oops ! We r e f e r t o a S t r i n g which i s not r e a l l y a f i e l d name !

The comp i l e r i s unab l e t o d e t e c t t h i s !
record.getStr(m);

// In t h i s case , t h e f o l l o w i n g i s b e t t e r
MiKey e = key("EmployeeNumber");
MiText m = text("Message for the end -user");
// . . . (l o t s o f code) . . .
// The comp i l e r WILL g i v e an e r r o r . No harm done !
record.getStr(m);
// This w i l l c omp i l e j u s t f i n e ; t h e t y p e s are c o r r e c t !
record.getStr(e);

We recommend that you avoid using Strings except as literal String arguments. We
also recommend that you don’t use Strings to represent structures that might just as
well (or more appropriately) be represented by a new class or interface. Since Strings
can be used to encode a lot of different types of information, it generally means that they
are less type-safe.

1.2.5 Working with Data Types

The Maconomy ERP system supports a number of different data types:

Amount for working with monetary units, e.g., 14200.50. Amounts are always repre-
sented with 2 decimals.

Boolean for working with boolean values.

Date for working with date values. Notice that in Maconomy, Date and Time are
separated. A special “date” value represents “no date”, visualized as a blank.

Integer for working with integer numbers.

Popup for working with enumerated types. The “Popup” type is not meaningful by
itself. The specific enumeration type is needed to represent a specific value.

Real For working with Real (decimal) numbers.

String For working with text strings.

c©Deltek Inc. 2013–2019, All Rights Reserved 9 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.2. GENERAL CODING CONVENTIONS

Time For working with time value. Notice that in Maconmoy, Date and Time are
separated.

All values of the above types are internally represented by a Java class called McDataValue .
A value of this type may represent any of the above concrete types. This type is needed to
obtain a generic interface to data at large. However, for every value instance, that value
will have a concrete type which is more specific that merely McDataValue which is an
abstract super-type for all the concrete types. The concrete classes used to represent the
above values are: McAmountDataValue , McBooleanDataValue , McDateDataValue ,
McIntegerDataValue , McPopupDataValue , McRealDataValue , McStringDataValue

and McTimeDataValue .

You should never use class casting to convert from a McDataValue to one of the concrete
sub-types. As we shall see in Chapter 4 the Extension Framework provides ways to
conveniently pick up values of a specific type.

Some times, however, you would want to convert a given McDataValue into a specific
type, and as an extension programmer, you know what that type is. In this case, the
framework provides a number of utility methods for converting a generic data value to a
specifically typed data value. In case of a programming error (meaning that the value is
not an instance of that type) the framework will throw an exception at run-time.

Often, however, working with specific Maconomy-encoded values is not exactly what you
want either: sometimes, you would prefer to use a corresponding Java type instead. This
is useful in order to utilize one of the many Java libraries or when performing trivial
things such as if-statements. Again, the framework provides a mechanism to convert
between standard Java types and the internal Maconomy-encoded types.

In general these methods are made available by the framework through utility classes
(classes with static methods) listed below.

McAmount which is used to convert between McDataValue/McAmountDataValue and
BigDecimal which is the Java class chosen for representing amounts in Java. Notice
that floating-point double is inadequate for monetary units due to imprecision and
rounding issues!

McBool which is used to convert between McDataValue/McBooleanDataValue and
boolean which is the primitive Java type chosen to represent booleans.

McDate which is used to convert between McDataValue/McDateDataValue and Gre-
gorianCalendar which is the Java class chosen for representing dates. Usually
the McDateDataValue is easier to work with than the GregorianCalendar. Only
GregorianCalendar is a standard Java type, McDateDataValue is not.

McInt which is used to convert between McDataValue/McIntegerDataValue and int
which is the primitive Java type chosen to represent integers.

McPopup which is used to convert between McDataValue and McIntegerDataValue. As

Version 1.4.021, software version 2.5.0 (21.0.sp100) 10 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

there is no obvious choice for representing a “popup value” as a standard Java
class this is not directly possible. You can choose an aspect of a popup value that
you want to convert into some Java type. If you need the ordinal value you can
convert into a Java int, if you need the literal value you can convert into a MiKey.
Notice that MiKey is not a standard Java type. It represents a case-insensitive
String which does not exist as a standard Java type.

McReal which is used to convert between McDataValue/McRealDataValue and BigDe-
cimal which is the Java class chosen for representing real numbers in Java. Notice
that floating-point double is inadequate for this purpose due to imprecision and
rounding issues!

McStr which is used to convert between McDataValue/McRealDataValue and String
which is the Java class chosen for representing text strings in Java.

McTime which is used to convert between McDataValue/McDateDataValue and Gre-
gorianCalendar which is the Java class chosen for representing time. Usually
the McTimeDataValue is easier to work with than the GregorianCalendar. Only
GregorianCalendar is a standard Java type, McTimeDataValue is not.

Notice that these classes are not representing the actual values; they are only used as
library method name-spaces! Hence, you cannot create a value of type McDate, but
using the McDate class you can create objects of type McDateDataValue.

In general, the above mentioned utility classes provide two methods:

Method Remarks
val This method converts either a generic McDataValue or the

specific Java-type into the specific McDataValue variant, e.g.,
McDateDataValue or McStringDataValue.

of This method converts generic (or specific) McDataValue into the
Java type associated with the type.

For example, the following code shows how to construct a generic data value, and how to
convert it back to a Java type.
// Cons t ruc t a boo l e an v a l u e w i t h t h e i n t e r n a l encod ing
McBooleanDataValue boolVal = McBool.val(true);
if (McBool.of(boolVal)) {
...

}

// Obta in some g e n e r i c da ta va lue , known to be o f
// t y p e S t r i n g from somewhere
McDataValue genericVal = ...;
// The g e n e r i c v a l u e can be c on v e r t e d t o a s p e c i f i c sub−t y p e

c©Deltek Inc. 2013–2019, All Rights Reserved 11 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.2. GENERAL CODING CONVENTIONS

McStringDataValue sdv = McStr.val(genericVal);
// And i t can be c on v e r t e d d i r e c t l y t o t h e Java r e p r e s e n t a t i o n
String s = McStr.of(genericVal);

Apart from the possibility to convert between various formats representing values, the
above mentioned utility classes have a number of convenience methods for working with
the values.

Amount-related utilities: McAmount

Method Remarks
add Returns a McAmountDataValue having the value corresponding to

adding the two argument values.
compare Returns an int that indicates how the two arguments, a and b,

compare to each other:

compare(a, b) is


< 0 if a < b
> 0 if a > b
= 0 if a = b

divide Returns a McAmountDataValue having the value corresponding to
dividing the two argument values.

multiply Returns a McAmountDataValue having the value corresponding to
multiplying the two argument values.

negate Returns a McAmountDataValue having the negated value of the
provided argument.

subtract Returns a McAmountDataValue having the value corresponding to
subtracting the two argument values.

Boolean-related utilities: McBool

Method Remarks
TRUE A constant representing the value true.
FALSE A constant representing the value false.
and Returns a McBooleanDataValue having the value corresponding

to the value a ∧ b where a and b are the provided arguments.
or Returns a McBooleanDataValue having the value corresponding

to the value a ∨ b where a and b are the provided arguments.
not Returns a McBooleanDataValue having the value corresponding

to the value ¬a where a is the provided argument.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 12 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

Date-related utilities: McDate

Method Remarks
addDays Returns a McDateDataValue which is a specified number of dates

after a given date.
addMonths Returns a McDateDataValue which is a specified number of months

after a given date.
addYears Returns a McDateDataValue which is a specified number of years

after a given date.
compare Returns an int that indicates how the two date arguments, a and

b, compare to each other:

compare(a, b) is


< 0 if a < b
> 0 if a > b
= 0 if a = b

The “null date” is considered less than all other non-null dates.
day Returns an integer representing the day of the argument date. For

example, if the date is July 2, 2010, the day would return 2. If the
date is the null date, an exception is thrown.

month Returns an integer representing the month of the argument date.
For example, if the date is July 2, 2010, the month would return 7.
If the date is the null date, an exception is thrown.

year Returns an integer representing the year of the argument date. For
example, if the date is July 2, 2010, the year would return 2010. If
the date is the null date, an exception is thrown.

isNull Returns true if the argument date is the null date, false otherwise.
nullDate Returns a McDateDataValue which has the null-date value.
today Returns a McDateDataValue which has the value of the current

date.
val The val method is found in a version that takes three integer argu-

ments representing the day, month and year. Hence, this method
returns a McDateDataValue that corresponds to the specified date.

Integer-related utilities: McInt

Method Remarks
add Returns a McIntegerDataValue having the value corresponding

to adding the two argument values.

c©Deltek Inc. 2013–2019, All Rights Reserved 13 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.2. GENERAL CODING CONVENTIONS

Method Remarks
compare Returns an int that indicates how the two arguments, a and b,

compare to each other:

compare(a, b) is


< 0 if a < b
> 0 if a > b
= 0 if a = b

div Returns a McIntegerDataValue having the value corresponding
to the integer part of dividing the two argument values.

multiply Returns a McIntegerDataValue having the value corresponding
to multiplying the two argument values.

negate Returns a McIntegerDataValue having the negated value of the
provided argument.

subtract Returns a McIntegerDataValue having the value corresponding
to subtracting the two argument values.

Popup-related utilities: McPopup

Method Remarks
isNil Returns true if the provided value represents a blank (“nil”) popup

value.nil value|see popups, nil value
isRaw Returns true if the provided value represents a “raw” popup value.

I.e., a popup value where the ordinal is currently unknown.
literalNameOf Returns the literal name of the provided popup value as a

MiLiteralName.
ordinalOf Returns an int representing the ordinal value of the provided

popup value. If the provided value is a “raw” popup value, this
method throws an exception.

typeOf Returns the type name of a given popup value as a MiKey.
nil Returns a McPopupDataValue having the blank (“nil”) value for

the specified concrete type.

Real-number-related utilities: McReal

Method Remarks
add Returns a McRealDataValue having the value corresponding to

adding the two argument values.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 14 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

Method Remarks
compare Returns an int that indicates how the two arguments, a and b,

compare to each other:

compare(a, b) is


< 0 if a < b
> 0 if a > b
= 0 if a = b

divide Returns a McRealDataValue having the value corresponding to
dividing the two argument values.

multiply Returns a McRealDataValue having the value corresponding to
multiplying the two argument values.

negate Returns a McRealDataValue having the negated value of the pro-
vided argument.

subtract Returns a McRealDataValue having the value corresponding to
subtracting the two argument values.

String-related utilities: McStr

Method Remarks
EMPTY Returns a McStringDataValue representing the empty string.
isLike Returns a boolean indicating whether a given McStringDataValue

represents the same value as a given String, not taking casing into
account.

text Returns a McStringDataValue having the content of a specified
String argument. The returned value does not have a maximum
length!

trunc Returns a McStringDataValue having the content of a specified
String argument, truncated to the maximum length handled by
the Maconomy server.

val Similar to trunc.

Time-related utilities: McTime

c©Deltek Inc. 2013–2019, All Rights Reserved 15 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.3. CODING CONVENTIONS USED IN THIS MANUAL

Method Remarks
compare Returns an int that indicates how the two time arguments, a and

b, compare to each other:

compare(a, b) is


< 0 if a < b
> 0 if a > b
= 0 if a = b

The “null time” is considered less than all other non-null time
values.

hours Returns an integer representing the hour of the argument time
value. For example, if the time is 14:05:27, the hours would return
14. Notice the 24-hour notation. If the time is the null time, an
exception is thrown.

minutes Returns an integer representing the minutes of the argument time
value. For example, if the time is 14:05:27, the minutes would
return 5. If the time is the null time, an exception is thrown.

seconds Returns an integer representing the seconds of the argument time
value. For example, if the time is 14:05:27, the seconds would
return 27. If the time is the null time, an exception is thrown.

isNull Returns true if the argument time is the null time, false other-
wise.

nullTime Returns a McTimeDataValue which has the null-time value.
now Returns a McTimeDataValue which has the value of the current

time of the day.
val The val method is found in a version that takes three integer

arguments representing the hours, minutes and seconds. Hence,
this method returns a McTimeDataValue that corresponds to the
specified date. The hour argument must be provided using 24
hours notation. Hence 0 is midnight, 12 is noon and 23 is 11 P.M.

1.3 Coding Conventions Used in this Manual
Throughout this manual, a number of code snippets are shown. In most cases, the entire
listing is not included. For example, import statements (which are most frequently figured
out by the Maconomy Extender automatically) are not shown.
However, in many listings, a number of “static imports” are assumed. The following
table shows the methods used, and the counterpart to be used if no static import is
made:

Version 1.4.021, software version 2.5.0 (21.0.sp100) 16 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

Method Corresponds to Required static import
opt(x) McOpt.opt(x) com.maconomy.util.McOpt.*
key(name) McKey.key(name) com.maconomy.util.McKey.*
msg(str) McMsg.msg(str) com.maconomy.api.messages.McMsg.*
msg(str, f) McMsg.msg(str, f) com.maconomy.api.messages.McMsg.*
text(str) McText.text(str) com.maconomy.api.messages.McText.*
dataValues() McDataValues.dataValues() com.maconomy.api.data.

collection.McDataValues.dataValues

It is possible to configure the Maconomy Extender to automatically recognize the above
method names, automatically inserting the static imports when the above method names
are entered.

The screen shot shows how to configure the preferences in the Maconomy Extender.

1.4 A Note for PDM Developers

This section is targeted specifically at readers used to extending the Maconomy Portal
using PDM [Pdm] and M-Script [MSca]. If you are not used to making extensions to
Maconomy in this way, you may safely skip this section.

Although the Extension Framework described in this book is in many ways compa-
rable to PDM and the M-Script Maconomy API [Mscb], there are some significant
differences.

c©Deltek Inc. 2013–2019, All Rights Reserved 17 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.4. A NOTE FOR PDM DEVELOPERS

• PDM-extensions are client-side, whereas the Extension Framework offers server-side
extensions.

• The Extension Framework is based on a compositional architecture whereas PDM
has a monolithic architecture.

• With the Extension Framework, all contributions are first-class citizens of the
framework, and can be used within the framework on equal terms with any other
contributions. In fact, the implementation of the standard Maconomy containers7

is nothing but an extension written in the framework itself.

1.4.1 Server-Side versus Client-Side

So, why would you care whether an extension is server-side or client-side? There are
several reasons for you should:

• Client-side extensions—by definition—can be leveraged only through one particular
client interface. A server-side extension may be used for several different client
interfaces8.

• Separation of concerns: with server-side extensions, you are completely spared
from worries concerning the GUI and user-interactions. In other words, you can
concentrate on the business logic provided by your extension. You don’t have to
worry about various user-interactions and GUI presentations. This make your code
easier to write and maintain.

• Since the presentational layer is completely separated from your extensions, the
end-users will experience a consistent user-interface, leading to higher usability.

• All client-side functionality automatically becomes available for your extensions.
The client(s) cannot distinguish your extensions from others (or from the “standard.”)
You don’t have to manually support things like drag’n’drop of table rows, making
your functionality available through wizards, offering traffic lighting, or worrying
about how to react to various workspace constellations. If you fulfill the contract
required of extensions, you get it!

Experience shows that solutions offered through the workspace client are often thought
in a different way compared to how a solution to the same need would be envisioned in
the Maconomy portal. Working with the workspace client requires a change of mind set
compared to working with the portal. One of the central reasons for this is exactly the
difference between client-side extensions and server-side extensions, combined with the
powerful features of MDML [CMd] and MWSL [QMw]—these things change how you do
various things, and how an effective solution for end-users is built.

7Formerly known as Maconomy dialogs
8As of the present version, the extensions to the coupling service are only available though the

workspace client

Version 1.4.021, software version 2.5.0 (21.0.sp100) 18 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 1. INTRODUCTION

1.4.2 Compositional Architecture

The compositional architecture of the Extension Framework means that you can ex-
tend other extensions. And others can extend yours. Since all functionality is offered
through extensions9, your contributions are indistinguishable from others. And since
you can extend others’ work, your contributions can be extended—by you or by others.
This fact makes it easier to separate concerns, add/remove extensions at a more fine-
grained level, and increases the clarity of each individual contribution. It also lowers
the risk of code-duplication, since you avoid re-implementing what might otherwise be
overshadowed.

With PDM, you need to explicitly program a portal component offering the functionality
of a Maconomy dialog, or whatever custom logic you choose to offer. In addition, such
a portal component needs to be combined with whatever extension logic you want. If
you wish to extend this component further, you need to either modify the source code
of that particular portal component, or you need to re-program it from scratch, adding
the extensions there. Although M-Script code can be modularized there is no framework
support for re-using extensions of semantically equivalent entities.

1.4.3 All Extensions are First-Class Citizens

Another consequence of the compositional architecture of the Extension Framework is
that once an extension is made and installed, it will automatically be invoked when
other extensions programmatically interacts with whatever container you extend. For
example, suppose your task is to make an extension that automatically ensures that
when a job is created, it is blocked for registration, and that the job has status “Quote.”
And that whenever the job is converted to status “Order”, the job is automatically
unblocked for registration. The customer wants the block-for-registration field to be
removed from the user-interface. Now suppose that your extension is going to be installed
in an environment where another extension is already installed: that extension has the
capability of creating jobs linked with sales orders in certain cases. The architecture of
the Extension Framework means that the only thing you need to do is to focus on your
task: making an extension that extends the “Create” operation on the Jobs container,
and the “ConvertToOrder” action on the Jobs container. Once your extension is installed,
other extensions accessing the “Jobs” container programmatically will automatically
invoke your extension, without knowing it. In a PDM context, you would have had
to modify or re-write the extension that someone else did, in order to ensure that the
functionality provided by your extension is obeyed whenever a job is created or converted
into “Order” status, no matter the origin of the event.

9Even the standard Maconomy functionality is offered through an extension that is prepackaged
together with the coupling service

c©Deltek Inc. 2013–2019, All Rights Reserved 19 Version 1.4.021, software version 2.5.0 (21.0.sp100)

1.4. A NOTE FOR PDM DEVELOPERS

Version 1.4.021, software version 2.5.0 (21.0.sp100) 20 c©Deltek Inc. 2013–2019, All Rights Reserved

Chapter 2

Overview

This chapter gives an overview of the Extension Framework and how it fits into the Macon-
omy 2.0 architecture. It also introduces the main concepts that extension programmers
will need to know and work with.

2.1 The Maconomy 2.0 Architecture

Maconomy 2.0 is very similar to previous versions of Maconomy. Indeed, it is still
possible to use the same technologies and front-ends as in previous versions. For example,
when upgrading from Maconomy X1, clients may continue to use a portal installation,
Jaconomy client etc. Just as usual. A high-level overview of the components in the
Maconomy 2.0 architecture stack is shown in Figure 2.1.

The main new contribution of Maconomy 2.0 is a new platform which uses the Workspace
Client as the user front end. Rather than presenting Maconomy “dialogs” (like the
Jaconomy client) or specially coded components (like the Portal), it presents workspaces.
Workspaces are specified declaratively using the MWSL language [QMw]. A workspace
defines a hierarchical structure in which data is presented, and the system will ensure
that data is always updated relative to the specification. You may think of a workspace
as a tree of nodes, where each node contains data (one or more records) and where the
edges in the tree are annotated to indicate which data should be shown in the next node.
The edges primarily use foreign keys to specify how to derive the key values for data
shown in the next node. This value is always derived from the current record in the node
which is a parent to the node from which a key value is being derived.

Interpretation of the data and what data to present in each node is managed by a
workspace engine. The workspace engine is a part of a server-side component introduced
in Maconomy 2.0: the Coupling Service. Figure 2.2 shows a very small workspace where
three nodes are tied together in a workspace. The workspace engine will ensure that
the job having focus in the jobs node will be used to derive the data contained by the

21

2.1. THE MACONOMY 2.0 ARCHITECTURE

Coupling Service

WS Client

Maconomy
Application

Server

Web Daemon

Portal
Jaco-
nomy

Client-side
Server-side

≥
ve

rs
io

n
2.

0
A

ll
ve

rs
io

ns

Figure 2.1: The Coupling Service and the Workspace client are in scope only for version
2.0 and higher. The Extension Framework described in this document concerns only the
coupling service and whatever clients may interact with the coupling service (currently only
the workspace client.) The Portal, the Jaconomy client and Web Daemon components
are still functional but are not affected by the Extension Framework. In this figure
they are shown in a dimmed shade because they are not discussed in this document.
The Maconomy Application Service is (as usual) responsible for executing the “core”
Maconomy application logic. This logic is made accessible to the coupling service by a
specific extension that handles Maconomy containers by interacting with the Maconomy
Application Server. Notice the dashed line which indicates the client-side and server-side.
Since all extensions are made in the coupling service, such extensions are server-side
extensions.)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 22 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 2. OVERVIEW

J

C

cu
st

E

pm

root
J : Jobs
C: Customers
E: Employees
cust: CustomerNumber_Customer
pm: ProjectManager_Employee

Figure 2.2: A small workspace. The root note is just a starting point tying to-
gether parallel nodes at the top. The top node J contains data from the Jobs con-
tainer. Using the foreign key CustomerNumber_Customer which determines a customer
based on the CustomerNumber field in the Jobs container, it is declared that data
in the node C must be found in the Customers container. Also, using the foreign
key ProjectManagerNumber_Employee which determines an employee based on the
ProjectManagerNumber field in the Jobs container, it is declared that data in the node
E must be in the Employees container.

two other nodes. Hence, the content of the job will contain a customer number, and
that customer number will be used to determine the data presented in the Customers
container. Similarly, the workspace engine ensures that no matter which employee is
specified as the project manager of the job, that employee is shown in the E node, and
that the data will be taken from the Employees container. The visual appearance of this
will be managed by the workspace client. Data from a given node is presented in a “panel”
using either a form layout, a table layout or a filter layout. This depends on what part of
the container the data is taken from, which is also specified in the workspace declaration.
This part is referred to as the pane. The fact that each individual pane can be referred
on its own is what makes it possible to configure the workspaces from building blocks
that are more fine-grained than entire containers.

2.2 Containers and Panes

We have been referring to the term container several times already. As explained above,
data in a workspace, shown by the workspace client, is taken from a container. So what
is a container? In earlier versions of Maconomy, the term has been “dialogs.” In fact, a
Maconomy dialog is just a special case of a container. Since the Extension Framework is
in principle independent of Maconomy, we have chosen to generalize the dialog concept.
The result is a container. Therefore, throughout this document, we shall refer to the
term “container” rather than “dialog.”

A container comprises a number of panes. Each pane of a given container has a specific
type, and a specific name. Each workspace node contains data from one pane. Visually,
panes are presented in so-called “panels” in the workspace client. Three types of panes

c©Deltek Inc. 2013–2019, All Rights Reserved 23 Version 1.4.021, software version 2.5.0 (21.0.sp100)

2.2. CONTAINERS AND PANES

Pane Type Layout Type
Card Form

Browser
Report

Table Table
Filter Filter

Table 2.1: Overview of how pane type and rendering option are tied together

exist:

Card panes which contain a single record. Examples of card panes are numerous for
Maconomy containers, for example the “Jobs” container and the (card part) of the
“Time Sheets” container.

Table panes which contain zero or more records. Examples of table panes are numerous
for Maconomy containers, for example, the (table part) of the “Job Budgets”
container and the (table part) of the “Time Sheets” container.

Filter panes which, like tables, contain zero or more records. For filters, arbitrary
sub-sets of the potential content may be shown depending on the possible filter
options applied by the user and/or layout designer. Filters also support things like
paging (e.g., “Showing records 1 to 25 of 3200.”) In former versions of Maconomy,
filter panes have been there, but have appeared to be “second class” members of
the family. In Maconomy 2.0, filter panes are treated the same as card and table
panes. Examples of filters are: the pane which appears when you press “Ctrl+F”
in Jaconomy. In the Jobs container, it will present a filterable list of jobs. Also the
search panes that pops up when you press “Ctrl+G” are instances of filter panes.

Table 2.1 shows how different pane types influence the layout options in MDML and the
workspace client. Maconomy containers are found in one of these configurations:

• Filter

• Filter – Card

• Filter – Card – Table

• Card

• Card – Table

Other configurations might exist. With the Extension Framework you can make other
configurations, although there is only easy support for the above configuration plus
“Filter – Table” and “Table” in the current version.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 24 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 2. OVERVIEW

2.3 Extension Principles
By now, it should be clear that containers play a very central role with the Extension
Framework. In fact, the only thing you can do is:

• Extend existing containers

• Contribute new containers

When contributing a new container, you must obviously specify which configuration your
container has, i.e., what panes are found in the container, and what their names1 are. In
addition to this, you specify which events2 are supported by each pane in your container.
The following events exist:

Initialize The first step in the two-step process of creating a new record. Upon creating
a new record, an end-user is always presented with a template for the new record.
This template record may or may not be modified before it is finally created. If the
user chooses to cancel/revert the operation at this stage, no record will be created.

Create The second step in the two-step process of creating a new record. This event
is run after the end-user has had a chance of modifying a template record. After
this event is done, the new record is expected to be persisted in the persistence
layer, typically the database. There is no guarantee that all fields will have the
value entered by the end-user. The business logic of your container may choose to
change some or all of the values.

Read This event occurs whenever data needs to be refreshed. For example, initially
when opening a workspace, the visible panes will be refreshed. Whenever some event
takes place in a pane of a workspace tree, the workspace engine will automatically
request this event for all panes that may need to be refreshed.

Update This event occurs when a change is made to some record. For example, when
an end-user changes the numbers of hours registered on a time sheet line. After
this operation successfully completes, the record is expected to be updated in the
underlying persistence layer, if needed. There is no guarantee that all fields will
have the value entered by the end-user. The business logic of your container may
choose to change some or all of the values.

Delete This event occurs when a record is being deleted. If this operation completes
successfully, it is expected that the record no longer exists in the underlying
persistence layer.

Print This event occurs when a “Print This” is requested on a given pane. Exactly
what that means is entirely up to the business logic of the container. Typically it
is expected that some document/report will be produced showing data that relates

1Currently, there is only “easy” support for the configurations mentioned in 2.2, and only support for
panes with certain standardized names. Except for quite extreme cases, this should suffice.

2Basically a user-operation, or an operation requested externally

c©Deltek Inc. 2013–2019, All Rights Reserved 25 Version 1.4.021, software version 2.5.0 (21.0.sp100)

2.3. EXTENSION PRINCIPLES

to the data represented by the pane in question. This operation might change the
record as a side-effect, e.g, a LastPrintedDate field.

Move This event occurs when a record in being “moved.” Moving can be one of the
following user operations

• Move current line “up.” Possible in some tables (or tree-tables)

• Move current line “down.” Possible in some tree (or tree-tables)

• “Indent” the current line. Possible in some tree-structured tables.

• “Outdent” the current line. Possible in some tree-structured tables.

• “Drag’n’drop” the current line to a new position in the table (or tree-table.)
This operation is possible in some tables and some tree tables.

Action This event occurs whenever a “named action” is invoked on a pane in a container.
You can declare which (if any) named actions are available in each pane of a container.
Examples of such actions are “Submit Time Sheet”, “Convert to Order” and “Post.”

When extending a container, you can (for each pane) choose which of the events supported
by that pane in the container, you wish to extend. Meaning that you have a choice
of having your code executed whenever one of these events occur. You may also add
support for new events, typically adding new named actions. In principle, you can add
support for other events as well. Finally, you may remove support for operations that
would otherwise be supported by the container you extend. For example, if you don’t
want end-users to, e.g., delete jobs, you may do so by entirely removing the support for
deleting jobs.

As mentioned in the introduction, the Extension Framework has a compositional approach
to extending containers. This means that several different extensions for the same
container may co-exist. Every container has at least one extension: the defining instance3.
We call the defining instance the root. For any specific container, there will be exactly
one such root. An attempt to declare several roots for the same container will yield a
run-time error.

It is possible to extend an existing container. This is done by contributing an imple-
mentation that declares itself an extension to a container. There can be many such
extensions. The Extension Framework will ensure that these are ordered in some way.
The root will always be the “last.” From the outside, it is impossible to determine how
many different contributions are present. Externally, a given container will have a certain
set of capabilities, and a certain behavior. Whether this is all contributed by the root
or by numerous extensions is irrelevant externally. Figure 2.3 shows an example of a
container comprising a number of extension contributions.

3Remember that contributing a new container is considered “an extension.” So in order for some
container to be known, such an extension must exist

Version 1.4.021, software version 2.5.0 (21.0.sp100) 26 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 2. OVERVIEW

Container

Ext1Ext2Ext3Ext4 Root

Figure 2.3: A container is made up of a number of extension contributions. Root marks
the the root, and must be present. Zero or more extensions may be installed on top of
the root. In this figure, the contributions Ext1. . .Ext4 are present. From the outside, it
is indistinguishable how many extensions are present. The framework will organize the
ordering of the contributions, always ensuring that the root is last.

Extensions to an existing container can contribute to the behavior of the container being
executed. This may be done in several ways:

• Additional behavior for the supported events may be contributed

• Support for events not supported by the container prior to extending it may be
added. This covers standard actions (create, update, delete, print) as well as named
actions.

• Events supported by the container prior to extending it may be removed. For
example, it is possible to remove support for deleting, or the support for certain
named actions.

• New persisted fields may be contributed.

• New calculated fields, known as variables may be contributed.

2.3.1 More on Container Events

The core of the Extension Framework are the container events: without container events,
no information could be provided to end-users, and no interaction could take place. You
may argue that everything is about the container events. Everything else is merely a
matter of supporting the handling of these. Container events can be divided into two
kinds: data-carrying events and supportive events. The data-carrying events are events
used to interact with an end-user. They may operate on certain portions of the data,
and they alter the data presented to the user, as well as on the persisted data entities.
The supportive events are not expected to have side-effects to the persisted data, and are
used to support the framework in interacting with containers. Some containers may not
support all data-carrying events, but every container must support the supportive events.
The supportive events are:

Open “Opens” a container. This operation may not have any effect at all. A given
container implementation can use this to initialize various data structures, if needed.
The framework will invoke this event prior to other events made on a container.

c©Deltek Inc. 2013–2019, All Rights Reserved 27 Version 1.4.021, software version 2.5.0 (21.0.sp100)

2.3. EXTENSION PRINCIPLES

Close The opposite of “Open.” When the framework is done with some container, “Close”
will be invoked. There is no guarantee how long the container is left open by the
framework. Also, several events may be invoked between Open and Close.

Specify This event is used by the framework to describe the capabilities of a container.
This description include the pane configuration of the container, the name and type
of the fields in each pane, which fields are open or mandatory, which foreign keys
are known by which pane, and which event actions are supported by a certain pane,
i.e., which data-carrying events are supported by each pane of the container.

Restrict This event is invoked when a search (e.g., a “Ctrl+G”-search) is being executed
from a field in this container. A search really means executing a “Read” event in
some other container. The restrict event gives the container from where the search
was started a chance to define certain restrictions that must be applied to that
search. For example, when searching for Employees in some container, the container
from where the search is performed may want to dictate that only employees that
are not “blocked” should be comprised by the search result. Or that the employees
should only be those employees belonging to the company specified in some field in
the container from where the search is taking place. Such restrictions are sometimes
called foreign-key conditions.

The data-carrying events have been mentioned in Section 2.3. All of the data event have
similar characteristics: the input is a description of the actual data/constraints under
which the event should be executed, and the output is a container value. A container
value represents resulting values for zero or more panes of the container. Usually, a value
for the pane in which the event is executed is expected, although this is only strictly
required for Read-events. Each of the pane values in the resulting container value may
be a partial value. A partial value means that the data is an addendum to a previous
Read-result and the partial responses of other events having occurred since the latest
full4 pane value occurred.

Why may an event result in a value of other panes? The answer is performance.
Depending on the actual container-implementation, results for several pane values may
be known anyway. Making these values a part of an event-response-value makes the
workspace engine capable of avoiding unnecessary re-reads. As an example, consider the
TimeRegistration5 container of the Maconomy application. This container comprises a
card pane (indicating the user and the period for which the time registrations covers)
and a table pane (containing each of the specific registrations made in the specified
period of time.) Whenever a line in the table is created, updated or deleted, the contents
of the card part may change accordingly. For example, the card is capable of showing
the total number of invoiceable hours registered in the specified period of time. The
Maconomy Server calculates the changes to this number effectively by adjusting the
existing value by a delta calculated from the exact event made in the table. Doing this is

4I.e., non-partial
5Externally titled “SpeedSheet”

Version 1.4.021, software version 2.5.0 (21.0.sp100) 28 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 2. OVERVIEW

more efficient than re-calculating the value based on all lines in the table. So, when the
resulting (partial) pane value is calculated for the table, the corresponding value is also
made available for the card. Rather than throwing this value away, this value is made
available as part of the response. depending on the actual needs, the workspace-engine
may determine to use that card part (rather than having to re-read it), or it may decide
that there is no use for the card part at all (in which case no harm is done.)

2.3.2 Using Data-Models

This all seems a little complex, right? The truth is that dealing with container values
(comprising values for several panes) and dealing with pane values (comprising the value
of the event record as well as possibly values for other records, either as partial or full
pane values) is a somewhat complex task. For this reason, the Extension Framework has
been built in a way that abstracts away most of this, letting the programmer focus on
the important stuff (the business logic) rather than manipulating and handling container
values in the right way. This is achieved by using a concept called data models. The
purpose of data models is to let the extension programmer focus on the business logic,
and to offer abstractions that lets the programmer re-use semantically similar behaviors
in different containers. This includes abstracting away the tedious management of
multiple pane values in container values as well as the management of partial or full pane
values.

In the Extension Framework a container is an integral part: the central concept within
the framework. This is not so for the data-model. A container doesn’t strictly need an
implementation based on data models. However, a lot of effort has been put into making it
easy to provide new containers or to extend existing containers. This is done by providing
abstract container implementations. In order to use these abstract implementations,
the programmer is forced to use data models. And so, data models becomes a de-facto
integral part of the Extension Framework. If “containers” are the heart of the framework,
“data models” are the spirit. Our goal is that virtually all extension logic is contributed
using data models.

The idea is that the data models describe the core business logic. Since events are
tied to one record, the events of the data models are likewise associated with one
record. For example, when a user updates a record, the data model will be invoked
with information about that one record, and the task of the extension programmer is
to implement validation and updates pertaining to that one record. Similarly, when
a user deletes a record, the data-model is invoked in a context of the record being
deleted. The abstract container implementations provided by the Extension Framework
will automatically invoke the data models at the right time with the right information
and tie the information together in the right format. Figure 2.4 shows how the same
data model may be used for different panes and different containers.

c©Deltek Inc. 2013–2019, All Rights Reserved 29 Version 1.4.021, software version 2.5.0 (21.0.sp100)

2.3. EXTENSION PRINCIPLES

dm3

dm2

dm1

Container C2
p4

p5

Container C1
p1

p2

p3

Figure 2.4: Each pane of a container is associated with a data model. The data models
may be re-used for several panes and for different containers. In this example, the data
model dm1 is used for panes p1 and p2 of container C1, dm2 is used for pane p3 in C1
and pane p5 in C2. The data model dm3 is used only for pane p4 in C2.

2.3.3 “Mixing” Container Behaviors

Sometimes, the business logic of a certain action is not just about data in the container in
question. Occasionally, you may want to programmatically interact with other containers
on behalf of the user.

As an example, consider the case when a new employee is created. Assume you want to
create an extension that will automatically create a new User and associate that user
to the created employee. Obviously, this can be done manually by the end-user. But
the purpose of the extension is to ease this work flow and prevent situations where the
user-creation is forgotten, or the employee is not associated with the user. In the standard
Maconomy system, there is no container that does all of this in one container: you need
the Employees container to create the employee and the UserInformation container to
create the user.

The Extension Framework allows “mixing” container behaviors by offering an API that
gives access to other containers. Of course, you can also get programmatic access to
new instances of the container of the current event. When interacting with containers
through this API, it is important to notice that you get access to the container including
all extensions that may have been made to this container. This is because the behavior
of a container is defined by all contributions (as visualized in Figure 2.3.)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 30 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 2. OVERVIEW

2.3.4 Names and Name Spaces

In the Extension Framework, containers are referred to by their name. Often, we think
of a name of a container as, e.g., Jobs og TimeSheets. Such names refer to the internal
dialog names of the Maconomy system. However, this way of naming is a little informal.
More formally, the name of a container is

namespace:name

Notice the character ‘:’ separating the name space and the name. Whenever a container
is referenced or defined in the framework, the name is expected to be in this form,
although the name space can be left out. If the name space is not explicitly given,
maconomy will be assumed.

The purpose of the name space is to avoid name clashing. All containers provided by
default by Maconomy will have the name space maconomy. This name space is reserved
for Deltek Engineering to use. When creating new containers as an extension programmer,
you must not use this name space! Instead, you should choose a name space specific for
your organization (e.g., deltekUk) or a name space specific to a given customer (e.g.,
trifolium.) The use of name spaces avoid current and future name clashes. For example,
if you develop a container named myCustomer:budgetControl, then that container will
never clash with and never overshadow a maconomy:budgetControl container if such a
container is ever released in a future version of Maconomy.

2.4 OSGi

The Extension Framework and the coupling service are built using a run-time framework
called OSGi [OSG08,MVA10]. OSGi is a component run-time for Java. Basically, this
fact is not extremely important for an extension programmer. However, some knowledge
of OSGi is required in order to understand what your extension can access, and what
others can use from your extension.

The OSGi run-time manages components known as bundles. Basically, a bundle is a
Java .jar-file, i.e., a number of Java packages containing Java classes and interfaces. A
bundle may also include other kinds of file resources. Each bundle contains a manifest
file, called MANIFEST.MF which declares which packages may be accessed from outside
the bundle itself. Any java class or interface in a package that is not declared accessible
from the outside cannot be referred from outside that bundle. Likewise, in the manifest
file, each bundle must specify which other bundles or packages it depends on. This makes
the OSGi run-time capable of managing these dependencies by refusing to start a bundle,
unless its dependencies can be fulfilled. Bundles can be dynamically installed, started
and stopped, i.e., while the application is running.

Each bundle identifies itself with an ID, which is basically a string. It is recom-
mended to have a naming convention corresponding to that used for Java packages
(i.e., com.mycompany.some.name.) In addition to the ID, each bundle also has a version

c©Deltek Inc. 2013–2019, All Rights Reserved 31 Version 1.4.021, software version 2.5.0 (21.0.sp100)

2.4. OSGI

number (such as 1.0.0.) When declaring dependencies to other bundles, it is possible
to specify a range of version numbers that your bundle is compatible with. Again, the
OSGi run-time will ensure that your bundle cannot be started unless these constraints
are fulfilled. In principle, it is possible to have several versions of a bundle with a given
name installed. If needed, both of these may be running; bundles requiring a specific
version will refer to the matching instance.

The coupling service comprises a number of bundles. Some of these are relevant for
extension programmers, others are not. You must specify which parts you wish to depend
on. Fortunately, the Maconomy Extender IDE will help you with this. Most of the time,
you don’t have to think about it.

It is absolutely possible to make use of 3rd-party Java libraries. However, you need to
expose these as OSGi bundles. Some libraries are already available as OSGi bundles,
others are not. If you need a library that isn’t wrapped as an OSGi bundle, all you
really need to do is to make a MANIFEST.MF that describes the properties of the OSGi
bundle.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 32 c©Deltek Inc. 2013–2019, All Rights Reserved

Chapter 3

Getting Started

This chapter guides you through how to make your very first extensions using the
Extension Framework. We shall do this by making the mandatory “Hello World” example,
and then modify this slightly into a real extension. The overall concepts and ideas will be
briefly explained. For a more in-depth explanation of the various parts, you are referred
to the following chapters.

3.1 A “Hello World” Extension
In this section we shall develop an extension that simply displays the text “Hello World”
in a field in a container. To do so, we must extend a container. We choose the macono-
my:Jobs container for this purpose.

As previously explained, extensions are merely java bundles installed in the Coupling
Service, which—in turn—is just a standard OSGi run-time. So, in principle, you can
use any IDE or text editor to develop extensions. However, it is highly recommended
to use the Maconomy Extender [Del13]. In fact, developing extensions is only officially
supported by Deltek if you do use the Maconomy Extender. Fortunately, there are many
good reasons for doing so. The Maconomy Extender is based on the state-of-the-art
Java IDE, Eclipse, augmented with tooling that makes it particularly easy and useful to
develop and deploy extensions on a running coupling service.

The Maconomy Extender is already used for configuring other aspects of a Maconomy
installation, and it is assumed that the reader of this book already knows about it.

In order to implement an extension, you must have an extension bundle project. The
bundle project must be associated with the relevant “Maconomy Extender project.” Such
a Maconomy Extender project comprises information about the Maconomy system being
extended. As you may have several such Maconomy Extender projects, you need to
specify which one your extension bundle project belongs to. You may have one or
more extension bundle projects associated to a given Maconomy Extender project. It is

33

3.1. A “HELLO WORLD” EXTENSION

generally recommended that each “extension” is made in a separate bundle. This makes
it easier to enable/disable each extension separately.

1. Activate the relevant Maconomy Extension project

2. Select the New → Extension Framework Bundle project

3. Now a wizard is launched. In this first page, make sure that the project is
associated your active Maconomy Extender project. We also select that an example
is generated.

4. Further, we choose the example wizard “Extend Container1”

5. In the next step of the wizard, we specify the package and class name for our
container extension. In this case com.trifolium.hello.world as package name

1Don’t be confused by the “Hello World” example; this will generate a (different) Hello World example
as a new container. This is not what we choose in this example.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 34 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 3. GETTING STARTED

and JobsExtension as the class name. Furthermore, we specify that the extended
container is maconomy:Jobs. Further, we choose generation of a data model for the
Card pane of the Jobs container, and we ask for a generated example.

6. Upon pressing the “Finish” button, the Maconomy Extender will generate

• An extension framework bundle project, associated with the active Maconomy
Extender project.

• Two Java class files: JobsExtension and JobsExtensionCardModel.

• A MANIFEST.MF file specifying the OSGi properties of your bundle.

c©Deltek Inc. 2013–2019, All Rights Reserved 35 Version 1.4.021, software version 2.5.0 (21.0.sp100)

3.1. A “HELLO WORLD” EXTENSION

• A plugin.xml file declaring that this is an extension of the maconomy:Jobs
container.

7. Naturally, you can inspect these files in the “Project Explorer” view in the Maconomy
Extender. However, when developing Java, it is convenient to change the layout of
the Maconomy Extender. You can do so by switching to the Java perspective. You
do so by pressing the Open-Perspective button

8. If you haven’t selected this perspective before, you select the Other. . . → Java
perspective

9. Now, the layout of the Maconomy Extender will change to show views that are
better suited for Java development. You can always switch back to the original
layout by selecting the “MaconomyExtender” perspective.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 36 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 3. GETTING STARTED

3.1.1 Starting, Stopping and Debugging the Generated Code

Because we opted to let the wizard generate example code, the code is now ready to
run! All the generated code does is registering a new action, tentatively titled “My New
Action.” When this action is invoked, a message is shown to the end user, saying “Hello
World.”

First, let’s try to run this, just to verify that everything works. Below, we shall examine
the code in order to understand how this is done.

In order to run the code, open the “Servers” view in Maconomy Extender. This is done
from the menu Window → Show View → Other. . . and from there choosing Maconomy
Extender → Servers. From this view, you can either add a coupling service (if you
haven’t done so already), or—while developing—you can specify the path to the coupling
service you are developing against in the Properties of the main Maconomy Extender
project. You do so by right-clicking the project and choosing “Properties.” Then, in
the opened dialog, you navigate to MaconomyExtender → Extensibility Framework and
enter the path to the coupling service in the field labeled “Target platform path.” If you
have specified the path to the coupling service in this way, you can launch the coupling
service including the Java extensions you are developing simply by clicking the “Run the
coupling service”-button (.) When you do so, the coupling service will be started. The
Java extensions made in projects that are associated with the “Active” project will be
installed in the running instance of the coupling service. Notice that the coupling service
will run locally on your machine. Usually the Console view opens when the coupling
service is started in this way2. It will display an OSGi console prompt

osgi>

From this OSGi console, we can verify that the coupling service is in good shape and that
our new extension OSGi bundle is installed. To do so, type the following command:

osgi> ss com.trifolium

The “ss” is a console command meaning “short status.” The optional “com.trifolium”
means that we only want the status of bundles having an id that contains that string.
You will see something like:

osgi> ss com.trifolium
"Framework is launched."

id State Bundle
67 ACTIVE com.trifolium.hello.world_1.0.0.qualifier
osgi>

2You may have configured the behavior differently in your Maconomy Extender. If this is the case,
you’ll probably have no difficulty opening the Console view anyway.

c©Deltek Inc. 2013–2019, All Rights Reserved 37 Version 1.4.021, software version 2.5.0 (21.0.sp100)

3.1. A “HELLO WORLD” EXTENSION

This tells us that our bundle com.trifolium.hello.world is really installed and is
“active”, meaning that it is started and the code in it can be invoked.

Now, start a matching client and connect to the coupling service. Then open the
workspace found under Single Dialogs → Job Cost → Creation → Jobs. This workspace
contains nothing but the maconomy:Jobs container. The layout for the card pane will
show “all available actions,” so our new action should be present as well. And indeed,
selecting a job in the filter will populate the card with a job as well. In the action buttons
bar, it shows:

Let’s try to invoke that action: click it using the mouse. Now our extension bundle will
be invoked, and will execute the code for that action. In this case, you can see the result
in the client GUI:

Congratulations—you just successfully invoked your first extension!

Terminate the coupling service program which you just launched from within the Macon-
omy Extender. You can do so by pressing the Terminate button (.)

For the purpose of demonstrating how to debug our program, open the generated Java
class file: JobsExtensionCardModel.java3. Once this file is opened, you can get a
“quick outline” of the file. Press Ctrl+O and start typing “MyNewActionHandler” (casing
is not important here.) After typing a few characters, there’s only one possibility. Click
on that. The Maconomy Extender will now navigate directly that the code that handles
the action. An action handler is an inner class, which we shall not be concerned with right
now. Inside that class definition, there’s a method called onActionPost. This method
contains one line of code. In the Maconomy Extender, double click the left-hand-side
margin or right-click the margin next to the line and select “Toggle Breakpoint.” Now a
small bullet appears in the margin indicating that you have a break point at the specified
line.

3Do this by pressing Ctrl+Shift+R and start typing the name of the file.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 38 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 3. GETTING STARTED

Now let’s start the coupling service again, this time in debug mode. Like before, you do
this from the “Servers” view. But this time you press the “Debug the coupling service”
() button. From the client, again try to invoke the “My New Action” button. This
time, the code will be suspended at the break point. Upon doing so, the Maconomy
Extender will ask whether you want to switch to the “Debug perspective.” Like the Java
perspective, the Debug perspective is an organization of views that is particularly useful
when debugging Java code. Accept the switch to the debug perspective. The Maconomy
Extender will now highlight the line in the code where execution is suspended.

At this point you have the ability to examine the value of various variables, single-step
through the code etc. You also have the ability to change the code, and continue execution
using the changed code. Let’s try to modify the code slightly, just to verify that it works:
we decide to greet the user in Latin rather than in English, so we change the String value
into Salve mundi and save the file.

The code is still suspended, so we resume the code by pressing the Resume () button.
And indeed, the client will now greet the user in Latin:

c©Deltek Inc. 2013–2019, All Rights Reserved 39 Version 1.4.021, software version 2.5.0 (21.0.sp100)

3.1. A “HELLO WORLD” EXTENSION

3.1.2 A closer look at the code

Without going into too much detail, let us have a closer look at the code that does this.
The generated files of interest are

• The plugin.xml file which declares that we extend the container maconomy:Jobs

• The Java class-file that implements the container extension: JobsExtension.java

• The Java class-file that implements the data model responsible for the actual logic:
JobsExtensionCardModel.java

The plugin.xml file

The plugin.xml file defines which container-extensions are present, and which classes
implement the behavior. In this case, we extend an existing container: the macono-
my:Jobs.

When we want to extend a container (or contribute a new container), this is done by
hooking into a specific extension point. An extension point is a named entry that is used
to declare the addition of functionality within some given area. The extension framework
provides the extension point

com.maconomy.api.container

This is the extension point you should use when extending containers or when providing
new containers. Inside the scope of this extension point, you must declare which contri-
butions you have. In this case, we have one contribution: the extension of the container
maconomy:Jobs. The generated plugin.xml file looks like

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <? eclipse version ="3.4"? >
3 <plugin >
4 <extension point="com. maconomy .api. container ">
5 <extend container =" maconomy :Jobs"
6 id="com. trifolium .hello.world: ExtendedJobs ">
7 <factory class="com. trifolium .hello.world. JobsExtension$Factory "

/>
8 </extend >
9 </extension >

10 </plugin >

Version 1.4.021, software version 2.5.0 (21.0.sp100) 40 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 3. GETTING STARTED

The interesting part starts with the <extend container="maconomy:Jobs". This is
where it is declared that we are extending the Jobs container. The id is not important
for now. When a container is extended, you must provide a factory to the container con-
tribution. A factory is a class capable of producing instances of some type. The specified
class must implement the interface MiContainerFactory, and it must have a publicly
accessible constructor with no arguments. The factory class is automatically generated
by the wizard. The odd “$” notation is the syntax used to refer to nested Java classes.
So, the relevant class in this example is the class called “Factory” which is declared
inside the class “JobsExtension” in the package “com.trifolium.hello.world.”

The container class: JobsExtension

So, the plugin.xml declares how to construct the container contribution: by using
the specified factory class. The factory classes are typically very simple and non-
interesting boiler-plate code, that will construct a class implementing an interface called
MiContainerEvents. Implementing this interface from scratch is very complex and
definitely not recommended! Instead, you should write a class that extends an abstract
class that does all the boiler-plate code for you. In cases where you extend a container,
you want to extend the class called McAbstractExtendedContainer. The abstract class
takes care of virtually everything. The only thing you need to do is to configure it by
specifying which data models should be used for which panes. In our case, we only
want to extend the card pane. The configuration is done by implementing the method
defineConfiguration (see Section 4.1.1.) Again, you reference a data-model factory
rather than the actual data model. That’s it. There’s nothing more to do with the
container class. The resulting code looks like this:

2 public final class JobsExtension extends
McAbstractExtendedContainer {

3

4 private JobsExtension(final MiContainerFactory.MiResources
resources) {

5 super(resources);
6 }
7

8 /∗∗ { @inher i tDoc } ∗/
9 @Override

10 protected MiExtended defineConfiguration () {
11 final MiContainerConfiguration.MiExtended configuration =

McContainerConfiguration.McExtended.card(
JobsExtensionCardModel.FACTORY);

12

13

14 return configuration;
15 }
16

17 public static final class Factory implements MiContainerFactory
{

c©Deltek Inc. 2013–2019, All Rights Reserved 41 Version 1.4.021, software version 2.5.0 (21.0.sp100)

3.1. A “HELLO WORLD” EXTENSION

18 public MiContainerEvents createContainer(final
MiContainerFactory.MiResources resources) {

19 final MiContainerEvents container = new JobsExtension(
resources);

20 return container;
21 }
22 }
23 }

The data-model class: JobsExtensionCardModel

So, the container class isn’t very interesting, nor is the plugin.xml. Then what is? As
explained in Chapter 2, the actual semantics of a container takes place in the data-model.
In this example, the data-model is implemented by the class JobsExtensionCardModel.
In this simple “Hello world” example, the data model does the following:

• Declares the data-model factory class and a constant FACTORY (which is referred by
the container.) The factory class is defined at the bottom of the file.

• Declares the existence of a new action with the internal name MyNewAction. This
happens in the method defineDomesticSpec(). In general, this method is used
to declare the contributions to the pane declared at this level—hence the term
“domestic.”

• Defines the semantics of the MyNewAction. Actions are implemented by declar-
ing an internal class which has an Action-annotation with a value that corre-
sponds to the internal name of the action. For each action that are introduced
(“added”) by this data-model, that action-handler class must extend an abstract
class McAbstractDataModelRootAction. And then the method onAction(...)
will be invoked by the framework when the action is run. In our case, all the action
does is produce a notification to the end-user with the message “Hello world.”

The code of the data-model can be seen here:

2 public class JobsExtensionCardModel extends
McAbstractExtendedDataModel {

3 private JobsExtensionCardModel(final MiDataModelFactory.
MiResources resources) {

4 super(resources);
5 }
6

7 @Override
8 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
9 return McPaneSpec.McExtended.pane()

10 .addAction(key("NewAction"), "My New Action")
11 .end();
12 }

Version 1.4.021, software version 2.5.0 (21.0.sp100) 42 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 3. GETTING STARTED

13

14 @Action("NewAction")
15 public static final class MyNewActionHandler extends

McAbstractDataModelRootAction {
16 @Override
17 public void onAction(final MiActionPost containerRunner , final

MiAction eventData) throws Exception {
18 containerRunner.call().notification("Hello world");
19 }
20 }
21

22 public static final Factory FACTORY = new Factory ();
23 public static final class Factory implements

MiExtendedDataModelFactory {
24 /∗∗ { @inher i tDoc } ∗/
25 @Override
26 public MiExtendedDataModel create(final MiDataModelFactory.

MiResources resources) {
27 return new JobsExtensionCardModel(resources);
28 }
29 }
30 }

c©Deltek Inc. 2013–2019, All Rights Reserved 43 Version 1.4.021, software version 2.5.0 (21.0.sp100)

3.1. A “HELLO WORLD” EXTENSION

Version 1.4.021, software version 2.5.0 (21.0.sp100) 44 c©Deltek Inc. 2013–2019, All Rights Reserved

Chapter 4

Container Events

In this chapter we shall go into detail with the container and data-model event handling.
From the outside, you can interact with a container by performing container events on
that container. Hence, a container event is some operation performed on a container.
Basically, there are two kinds of container events: data-carrying events and supportive
events. Most of the “common events” are data carrying. The characteristics of these
events are that they produce or consume data (or both.) The supportive events are either
procedural in nature, or they represent functions that are basically data independent.
Before you can implement the functionality for events, however, you need to define your
container and bind data models to the container.

4.1 Implementing a Container (Contribution)

As hinted earlier, you can contribute to a containers behavior in two ways: Either you
can create a container (i.e., define its existence) or you can extend an existing container.
If you create a container you are obviously responsible for the “core behavior” of that
container; there’s nothing to rely on. Once you have created a container, others can
(with or without your knowledge) extend that container.

If you extend a container, it means that someone else has defined the existence of the
container you extend. Your contribution can be seen as an “addendum” to that container,
resulting in an augmented container. From the outside, it is never possible to see or
know whether one or more contributions are defining the behavior of the container.
Figure 2.3 visualizes this behavior. What is the reason for this behavior? Why don’t
we just override the entire container or always insist of creating new containers that
may then programmatically delegate to already existing containers? The answer to this
question is that we believe the current design gives the right balance between ease of use
(ease of programming), separation of concerns, management of configurations and code
robustness. Obviously, there may be cases where this approach is slightly more difficult
to work with than other designs. On average, however, we believe that this design is

45

4.1. IMPLEMENTING A CONTAINER (CONTRIBUTION)

a good compromise. It has been a key design goal to make it as simple as possible to
write new containers and to extend existing containers, and to ensure that the extension
programmer need only consider the business logic relevant to his current tasks. While
at the same time making it easy to get access to extensions in all relevant workspaces
without having to modify these.

In the remaining part of this book, it is most often irrelevant whether some particular
explanation has to do with a new container or an extension to an existing container. In
such cases, we shall refer to the part that is implemented as a container contribution.

When implementing a container contribution, the Extension Framework will expect you to
provide a class that implements the interface MiContainerEvents. It is, however, quite
difficult and complex to implement this interface from scratch. And it is not expected
that you will do so. Doing so requires a lot of boiler-plate code and there will be a high
risk of making errors. For this reason, the Extension Framework provides two abstract
classes that implement this interface:

• McAbstractRootContainer : this class must be used when you create a new
container.

• McAbstractExtendedContainer : this class must be used when you extend an
existing container.

Using either abstract class will enforce that you use data-models to implement the actual
behavior of your container. Your actual container class will therefore typically consist of
a few lines of code. The abstract implementation will take care of all the boiler plate,
calling your data-models in the right way when needed, and will produce result values in
the right format.

In this chapter, we shall primarily be concerned with data-models. The overall concept
behind container and data-models (as well as container-level events and data-model
events) are very similar. The data-models are, however, simpler and easier to work with.
But there are a few things that you need to know about the container class.

4.1.1 Binding data-models to the container

So, we claim that a container implementation based on either McAbstractRootContainer
or McAbstractExtendedContainer will typically consist of only a few lines of code.
This is so because the abstract classes already implement all events. So how can a generic
abstract implementation know what you want to do? The answer is that it can’t. It can,
however, do so by proxy: These abstract classes will depend on that the business logic is
implemented by a data-model.

In fact, the two classes have one method that isn’t implemented. Hence, it is up to the
extension programmer to implement that method. The purpose of this method is define
which data-model to use for which pane. This method is called defineConfiguration .
Notice, that you don’t have to specify data-models for all panes: just the ones where

Version 1.4.021, software version 2.5.0 (21.0.sp100) 46 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

you have something to contribute. Depending of whether you create or extend a con-
tainer, the return type is slightly different. However, to produce values of the required
return type, you should in both cases use the factory methods found in the types:
McContainerConfiguration.McRoot or McContainerConfiguration.McExtended .

The factory methods are:

Method Remarks
filter Defines that the container contains a filter pane

and declares the data model for this pane. The
result object allows you to specify data models
for other panes.

card Defines that the container contains a card pane
and declares the data model for this pane. The
result object allows you to specify data models
for the table, but not for the filter. In case you
need a filter, you should start with the filter
method.

table Defines that the container contains a table pane
and declares the data model for this pane. It
is not possible to specify data-models for other
panes.

withCard Following a filter method, this declares the
data model for the card. The result object allows
you to specify data models for the table, but not
for the filter.

withTable Following a filter, card or withCard method,
this declares the data model for the table. It
is not possible to specify data-models for other
panes.

filterWithCard This is a short-hand for
filter(dm).withCard(dm).
Hence, you can use this when you have the same
data-model for the filter and for the card.

filterWithCardWithTable This is a short hand for
filter(dm).withCard(dm).withTable(dm).
This convenience method is only possible for
extensions, since it is very rare that a new three-
pane container has the same data-model for all
panes. However, for certain type of extensions, it
might be common. For example, the prepackaged
extension that enables export to spread-sheets,
merely adds the same extension data-model to
all panes in a container.

c©Deltek Inc. 2013–2019, All Rights Reserved 47 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

Remember that in general, a container comprises n panes, where n > 0. In the current
version, the Extension Framework only has built-in support for creating panes comprising
one filter pane and/or one card pane and/or one table pane. You will recognize that this
is very similar to the configuration of Maconomy containers. The Extension Framework
will, however enable you to make a table-only container or a filter/table-container. These
configurations are never offered by Maconomy containers. When containers are tied
together using workspaces, the possible configuration gives you the possibility to model
virtually anything. The cases where you would really need other pane-configurations in
one container may exist, but we don’t consider them frequent. In such cases, the Extension
Framework currently does not aid you. In fact, we state that such configurations are not
supported by the Extension Framework.

4.2 Specifying the capabilities of a container

When the outside world (such as a client application) communicates with the coupling
service/container API, it is necessary to know what the capabilities of a given container
are. The capabilities include information for each pane like:

• Which fields are present?

• What are the type of the fields?

• Are the fields open for editing and are they mandatory?

• Which actions are available (standard actions as well as named actions) such as
Create, Update, Delete, SubmitTimeSheet etc?

• Which fields are searchable and how?

• Which foreign keys are present?

Each container will declare such things for each pane via a declarative specification
XML-dialect called MDSL. We refer to this as the container specification. When a
container specification is needed, a supportive event will be invoked on the container.
This event is called defineSpec() . On the container-level it results in a result type
called MiContainerSpec which encompasses the MDSL content. This means that all
container contributions must return a full-fledged and valid MDSL from this event.
Figure 4.1 shows this concept. If we take a look at Figure 4.1, the following will happen
when the defineSpec is called:

1. defineSpec will be called on the root, Root.

2. defineSpec will be called on Ext1, and the result from Root can be accessed. Ext1
produces a common result for Root and Ext1 combined.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 48 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Container

Ext1Ext2Ext3Ext4 Root
defineSpec()

Figure 4.1: The defineSpec container-event method is a supportive event. The container
must be able to produce a specification declaring its capabilities from nothing. Notice
that each container contribution must return a fully valid specification.

3. defineSpec will be called on Ext2, and the result from Ext1 can be accessed. Ext2
produces a common result for the output of Ext1 and Ext2 combined. Notice that
Ext2 sees the result from Ext1 as though it was the first extension on top of a root
that had produced a result similar to the one produced by Ext1.

4. defineSpec will be called on Ext3, and the result from Ext2 can be accessed. Ext3
produces a common result for the output of Ext2 and Ext3 combined.

5. defineSpec will be called on Ext4, and the result from Ext3 can be accessed. Ext4
produces a common result for the output of Ext3 and Ext4 combined.

6. Since there are no more container contributions, the final result of invoking
defineSpec on the container is the result produced by the last contribution,
in this case the result of Ext4.

Notice that each contribution is invoked in a similar way: it will have access to the result
of whatever is underneath it. But a contribution cannot and should not be concerned
with whether the underlying result is the result of invoking one or many container
contributions. Likewise, every container contribution should consider itself the “final”
specification, and must therefore output a result which may be considered valid and
complete.

Although no container event can occur without the defineSpec event having been run at
least once, there is no guarantee that it will be called immediately before any operation.
Because the resulting MDSL specifications may be cached by the coupling service and/or
by clients, there is no guarantee that the method will be called more than once. You
should therefore never make code that relies on that the defineSpec method is called:
the defineSpec method may only be called once and never again.

Although writing MDSL files from scratch can be done relatively straight-forward, there
are some cross-references that needs to be taken care of in the right way. It becomes much
more complicated when you need to declare additions or deltas to an existing MDSL.
When using data-models, the data model has a similar event: defineDomesticSpec .
This method is used to declare the capabilities for whatever pane is associated with
that data model. The term domestic refers to that the spec declares what is new and
therefore introduced by this data model. In other words, a data model need not and

c©Deltek Inc. 2013–2019, All Rights Reserved 49 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

should not describe the resulting capabilities of a pane—it should only describe what
its contributions are. The framework will automatically invoke the data-models when
necessary and then produce a resulting MDSL. It is absolutely possible to have a data
model that does not alter the capabilities of a container. For example, an extension
that wishes to modify the maconomy:ExpenseSheets by adding a check that no expense
registrations less than 10 EUR are ever registered, does not alter the capabilities of an
expense sheet container: it alters the semantics of creating and updating using that
container, but it doesn’t add the capability of creating or updating, since the container
is already capable of doing that. Thus, you only need to implement this method if you
change the capabilities of the container.

Let us take a look at some examples

Listing 4.1: You can add and change capabilities using the defineDomesticSpec method
2 public MiPaneSpec.MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
3 return McPaneSpec.McExtended.pane()
4 .changeField("Text5").title("Rejection Justification").

noSearch ().then()
5 .addStringVariable(PM_EMAIL_VAR , "Proj. Mgr. E-Mail").then()
6 .changeForeignKey("ProjectManagerNumber_Employee")
7 .supplementLink(PM_EMAIL_VAR , key("ElectronicMailAddress")

)
8 .end();
9 }

In Listing 4.1 three things are done:

1. Some properties of the field Text5 are changed: the default title is changed to
“Rejection Justification,” and if there are searches related to this field, these will by
default not be enabled (although this can be overridden in the layout.) Changing
the default title means that any MDML layout element making use of the default
title of this field will render “Rejection Justification” rather than, e.g., “Text 5.”

2. A new calculated field1 is added to the pane. By doing so, the internal name
must be defined. The internal name is the name used to refer to that field in
layouts. Here, the internal name of the field is determined by some constant defined
elsewhere. It is good practice to define constants for such added fields. In addition,
a default title must be provided. In this case, the title is “Proj. Mgr. E-Mail.”

3. A foreign key is changed. Foreign keys are used to bind panes together in workspaces.
They may also be used to specify search behaviors. In this case, the foreign key is
given an additional supplement link. A supplement link is used to enable searches
based on supplementary information rather than on formal data keys. In this case,
the supplement link will make it possible to search for project managers by entering
the e-mail address of a project manager from the (just added) calculated field.

1Calculated fields are called “variables” in the extension framework

Version 1.4.021, software version 2.5.0 (21.0.sp100) 50 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

From the code you can see that the structure of the defineDomesticSpec method has
the following form: each line starts with a declaration indicating a pane-level change.
E.g., the changing of a field, the changing of a foreign key or the addition of a field.
The resulting object is a builder-style object that allows the programmer to alter the
properties of that part. For example, the properties of a field or the properties of a
foreign key. Each of these methods again return that same builder object, allowing the
programmer to “chain” all relevant property alterations. When everything has been
specified for a certain part, the then method is invoked. This method will now allow
new changes or additions to the pane level. Finally the end method declares that there
are nothing more to describe, and the return value has a form that can be returned from
the defineDomesticSpec method. Obviously, you can structure your code in whatever
way the compiler allows. It is good practice, however, to keep everything relevant for the
same part (field, foreign key, action etc.) on the same line, letting all lines end with the
then() method. It is also good practice to align the pane-level methods. E.g.,

...
.addField(...).property1().property2().then()
.addField(...).property1().property2().then()
.changeField(...).property1().property2().then()
.addAction(...).property1().property2().then()
.changeForeignKey(...).property1().property2().then()
.changeForeignKey(...).property1().property2().then()
.addForeignKey(...).property1().property2().then()
.end();

In this way, each line represents one pane-level property. Or, if there are many/long
property declarations, align with the property methods at the same level:

...
.addField(...).property1().property2().then()
.addField(...).property1().property2().then()
.changeField(...).property1()

.property2()

.property3().then()
.addAction(...).property1().property2().then()
.changeForeignKey(...).property1().property2().then()
.changeForeignKey(...).property1()

.property2()

.property3()

.property4().then()
.addForeignKey(...).property1().property2().then()
.end();

You may not declare changes for the same field twice, even if the properties differ. The
exact behavior of the Extension Framework is undefined. In the future, a run-time error

c©Deltek Inc. 2013–2019, All Rights Reserved 51 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

may occur!

Listing 4.2: Changing several capabilities
2 public MiPaneSpec.MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
3 return McPaneSpec.McExtended.pane()
4 // Add f i e l d s and v a r i a b l e s
5 .addStringField(MY_FIELD1 , "My Manager No.").open().

mandatory ().multiLine ().then()
6 .addBooleanField(MY_FIELD2 , "My Checkmark").open().

autoSubmit ().then()
7 .addDateField(MY_FIELD3 , "My Date").open(MeOpenness.

OPEN_UDPATE).then()
8 .addAmountField(MY_FIELD4 , "My Amount").open().then()
9 .addPopupField(MY_FIELD5 , "My Currency", key("CurrencyType")

).open().then()
10 .addLimitedStringField(MY_FIELD6 , "My Longer Text", 4096).

open().then()
11 .addLimitedStringField(MY_FIELD7 , "My shorter Text", 8).open

().then()
12 .addStringVariable(MY_VAR , "My Manager Name").then()
13

14 // Add f o r e i g n k ey s
15 .addForeignKey(MY_FOREIGN_KEY , "Manager", McContainerName.

create("Find_Employees")).link(MY_FIELD1 , key("
EmployeeNumber")).supplementLink(MY_VAR , key("Name1")).
then()

16

17 // Add and remove a c t i o n s
18 .addAction(MY_ACTION , "My Action").icon("myActionIcon").then

()
19 .removeStandardAction(MeAction.DELETE)
20 .end();
21 }

Listing 4.2 shows another example implementation of the defineDomesticSpec method.
Here, a number of fields of different types are added, a single variable (calculated field)
is added, a foreign key is added, and a named action is added. At the same time, the
deletion capability is removed from the pane.

So, how exactly can the domestic specs of the data-models be defined? The relevant pane-
level factory can be produced by addressing a factory method in the class McPaneSpec .
Or rather, if your data-model is intended for a root container, you must use one of the
factory method in McPaneSpec.McRoot , otherwise, you must use the factory method in
McPaneSpec.McExtended (see Listing 4.2.)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 52 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
pane This method is present for extended containers and for root

containers. In the case of a root container, you must specify
a few properties of that pane. For container extensions, there
is nothing to specify.

autoPositionPane This method is present for root containers only. It defines
that the pane content should be treated as auto-position
content. Auto-position content may also be known as “au-
tomatic line numbering.” Panes declared in this way must
specify which field indicates the position (“line number.”)
The Extension Framework will then automatically maintain
the line numbers. For example, when a line is deleted, then
all following lines should have their position (or line number)
decreased. When a line is inserted, the lines following the
inserted line should have their position increased. Similarly,
when moving lines up and down in a table, the positions
of the lines should be maintained. These position numbers
will be maintained as integers numbered starting from 1.
Line-numbering is common in the Maconomy application.
For example, the order of time sheet lines and expense sheet
lines is the one determined by the end-user. In the database,
this ordering is managed by such a position field. It makes
little sense to number all time sheet lines starting from 1.
Indeed, time sheet lines belonging to the same time sheet
should be organized relative to each other only. This means
that each time sheet may have a “line 1.” In order to specify
the scope of the ordering, the extension programmer must
also specify an auto-position context. For time sheets lines,
the context would be the fields pointing to the time sheet
header. You declare which fields are considered auto-position
context fields by invoking the method autoPosContext on
the fields which make up the auto-position context.

treePane This method is present for root containers only. It defines
that the pane content may be organized in a tree-structure.
Tree-panes are by definition also auto-position panes. In
addition to the auto-position properties, a tree-structured
pane must specify how data is tree-structured. Since all panes
are data homogeneous (i.e., only records of one type may
be shown in a pane) there must be some way of indicating
whether a given record in a pane is considered a child record
of some other record in that pane. To do this, you indicate
which foreign key is used to point from a record to its parent
record.

c©Deltek Inc. 2013–2019, All Rights Reserved 53 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

Each of the pane-type methods return a pane builder object. For pane builders you can
do the following:

Method Remarks
addT ypeField Specifies the addition of a field with the type matching the

exact method name. Fields, by definition, are expected to
be persisted (e.g., permanently stored) somewhere, typically
in the database. For example, addStringField adds a field
of type String, and addAmountField adds a field of type
Amount. The possible types are: Amount, Boolean, Integer,
Real, String, Date, Time, Popup and TimeDuration. The
TimeDuration is basically a Real, but it is declared that
this field should be considered a duration of time. Client
applications may use this to write, e.g., 0:30 (30 minutes)
rather than 0.5 (1

2 hour.)
For the String type, there are variant methods that specify
the maximum content length of the String. If the length is
left out, the default will be assumed (see below.) Setting
the maximum length ensures that the clients will restrict
the number of characters2 that can be entered in the field.
A value of 8 will mean that no more than 8 characters can
be entered. Likewise, there is a variant where the “type” is
UnlimitedString. This can be used to declare Strings with
no content limit. Obviously, you have the responsibility to
ensure that data can be properly persisted.

addField This method is similar to the typed variants above, except
that the type is given as an argument. The use of this method
is generally discouraged: you should use the explicit method
names where possible, because it increases the clarity of the
code. In some cases, however, you could have very generic
code that must take the concrete type as an argument.

addT ypeVariable This method is similar to adding a field, except that a vari-
able, by definition, is considered a calculated field and there-
fore should not be persisted. Also, the Extension Framework
enforces variables to be read-only.

2Actually the number of bytes. Using some characters such as Cyrillic, Chinese or other unicode
characters take up more than one byte. The use of unicode characters is not possible in all versions of
Deltek Maconomy.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 54 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
addVariable This method is similar to the typed variants above, except

that the type is given as an argument. The use of this method
is generally discouraged: you should use the explicit method
names where possible, because it increases the clarity of the
code. In some cases, however, you could have very generic
code that must take the concrete type as an argument.

addAction MeAction-typed argument.
This method declares the addition of one of the “standard”
CRUD-actions: Insert/Add, Create, Refresh, Update, Delete,
Print This, Move (Up/Down/Indent/Outdent.) There are
certain restrictions that will be enforced: for example, it is
not possible to have an “Insert” without a corresponding
“Create,” and the framework will automatically manage some
of these things for you. You are referred to the JavaDoc for
details on this. The JavaDoc is accessible from within the
Maconomy Extender.

addAction MiKey/String arguments.
This method declares the addition of a named action. Named
actions are all actions that are not one of the above CRUD-
actions. As an example, the Maconomy application contains
a lot of named actions, for example the “SubmitTimeSheet”
and “ApproveTimeSheet” actions. The name must be unique.
The internal name is the name used to reference this action
in MDML layouts.

addPrintAction This “action” is not really an action that is invoked on
the container. Instead, it specifies a container that will
be launched when a “Print. . . ” action is invoked. Many
containers from the Maconomy application have such Print-
selection containers associated. Using this method, you can
add such behavior on your own. Beware that this “Print. . . ”
differs from the “Print (This)” action, which will be invoked
on this container.

c©Deltek Inc. 2013–2019, All Rights Reserved 55 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

Method Remarks
addForeignKey This method declares the addition of a foreign key. A foreign

key is a reference from fields in a record in this pane to
data somewhere else. Typically such foreign keys are used
to construct workspaces. A foreign key pointing to data
identified by the key fields (K1, . . . , Kn) must specify which
fields in this pane refers to each of those key fields. For
example:

F1 → K1
F2 → K2

...
Fn → Kn

specifies that the field F1 in this pane references the key field
K1, the field F2 in this pane references the key field K2 etc.
We refer to this specification as the link.
In addition to the link, a foreign key may specify supple-
ment links. A supplement link defines fields or variables
that contain supplementary information that relates to the
data of the link. For example, an employee name or a task
description. We write this by reversing the direction of the
arrow:

S1 ← D1
S2 ← D2

...
Sn ← Dn

Which specifies that the supplement field Sn in this pane will
obtain the value kept in the descriptive field Dn in the data
being referred to. Supplement fields will allow the end-user
to search by entering text in them—when a search entry is
selected, the actual keys will be transferred into the foreign-
key fields. See Section 4.2.3 for a more thorough description
on foreign keys.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 56 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
addSearchKey This method declares the addition of a search key. A search

key is in many ways like a foreign key. But it isn’t a foreign
key, and cannot be used to bind panes together in workspaces.
It will allow searching from the involved fields, though. A
search key may occur in cases where it isn’t possible to define
a mapping to all the key fields of the data being referred. For
example, the key of the database entity called LocalSpec1 is
(LocalSpec1Name, LocalSpec1List). But in many cases,
if you know the value of a Local Spec1 Name, you only know
the associated company, not the LocalSpec1List used for
that company. In such cases, a foreign key cannot be defined.
If you want to allow the user to search for local spec 1 names,
you need to define a search key. You can dynamically let
your code apply relevant search restrictions when searches do
take place. See Section 4.2.3 for a more thorough description
on search keys.

changeField This method is only available for extensions, not for roots. It
declares changes to properties of a field. This could be things
like the default title, the openness properties or changes to
whether this field is considered mandatory. You may also
use this method to change which foreign key/search key to
use for searching from within this field.

changeVariable This method is only available for extensions, not for roots.
It declares changes to properties of a variables. Notice that
all fields from the Maconomy application will be exposed as
“fields”, event though they may not be stored in the database.

changeAction This method is only available for extensions, not for roots.
It declares changes of properties of an action. Depending on
the argument type, this may be the name of a named action,
or a enum referencing a standard CRUD-action. Using this
method, you can change the default title or the default icon
of an action.

changePrintAction This method is only available for extensions, not for roots.
It is used to change the properties of the “Print. . . ”-action
(not to be confused with the “Print (This)” action.)

changeForeignKey This method is only available for extensions, not for roots.
It is used to change the properties of a foreign key. Using
this field, you can add supplement links (see description of
the addForeignKey method above), or change the default
title.

c©Deltek Inc. 2013–2019, All Rights Reserved 57 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

Method Remarks
changeSearchKey This method is only available for extensions, not for roots.

It is similar to the changeForeignKey method, except that
it refers to search keys.

removeAction This method is only available for extensions, not for roots.
It may be used to remove an action from a container. For
example, if you wish to remove the action SubmitTimeSheet-
Temporarily action from the maconomy:TimeSheets con-
tainer, you can remove it from the container by using this
method. It means that the container will not externally
describe that this method exists. Consequently, it will not
be shown in the client, and cannot be referred by MDML
layouts.

removeStandardAction This method is only available for extensions, not for roots.
It may be used to remove a standard action from a container.
For example, if you wish to remove the possibility to delete
certain entries, you can remove the standard action Delete.

In addition to the above methods, there are a few control methods that control the
behavior of the builder:

Method Remarks
getDefaultStringMaxLength This method returns the current default

max string length associated with the pane
spec builder. The default string max
length is used by the addStringField , and
addStringVariable methods.

setDefaultStringMaxLength This method sets the default string max length
of this builder. Hence, all subsequent calls to
addStringField or addStringVariable will
have this max length unless an explicit max
length is provided. By default, the default string
max length is 255.

setDefaultStringUnlimited This method is similar to
setDefaultStringMaxLength except that it
will treat the default length as “unlimited.”

Version 1.4.021, software version 2.5.0 (21.0.sp100) 58 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
setLenient This method puts the pane spec builder in “le-

nient” mode. For example, if you add or change
an action and then also remove it, the builder
will complain with a run-time error if it is not
put in lenient mode. It is highly recommended
that the builder is kept in non-lenient mode. By
default, pane spec builders are non-lenient.

4.2.1 Field and Variable Properties

As hinted above, you can add or change field properties by one of the addType Field
or -Variable or one of the changeType Field or -Variable methods. The result is a
field/variable property builder, and the subsequent method calls are used to specify
properties of the specified field.

For the add-methods, you must specify a mandatory name (which will be the internal id
of the field or variable.) In layouts, this is the name to use when you want to refer to this
name. When referring to the field or variable in the business logic, you must likewise
refer to this name. In addition to the name, you must specify the default title of the field
if you add it.

The list of methods of the field/variable builders are

Method Remarks
key This method is appropriate for root panes. The method must

be invoked on any field which is a key field. For example, an
Employee would have a field, EmployeeNumber and declare
this as a key, indicating that this field can be used as a key.
You must specify one or more key fields when creating a root
pane:

.addField(EMPL_NO, "Empl. No").key()

autoPosContext This method is appropriate for auto-positionable (or tree-
structured) root panes. This method must be applied to all
fields comprising the auto-position context. See Page 53 for
more information on auto-positionable panes.

c©Deltek Inc. 2013–2019, All Rights Reserved 59 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

Method Remarks
title This method is available for changes. When adding fields

or variable, the title is specified as a mandatory argument.
This method is used to specify the default title. The default
title is the title which is used in layouts where no explicit
title is used, for example

<Field source="SomeField" />
This layout element will render a label for the field SomeField
using the specified default title for that field. Changing the
title of a field may be handy in cases where you want to use
an existing remark or text field with a specific semantic. In
such cases, the default title should be changed.

open This method can be used to open a field. It is not available
for variables which are always closed. There are two variants
of this method: one that takes no arguments, and one taking
an MeOpenness enum. The first declares the field as open
for editing when the pane is both init and exists state. A
pane is in init-state when an initialize-event has occurred,
presenting a template record which the user can edit before
finally creating it. When a pane shows an existing record, it
is in exists-state. For field additions, fields are considered
closed if this method is not invoked. Fields can be closed in
layouts, but cannot be opened if declared as closed.

mandatory This method is used to declare that a field is considered
mandatory. Declaring a field as mandatory means that the
client-side will validate that the field contains a non-blank
value in states where the field is open for editing. Hence,
declaring a closed field as mandatory has no effect. When
changing a field, there are two variants of this method: one
with no parameters (meaning that mandatory is set) and one
with a boolean indicating the whether to consider the field
as mandatory. Notice that you should be extremely careful if
you remove the mandatoryness state of a field: in such case
your code must ensure that the field is always filled out by
your extension! Mandatoryness can be enabled in layouts,
but it cannot be removed by layouts.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 60 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
autoSubmit This method is used to declare that a field by default should

be “auto-submittable.” If a field is auto-submittable, it means
that when the user is “done” editing the field, the pane in
which the field resides will automatically be submitted for
update. Although this works for any field type, it is usually
used with “single-click” field editing such as dates, booleans
and pop-ups. For field changes, there are two variants of this
method: one with no arguments (which enables autoSubmit)
and one that takes a boolean argument indicating whether
or not autoSubmit should be set. This setting is merely a
default setting. It can be overruled by layouts.

hidden This method specifies the field as “hidden.” A hidden field
cannot be shown in a layout. Also, it is not possible for end-
users to add such a field using the “Customize Columns. . . ”-
option. It is possible to use the value of this field in ex-
pressions. Hidden fields are very rare, and should be used
judiciously.

filterable This method specifies whether this field can be filtered/sorted
if it occurs in a filter pane. If this mehtod is not invoked,
fields will be considered non-filterable.

multiline This method is applicable for fields/variables of type String.
It is used to indicate that the field may contain new-line
characters. By default, fields are not allowed to contain
new-line characters.

autoSearch This method defines the way searching is applied to a field
that is searchable. Invoking this method implies that
• Searching will take place as the user types.
• A small magnifying glass will be rendered inside the
field, allowing the user to invoke a search window by
activating it.
• Ctrl+G-search can be invoked from this field.

auto-Search is the default way of searching, so if nothing else
has been specified, the behavior will be auto-search.

onDemandSearch This method defines the way searching is applied to a field
that is searchable. The search-behavior implied by invoking
this method is similar to autoSearch, except that a drop-
down list is shown. Ctrl+G search and search-as-you-type
also works in this mode.

noSearch This method disables search for a field. If this method
is invoked, the field will, by default, not show any visible
signs of searching capabilities, even if the field is in principle
searchable.

c©Deltek Inc. 2013–2019, All Rights Reserved 61 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

Method Remarks
searchBehavior This method takes a single enum-argument defining the

search behavior of this field. This method may be used in-
stead of either autoSearch, onDemandSearch or noSearch
in cases where it is more convenient to calculate the search-
capabilities rather than invoking one of these methods, de-
pending on some logic.

foreignKeyOrder This method specifies the order of foreign keys of a field. The
order3 of foreign keys is important for searchable fields: the
first foreign key is the one used for searching. A list may
be applicable in cases where the foreign key is dynamic, i.e.,
only enabled depending on the value of other fields. It is not
necessary to specify all foreign keys for the field: any foreign
key not mentioned will be inserted in the list after the ones
explicitly specified.

properties This method takes a set of enum-properties encompassing
the following properties: mandatoryness, hidden, multi-line,
auto-submit and filterable. By invoking this method, you can
specify a set of properties for this field in one method call.
It may be convenient in situations where the capabilities are
based on non-simple logic.

4.2.2 Action Properties

As hinted above, you can add or change action properties by one of the addAction or
changeAction methods. The result is an action property builder, and the subsequent
method calls are used to specify properties of the specified action.

For the add-methods, you must specify a mandatory name (which will be the internal id
of the field or variable.) In layouts, this is the name to use when you want to refer to
this name. When referring to the action in the business logic, you must likewise refer to
this name. In addition to the name, you must specify the default title of the action if
you add it.

The list of methods of the action builders are:

3i.e., prioritization order

Version 1.4.021, software version 2.5.0 (21.0.sp100) 62 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
title This method can be used when changing an action. It is

used to specify the default title of the action. The default
title is used in layouts if no other title has been explicitly
specified. As an example, suppose you wish to change the
title of the action ConvertToOrder in the container macono-
my:Jobs into “Set as Order.” You can do this by changing
the default title, thereby avoiding changing the layouts:

changeAction(CONV_ORDER)
.title("Set as Order")

icon This method is used to specify the default-icon of an action.
When adding an action, there is no default-icon specified.
This will imply that the workspace client uses whatever icon
is used as a default default icon. The icon can in all cases
be overridden in a layout.

availableWhen This method is used to specify if an action will be included in
layouts specifying that “all” action should be shown, using:

<Actions all="true">
...

</Actions>

The availability is specified by an enumeration argument:
ALWAYS meaning that the action will be included in the layout

when the all attribute is true.
REFERRED meaning that the action will not automatically be

included in the layout, even when the all attribute is
true. With this setting, the action must explicitly be
included. For example, the ExportDataSet (“Export-
to-Excel”) action is added to card-panes in this way,
whereas it is added to filter/table panes using the
ALWAYS option. The REFERRED option is particularly
useful for actions that must be parameterized.

DEFAULT This will apply the default availability configured
for the system. At present this is ALWAYS.

In addition to adding or changing actions, you can also entirely remove an action that
would otherwise be available. For example, suppose that a given customer installation
does not wish to use the SubmitTimeSheetTemporarily-action in the maconomy:Time-
Registration container. Of course, the action can be removed from the layouts. But it
is a bit cumbersome to do this, if this is the only change, and you never want to offer

c©Deltek Inc. 2013–2019, All Rights Reserved 63 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

this functionality. In this case, you can remove the action by:

removeAction("SubmitTimeSheetTemporarily")

Similarly, you can remove support for the “standard” CRUD actions. For example, if
you want to entirely remove the possibility of deleting jobs, you can invoke the following
method:

removeStandardAction(MiPaneSpec.MeAction.DELETE)

4.2.3 Foreign-Key and Search Properties

Foreign keys are a very central concept for the Maconomy Workspace Client: the foreign
keys are used to specify how data is tied together in a workspace. The general rule is
that the content of a pane is always determined from its parent pane. Let us have an
example. Suppose you have a workspace showing a list of Jobs. The panes below this
list will be able to show data related to whatever job has focus. So, how do we know
what is related? The answer is: from the foreign keys specified in the List-of-Jobs pane.
Each declared foreign key specifies a mapping from one or more fields in this pane into
some other data. As the next pane, you can show panes from any container that has
such data as its key. In the filter pane of the maconomy:Jobs container, there are 70+
different foreign keys, enabling you to show a large amount of related data in subsequent
panes. Some of these are:

primary The foreign key primary always implicitly exists in a pane. You should not
declare it. It represents the identity mapping, in this case mapping from the job to
itself, enabling you to show panes using the selected job as the key.

SalesPersonNumber_Employee This foreign key maps to the employee specified in the
field SalesPersonNumber

Team1Number_Team This foreign key maps to the team specified by the Team1Number
field.

CustomerNumber_Customer This foreign key maps to the customer specified in the
CustomerNumber field.

CompanyCustomer This foreign key maps to the company-customer specified by the fields:
CustomerNumber and CompanyNumber.

From the above examples, we can see that a field can be used in several foreign keys. For
example, the field CustomerNumber is used in the foreign keys CustomerNumber_Customer
and CompanyCustomer. We can also see that, depending on the data, more than one field
must be used to properly identify a key in the foreign data.

Apart from being used to specify relationships between data, foreign keys may also
be used to search for data. In the above example, the field SalesPersonNumber must
represent an employee. Therefore, if this field is open for editing, the end-user should get
help to enter a valid employee number. The foreign key SalesPersonNumber_Employee

Version 1.4.021, software version 2.5.0 (21.0.sp100) 64 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

is used for this purpose: based on the specification of this foreign key, the client can
launch a search-pane searching for employees when the user activates searching.

Sometimes a record in a pane does not have enough information to reference a certain
set of foreign data. And still, you want to aid the user by offering searching for specific
kinds of data. In this case, you can use what is called a search key. A search key is quite
similar to a foreign key, only it cannot be used to bind panes together in a workspace
because the specification is not a full valid foreign key. A prominent example of where a
search key is used is in the table-part of the maconomy:TimeSheets container. In a time
sheet line, there is a field, TaskName, which is supposed to indicate a specific task name
in a task list. So, obviously, you want to aid the user by being able to search from within
this field. However, the data hosting a task (or technically a task-list line) has two key
fields: the name of the task list that it belongs to, and the name of a task in that list.
The time sheet line, however, has no reference to the task list. Instead, the task list is
indirectly specified by the associated job. For this reason, it is impossible to declare a
foreign key on a time-sheet line that references the task. Instead, a search key is declared,
specifying that the only valid results must be found as a task name of some task-list line.
When the user eventually invokes the search, a search condition is being applied based
on the value of the job specified; in this way, it is possible to restrict the tasks displayed
in the search result such that only tasks related to the specified job are shown.

Foreign-Key Basics

So, how does the system know which search-container to invoke when searching takes
place? This must be specified on the foreign key/search key! Let us have a look at how a
search key is specified in final MDSL (XML) format:

1 <ForeignKey name=" SalesPersonNumber_Employee "
2 title="Sales Person "
3 source =" maconomy : Find_Employee ">
4 <Field ref=" SalesPersonNumber " foreignKeyField =" EmployeeNumber "/>
5 </ForeignKey >

This is interpreted in the following way:

name The name-attribute denotes the internal name of this foreign key. This is the name
to use when binding panes together in a workspace.

title The title-attribute indicates the title of the foreign key. This title is the default-
title used by <Reference>-elements in MDML.

source The source-attribute specifies the name of the container that is invoked when a
search is initiated. In this case it is the maconomy:Find_Employee container. The
pane used is the filter pane of the specified container! The maconomy:Find_Employee
container is a filter-only container that show lists of employees. By default, this
container applies no conditions to which employees can be shown. It is absolutely
possible to specify a different container than the Find_-container. However, you

c©Deltek Inc. 2013–2019, All Rights Reserved 65 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

need a container that contains all the key fields being referenced by the foreign key.
As an example, you could instead use the filter-pane of the maconomy:Employees
container. In this case, the foreign-key definition would look like:

1 <ForeignKey name=" SalesPersonNumber_Employee "
2 title="Sales Person "
3 source =" maconomy : Employees ">
4 <Field ref=" SalesPersonNumber " foreignKeyField =" EmployeeNumber "/>
5 </ForeignKey >

Maconomy offers a Find_-container for all database tables in the Maconomy-
database. These find containers have no intrinsic where-clause attached. This is in
contrast to the filter-panes of the “normal” card containers: these may have intrinsic
where-clauses. Sometimes, you may benefit from such intrinsic where-clauses. For
example, if you want to have a field that points to an invoiceable job and you
want to enable searching, you can declare a foreign key that uses the macono-
my:InvoiceSelection as the source: in this way, the search window will only
show jobs that can be displayed by the maconomy:InvoiceSelection-container.

ref The ref-attribute is found for all nested <Field>-tags. It indicates a field in this
pane that maps to a specific key field in the foreign data.

foreignKeyField The foreignKeyField-attribute is found for all nested <Field>-tags.
It is used to specify which key field in the foreign data is being referred by a field
in this pane.

The embedded <Field>-tags are called the “links” because they specify how data in this
pane is related to or linked to data somewhere else.

Supplement links

In addition to link-fields, foreign keys and search keys can have optional supplement links.
A supplement link is a de facto relationship between data in this pane and the foreign
pane. Usually, it is used to declare derived information that depends on the specified
foreign key. For example, in the card pane of the maconomy:Jobs-container, the following
foreign key may be defined:

1 <ForeignKey name=" ProjectManagerNumber_Employee "
2 title=" Project Manager "
3 source =" Find_Employee ">
4 <Field ref=" ProjectManagerNumber " foreignKeyField =" EmployeeNumber "/>
5 <SupplementField ref=" ProjectManagerNameVar " foreignField ="Name1"/>
6 </ForeignKey >

Compared to the previous example, the new thing is the presence of the <SupplementField>-
tag. The attributes are the same as for the <Field>-tag, but the meaning is slightly
different. It indicates that the value of the field/variable ProjectManagerNameVar can
be expected to contain the same value as the field Name1 of the foreign data that is being
referred by the <Field>-tags. This kind of specification will enable searching from the

Version 1.4.021, software version 2.5.0 (21.0.sp100) 66 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

supplement field (here ProjectManagerNameVar) even if it is closed for editing. When
searching is made from this field, it will attempt to match the name rather than the
number. When a value is selected from a search-result, the corresponding key value (in
this case EmployeeNumber) will be transferred into the corresponding foreign-key field
(here ProjectManagerNumber) regardless of whether that field is shown in the layout or
not. The fact that it is possible to search (and apparently edit) such supplement fields
that are usually specified as being closed for editing has no real impact: the workspace
client will treat these fields as closed, and the updated value of closed fields will not be
communicated to the server-side. The supplement fields are there to give better feedback
to the end-user and to allow the end-user to search from within these de facto related
fields.

Conditional Foreign Keys

Sometimes a foreign key/search key is conditional. This means that—depending on the
value of some other field—the foreign key should be considered enabled or disabled. If
a foreign key is disabled, data will not be distributed through it in a workspace. Also,
searching will not take place using this foreign key.

Conditional foreign keys are used in several places in the Maconomy application. A
prominent place is in the maconomy:GeneralJournal container’s table pane. In that pane,
there is a field called AccountNumber. Depending on the value of the field TypeOfEntry,
this field references either an account, or a customer, or a vendor. In the MDSL, this is
represented in the following way:

1 <ForeignKeySwitch field=" TypeOfEntry ">
2 <Case value="GRPType ’\G\ ">
3 <ForeignKey name=" AccountNumber_Account "
4 title=" Account "
5 source =" Find_Account ">
6 <Field ref=" AccountNumber "
7 foreignKeyField =" AccountNumber "/>
8 </ForeignKey >
9 </Case >

10 <Case value="GRPType ’\R\ ">
11 <ForeignKey name=" AccountNumber_Customer "
12 title=" Customer "
13 source =" Find_Customer ">
14 <Field ref=" AccountNumber "
15 foreignKeyField =" CustomerNumber "/>
16 </ForeignKey >
17 </Case >
18 <Case value="GRPType ’\P\ ">
19 <ForeignKey name=" AccountNumber_Vendor "
20 title=" Vendor "
21 source =" Find_Vendor ">
22 <Field ref=" AccountNumber "
23 foreignKeyField =" VendorNumber "/>
24 </ForeignKey >
25 </Case >

c©Deltek Inc. 2013–2019, All Rights Reserved 67 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

26 </ ForeignKeySwitch >

This meaning of this specification is: depending on the value of the field TypeOfEntry
(called the switch field,) the following conditional foreign keys are enabled/disabled:

AccountNumber_Account this foreign key is enabled if the value of TypeOfEntry is
GRPType’G. The foreign key references an account. Hence, if searching is invoked in
a situation where TypeOfEntry has this value, the maconomy:Find_Account will
be invoked. Also, a workspace pane bound using this foreign key will be used in
this case. If the TypeOfEntry has any other value, workspace panes following this
foreign key will be empty.

AccountNumber_Customer this foreign key is enabled if the value of TypeOfEntry is
GRPType’R. The foreign key references a customer. Hence, if searching is invoked
in a situation where TypeOfEntry has this value, the maconomy:Find_Customer
will be invoked. Also, a workspace pane bound using this foreign key will be used
in this case. If the TypeOfEntry has any other value, workspace panes following
this foreign key will be empty.

AccountNumber_Vendor this foreign key is enabled if the value of TypeOfEntry is
GRPType’P. The foreign key references a vendor. Hence, if searching is invoked
in a situation where TypeOfEntry has this value, the maconomy:Find_Vendor will
be invoked. Also, a workspace pane bound using this foreign key will be used in
this case. If the TypeOfEntry has any other value, workspace panes following this
foreign key will be empty.

The switch fields must be of some enum (popup) type.

Method Overview

In order to make contributions to the set of foreign keys and search keys, you must use
one of the following methods: addForeignKey, changeForeignKey, addSearchKey or
changeSearchKey. The result of these methods is a foreign-key property builder, and
the subsequent method calls are used to specify properties of the specified foreign- or
search key.

Method Remarks
addForeignKey Arguments:

• name
• title
• searchContainerName

Using this method, you add a foreign key. If a search based on
this foreign key is invoked, the filter-pane named filter of this
container will be used.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 68 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
addForeignKey Arguments:

• name
• title
• searchContainerPaneName

Using this method, you add a foreign key. If a search based
on this foreign key is invoked, the specified container and pane
name will be used. This method should be used in cases where
the filter pane is different from the standard name.

addForeignKey Arguments:
• name
• title

Using this method, you add a foreign key. But in contrast to the
above methods, it will not be possible to search using this foreign
key. Hence, searching can only be enabled for the referenced
fields if these fields are part of another foreign- or search key.

addForeignKeyBy-
Copying Arguments:

• name
• foreignOrSearchKeyToCopy

This method adds a new foreign key which, initially, has exactly
the same content as an already existing foreign key. This can be
useful in cases where you want to augment an existing foreign
key, while keeping the original foreign key untouched. For
example, you could use this to change a search-key into a full-
fledged foreign key by adding the missing link-field specifications.
The original search key will always be treated as a search key,
and cannot be used to bind panes together in a workspace.

addSearchKey Arguments:
• name
• title
• searchContainerName

Using this method, you add a search key. If a search based on
this search key is invoked, the filter-pane named filter of the
specified search-container will be used.

addSearchKey Arguments:
• name
• title
• searchContainerPaneName

Using this method, you add a search key. If a search based
on this search key is invoked, the specified container and pane
name will be used. This method should be used in cases where
the filter pane is different from the standard name.

c©Deltek Inc. 2013–2019, All Rights Reserved 69 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

Method Remarks
addSearchKeyBy-

Copying Arguments:
• name
• foreignOrSearchKeyToCopy

This method is similar to addForeignKeyByCopying, except
that it introduces a new search key rather than a foreign key.

changeForeignKey This method is used to alter the properties of an foreign key.
For example, you can use this to change the default title of the
foreign key, or to add supplement links. Notice that it is not
supported to add a foreign key and then—for the same pane,
at the same level—also change the key. The change refers to
changing a foreign key that has been introduced by a container
contribution closer to the root!

changeSearchKey This method is similar to changeForeignKey, except that it is
used to modify an existing search key rather than a foreign key.

The above methods result in a foreign key/search key property builder. Using these
builders, you can alter the properties of the foreign key/search key in question. The list
of methods of the foreign key builders are:

Method Remarks
title This method is available when changing or copying. The

method can be used to change the default title of a foreign
key/search key. The default title is used by the MDML
<Reference>-element.

link The link method is used to specify a link (foreign key field)
mapping from a field in this pane to a key field in some
foreign data. The link method takes one or two arguments.
The one-argument version declares a link that maps the field
in this pane into a key field having the same name. For
example, a job would typically have a CustomerNumber field
referencing a customer. And the key field of a customer
would typically be named in the same way. By using this
method, the code can be kept shorter and easier to read.

link("CustomerNumber")
The two-argument version can be used to map a field in
this pane into a key field in some foreign data which is
named differently. For example, a ProjectManagerNumber
field would typically be linked to EmployeeNumber.

link("ProjectManagerNumber", "EmployeeNumber")

Version 1.4.021, software version 2.5.0 (21.0.sp100) 70 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
supplementLink This method is similar to the link method above, except

that it declares supplement links. As it is expected to be very
rare that the fields are called the same in this case, there is
only the two-argument version of this method:

supplementLink("ProjectManagerNameVar",
"Name1")

searchContainer This method is available when changing or copying foreign
keys and search keys. The method is used to change the
associated search container.

searchContainerPane This method is available when changing or copying foreign
keys and search keys. The method is used to change the
associated search container as well as the pane used by the
search. This can be used in cases where the used pane is not
called “filter.”

enabledBy This method is used to specify a conditional foreign key or
search key. When this method is invoked, the current foreign
key/search key will be considered conditional. It will be
considered enabled when the specified switch field has the
corresponding specified value. An example use is

enabledBy("TypeOfEntry",
McPopup.val(key("GRPType"), "G");

4.2.4 Using Name Spaces

Suppose your contribution adds a variable to container. When doing so, you must define
a name. This name is used to reference the variable in other contexts (either through the
layout or programmatically.) Naturally, in order to avoid ambiguity, the name must be
unique. If you specify a name that already exists, the framework will issue an error at
run-time.

So, eventually, you find a good name4 that doesn’t clash with already existing fields or
variables. Now you may think everything is good, but it isn’t! Your extension may not
be forward compatible. This means that your extension may not work when a future
version of Maconomy is eventually installed.

Let us have a look at an example. Suppose your client wants you to add a variable
4Finding a good name can be surprisingly difficult, but is worth the effort! A variable with a misleading

or unclear name can cause a lot of confusion over time. It can even lead to programming errors.

c©Deltek Inc. 2013–2019, All Rights Reserved 71 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

that calculates the utilization % for time sheets. So, you add a variable to the maco-
nomy:TimeSheets container called UtilizationPctVar. Your code works wonderfully,
and the customer is happy. Although “utilization” tends to be calculated using slightly
different rules at different customers, having some kind of calculated utilization shown
for time sheets seems like a generic feature. For this reason, it is far from unthinkable
that in a future version, the core Maconomy application will add a variable showing the
utilization for a time sheet (calculated using some more or less generically applicable
rules.) In this case, it is very thinkable that the name of such a variable would be
UtilizationPctVar. This means that when your client upgrades to that version of
Maconomy, your extension will break! In fact, as long as it is installed, time sheet
functionality is completely broken!

In order to reduce the risk of this, you could start to invent strange naming conventions,
like __myCustomer__UtilizationPctVar. The thing is just that such naming conventions
tend to be unstructured5 and they will only reduce the risk of name clashing. The risk
will not be eliminated.

For this reason, the extension framework supports the concept of name spaces for fields,
variables, actions, foreign keys and search keys. Hence, basically everything that you can
add to a container. By using name spaces, your extension is guaranteed to be forward
compatible with future versions of the core Maconomy application. The core Maconomy
application always uses the “implicit” name-space maconomy. This means that when
referencing such names programmatically, you must leave out that implicit name-space.
From layouts, you may optionally specify the implicit name space.

In order to declare the name space you want for your extension, you must annotate
your data-model class by the @Namespace annotation, giving the name space value as
an argument to that annotation. Every name that is added to the container (using the
methods described above to declare the capabilities returned by defineDomesticSpec,)
will automatically prepend the name space followed by a colon (the name-space separator)
to the names. If the names explicitly contain the name space, the name space will not
be duplicated. And if some other name space is specified, an error will be issued at
run-time.

In addition to declaring your things like fields and variables, you frequently need to
reference these name in your code. For example looking up a value or assigning a
value. When doing such referenced, you must prepend the name space. Otherwise, the
framework has no chance of knowing whether you refer to the name with or without a
name space. One way to ensure this is to declare all the referenced names as constants
in your class. This, however, means that the name space should be part of each of
these declarations. Stating the name space again and again seems tedious. For this
reason, the data-model classes offers a static method NS which can pick up the value
of the @Namespace annotation and use that as the name space of the declared names.
Because the NS is a static method, such identifiers can be declared as final static

5Two different programmers choose two different ways of doing it

Version 1.4.021, software version 2.5.0 (21.0.sp100) 72 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

constants.

Listing 4.3: Using a Name Space
1 @Namespace("Trifolium")
2 public class NameSpaceDataModel extends

McAbstractPersistingExtendedDataModel {
3

4 public NameSpaceDataModel(final MiDataModelFactory.MiResources
aResources) {

5 super(aResources);
6 }
7

8 private static final MiKey UTILIZATION_PCT =
9 NS("UtilizationPctVar");

10

11 private final static MiKey UTILIZATION_FACTOR =
12 NS("UtilizationFactorVar");
13

14 /∗∗ { @inher i tDoc } ∗/
15 @Override
16 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) throws Exception {
17 return McPaneSpec.McExtended.pane()
18 // UTILIZATION_PCT a l r e a d y c on t a i n s t h e name space .
19 // The framework w i l l check t h a t i t i s t h e same as
20 // t h e one r e t u rn ed by def ineNameSpace ()
21 .addRealVariable(UTILIZATION_PCT ,
22 "Utilization %").then()
23

24 .addRealVariable(UTILIZATION_FACTOR ,
25 "Utilization Factor").then()
26

27 // Here , t h e name space i s e x p l i c i t l y s t a t e d .
28 // The framework w i l l check t h a t i t ’ s t h e r i g h t one
29 .addAction(key("Trifolium:UpdateFromPlan"),
30 "Update from Plan").then()
31

32 // Re f e r enc e s t o core a p p l i c a t i o n names
33 // must not have a name space
34 .changeAction(key("SubmitTimeSheet"))
35 .icon(key("MySubmitIcon")).then()
36

37 // You can add new a c t i o n s t h a t are named t h e same as core
38 // a p p l i c a t i o n a c t i o n (e x c e p t f o r t h e name space)
39 // I f t h e added name does not a l r e a d y con t a i n a name space ,
40 // t h e c u r r e n t name space w i l l a u t oma t i c a l l y be added
41 // (in t h i s ca s e Tr i f o l i um : SubmitTimeSheet)
42 .addAction(key("SubmitTimeSheet"),
43 "My Custom Submit Time Sheet").then()

c©Deltek Inc. 2013–2019, All Rights Reserved 73 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.2. SPECIFYING THE CAPABILITIES OF A CONTAINER

44

45 .end();
46 }

Listing 4.3 shows how name spaces are declared. The data-model class is annotated
by the @Namespace annotation which specifies the name space to be used. In this case
Trifolium. This takes place in line 1. By annotating the class with a name space, you
declare that you want to add that name space to each of the added capabilities (added
fields, variables, actions, foreign keys and search keys.)

The definition of the added and changed capabilities is handled by implementing the
method defineDomesticSpec in line 16. In this example, the domestic specification
adds one variable and two actions. Furthermore, it changes the icon property of the an
action defined by the core Maconomy application. It is worth noticing that:

• In line 21 a variable is added. The name is given by the constant UTILIZA-
TION_PCT declared in line 8. So, it is declared that the added variable has the name
Trifolium:UtilizationPctVar. Since this name contains a name-space prefix
(Trifolium:), the Extension Framework will check that it is the same as the name
space specified by the method defineNameSpace. If this was not the case, an error
would be issued at run-time: you are not allowed to add several name spaces in
the same data-model! In this case, the correct name space is automatically added
because the NS function is used in the declaration of the name.

• In line 24 another variable is added; the Trifolium:UtilizationFactorVar. Again
its name is defined using a reference to a constant. This constant, defined in line
11 makes ude of the NS method.

• In line 29 a new named action is declared. This time, the name is in-lined (i.e., not
specified by a constant.) Since the declared name already contains a name-space
prefix, it is checked that it matches the name space declared by defineNameSpace.

• In line 34 we change an action, rather than adding it. In this case, we change the
icon on the action SubmitTimeSheet which is a core Maconomy application action.
Therefore, no name space is specified, as this action has the implicit Maconomy
name space.

• In line 42 we add yet another action. This time, the action added is seemingly
just called SubmitTimeSheet. But since it is added, the Extension Framework will
automatically prepend the current name space. This means that the name of the
new action is Trifolium:SubmitTimeSheet.

In your code, when you reference the added (name-spaced) names, you must prepend the
name space. Otherwise, the framework has no chance of knowing whether you refer to the
name with or without a name space. One way to ensure this is to declare all the referenced
names as constants in your class (just as it is done in line 8) in Listing 4.3.) possibly by
making use of the NS method (just as it is done in line 11 in Listing 4.3.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 74 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

When you reference the name-spaced names in layouts, you must also include the name
space in the reference. For example:
<Group title="Key Figures ">

<Field source =" Trifolium : UtilizationPctVar " />
<Field source =" Trifolium : UtilizationFactorVar " />
<Field source =" InvoiceablePercentageOfWeekVar " />

</Group >

This layout snippet shows a group “Key Figures” that shows three variables: the first tow
are Trifolium:UtilizationPctVar and Trifolium:UtilizationFactorVar (which are
added by our extension,) and the third is the field InvoiceablePercentageOfWeekVar
which is contributed by the standard Maconomy application.

For backwards compatibility reasons, it is technically possible not to use name spaces
for field etc. However, we strongly encourage that you always use name spaces for every
extension you do.

4.3 Implementing Data-Carrying Events

In this section, we shall have a closer look at the data-carrying events. Although these
events are different, they have many things in common from an implementation point of
view.

Container

Ext1Ext2Ext3Ext4 Root
Event

Result

Figure 4.2: The data-carrying events all have a similar life-cycle in a container. This
figure shows the life cycle of some event, Event. The result of executing that event is
whatever result comes out of the outer-most container contribution.

Figure 4.2 shows the general life-cycle of data-carrying events. When having a chain of
container contributions, we shall refer to the root contribution as “last”, “bottom” or
“inner-most”, and the contribution at the opposite end of the chain as the “first”, “top”
or “outer-most.” In cases where there is only the root, the root will obviously be both
first and last.

1. The first container contribution will be invoked. In the example, the first contribu-
tion is the Ext4. This is done by invoking a method called onEvent Pre 6. Hence,
this method is executed prior to the next contribution in the chain.

6For each specific event, the Event will be substituted with a term specific to that event, e.g., “Update”
or “Delete.” Hence, onUpdatePre or onDeletePre respectively.

c©Deltek Inc. 2013–2019, All Rights Reserved 75 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

2. The next container contribution will be invoked. In the example, this is Ext3.
Again, it is the onEvent Pre that is invoked.

3. This goes on until only the root is left. The root container contribution will also
have the method onEvent Pre invoked, and then immediately after, a method called
onEvent Post . The “Pre” and “Post” can be though of as prior to nothing and
after nothing. The root container contribution is now completely done, and will
not be invoked again. As far as it is concerned, the event operation is finished. The
“Post” method will get an input corresponding to an empty result value.

4. After the post-method has been executed in the root contribution, the method
onEvent Post will be executed on the contribution immediately preceding the
root, in this case the Ext1 extension. The “Post” method will receive as input
whatever value was produced by the root contribution. When the result is returned
from Ext1, it is completely done and will not be invoked again. As far as Ext1 is
concerned, the event operation is finished.

5. The onEvent Post will be invoked on the immediately following execution, in this
case Ext2. The “Post” method will receive whatever input was produced by the
“Post” method of the following contribution, i.e., the result produced by Ext1. Once
done, Ext2 is completely done and will not be invoked again. As far as Ext2 is
concerned, the event operation is finished.

6. This goes on until the first container contribution is reached. The onEvent Post
method will be invoked on that contribution, in this case in Ext4. This method
will receive as input whatever result was produced by the “Post” method of the
following contribution. When this is done, this container contribution is completely
done. As there are no preceding contributions, the container is completely done,
and the resulting value for the entire container is whatever value is returned from
the post-method of the first container contribution.

Container

Ext1
onEvent Pre()

onEvent Post()
Ext2

onEvent Pre()

onEvent Post()
Ext3

onEvent Pre()

onEvent Post()
Ext4

onEvent Pre()

onEvent Post() RootonEvent Pre()

onEvent Post()

Event

Result

Figure 4.3: This shows the order in which the “Pre” and “Post” methods are called. The
order is defined by the direction of the Event/Result arrow going through all container
contributions!

Figure 4.3 shows the order in which the onEvent Pre and onEvent Post methods are
called.

Because of this life-cycle, it means that—seen from a particular container contribution—
the behavior is always exactly the same, no matter the number of container contributions,

Version 1.4.021, software version 2.5.0 (21.0.sp100) 76 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

and no matter if one or more of them happen to be removed or re-ordered: every
container-contribution must produce a fully valid return value that is a candidate for the
final result of the container. Figure 4.4 illustrates this.

Container

Ext1
onEvent Pre()

onEvent Post()
Ext2

onEvent Pre()

onEvent Post()
Ext3

onEvent Pre()

onEvent Post()
Ext4

onEvent Pre()

onEvent Post() RootonEvent Pre()

onEvent Post()

Candidate results

Event

Result

Figure 4.4: Each container contribution must produce a fully functioning result value
from the onEvent Post methods. Hence, the result of a given onEvent Post method is
a candidate result. The last produced candidate result will be the final result for the
container. In this way, each container contribution need not worry about whether or
not there are other contributions and they cannot (and certainly should not) depend on
whether there are preceding contributions!

Hence, each individual container contribution must act as though it is responsible for
producing the final result of a container event. Maybe this result will be altered by
extensions on top, but that is of no concern for the specific container contribution.
All it should be concerned with is performing it’s own logic in the onEvent Pre and
onEvent Post methods. Figure 4.5 illustrates this.

Extn

Candidate result

onEvent Pre()

onEvent Post()

Figure 4.5: Each container contribution must be able to generate a fully valid result
value for some event, Event. A specific contribution cannot and should not know or
be concerned with whether there are contributions on top of it. Also, it should not be
concerned with whether there is one or more extensions between itself and the root. The
root can rely on that it is last, and any non-root contributions can rely on that there is
at least the root extension after it.

c©Deltek Inc. 2013–2019, All Rights Reserved 77 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

4.3.1 Working with Data-Models

As mentioned earlier, implementing functionality directly on the container level is some-
what difficult. As always, you should make use of data models instead. Once a data model
has been bound to a container, the default container implementation will automatically
invoke an event script on a given data model when applicable.

For root data models (i.e., a data model used with a root container), the onEvent Pre
and onEvent Post scripts are basically two sides of the same thing: the “Pre”-script is
immediately followed by the “Post” script. In order to simplify the data model, there is
just one method to implement for each script. This script is called onEvent .

For extension data models (i.e., a data model used with a non-root container), the
“Pre” and “Post” scripts are both meaningful since they can do something either before
the remaining contributions are invoked, or after the remaining contributions have
been invoked. Hence, for extension data models, two scripts may be implemented:
onEvent Pre and onEvent Post .

The method signatures for onEvent , onEvent Pre and onEvent Post are similar:

void onEvent(MiContainerRunner.MiEventPost containerRunner,
MiEventData.MiEvent eventData)

void onEventPre(MiContainerRunner.MiEventPre containerRunner,
MiEventData.MiEvent eventData)

void onEventPost(MiContainerRunner.MiEventPost containerRunner,
MiEventData.MiEvent eventData)

The first thing to notice is that these methods do not return any values. The container-level
“Post”-event methods, however, must produce a valid value for this event. How is that
possible? It is important to understand that Data-models are record-centric and containers
are container-value-centric. This means that the data-models are only concerned with the
actual event record. Nothing else. The underlying container implementations provided
by the framework will automatically gather information via the data-models and at the
end it will tie this information together in the right way and provide a container value
comprising a pane value for the necessary panes. This is exactly one of the facts that
makes data-models so much easier to work with:

1. A data-model event-method need only consider the event record in question. Ev-
erything else can be left to the framework.

2. In case of multiple record panes, the framework will sort out which record is being
used, so all information is provided to the data-model. No work needs to be done.

3. Since the data-models are not supposed to produce neither pane values nor container
values, all the nasty details related to this can be forgotten and left to the framework.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 78 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

So, if the methods do not produce a result value, how is it possible to contribute? Such
contributions must be made though the eventData parameter which is passed on the
any event-method. The event data may comprise several things, including:

• The “original data”, i.e., the data that the event is being invoked on. Hence, the
data that was seen by the end-user prior to executing the event. This can be
obtained through the method getOriginalData .

• The “user data.” User-data is only used for “Create” and “Update” events. It
represents an edited record. For example, if the user changes a field CustomerNumber
from “A” to “B”, then the user-data will know that the field CustomerNumber was
changed, and the it’s new (but not yet committed) value is “B.” The original data
(see above) will present the CustomerNumber value as “A.” The user-data can be
obtained by using the getUserData method.

• The “result data.” The result data contains the final result values of the event-record.
So, if you wish to change the value of a field (introduced by your contribution)
as a result of running some event, then you can do this by simply modifying
the result-data object. The result-data can be obtained by using the method
getResultData .

Event/method getOriginalData getUserData getResultData

Read 7 7 3

Initialize 7 7 3

Create 3 3 3

Update 3 3 3

Delete 3 7 7

Action 3 7 3

Print 3 7 3

Move 3 7 3

Table 4.10: An overview of which events give access to what kind of data in the eventData
object.

It may be a surprise that none of the above methods of the event-data object are available
for all events. Table 4.10 shows which methods are available in which event context. For
example, notice that upon Delete-events, there is no access to the result data. This is
because a delete event removes a record. For that reason, it makes no sense to specify
values on that record as a result of deleting it. Similarly, the Initialize and Read
events have no original data. This is because these events are supposed to produce a
record by reading a database, or by “inventing” a template record. This must be possible
also in cases where there were no “original” records in the first place. And finally, only
the Create and Update methods have access to the user-data.

c©Deltek Inc. 2013–2019, All Rights Reserved 79 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

It may come as a surprise that, e.g., actions do not have access to user-data. For example,
using a wizard, the user can edit a record and immediately execute an action. However,
under the hood this is implemented as a sequence of events: an Update-event followed
by an Action event. So, when the Action event occurs, there is no user-data. Only
the “original data” which, in turn, corresponds to the result of the preceding Update
event.

Working with Original Data

As outlined in Table 4.10, it is possible to obtain information about the record on which
some event is executed. The original data is exposed through a read-only interface, since
it makes no sense to claim that the original data is something other than it was. Since the
Extension Framework is quite generic, it is not possible to expose the information using
specific types for each particular record. Instead, record-like values are exposed using a
generic interface that resembles a key/value look-up map. The basic interface is called
MiValueInspector . Through this, you can get access to values of particular fields.
Since different fields have values of different types, values are represented using classes of
subtype McDataValue . Such raw data-values are, however, often a little cumbersome to
work with. If you know that the value of a given field is a String, and you just want to
obtain that String, then going via an abstract McDataValue is tedious. For this reason,
the MiValueInspector interface has methods that makes it much easier to obtain values
in a number of ways:

• It is possible to obtain the value of a specific field as a Java type. For example,
if you know that the type of the field CustomerNumber is String, then you can
obtain this as a Java String by

originalData.getStr("FieldName")

For fields of type Popup, you must choose whether you want to access the ordi-
nal value or the literal value by selecting either getPopupOrdinal or getPopup
respectively.

• It is possible to obtain the value of a specific field as a Maconomy-encoded data value
of a specific type. For example, a McStringDataValue or a McPopupDataValue.
These data values are sub-types of the generic McDataValue type. It is sometimes
useful to extract the values as typed data values. Either because they may be
used by framework functions, or because that representation gives easy access to a
number of properties such as popup literal name, popup ordinal value and popup
title value. Especially for popup-values, the McPopupDataValue provides a way to
encompass all aspects of a popup value in one place. E.g., the ordinal value, the
literal value, the title and the type name. Examples are:

originalData.getStrVal("StringFieldName")
originalData.getPopupVal("PopupFieldName")

Version 1.4.021, software version 2.5.0 (21.0.sp100) 80 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

• It is possible to obtain the value of a specific field as a generic Maconomy-encoded
data value. You cannot directly access the underlying semantic value from that
generic type. It is sometimes useful for framework functions, or if you don’t
know/care about the specific field type.

originalData.getVal("FieldName")

Listing 4.4 shows examples of how values are extracted from original data and how the
values can be further used by the business logic. The various methods for extracting
values of different types are:

Method Remarks
getAmount Returns the value of a field of type Amount.

If the field does not have this type or if the
field does not exist, an exception is thrown.
The returned value is the Java BigDecimal.
Although the BigDecimal is somewhat more
cumbersome to use that, e.g., float or double,
it is a deliberate decision to use this type:
with the binary floating point types float and
double, imprecision will occur, and there is no
controlled way to handle it. For BigDecimal
you need to be absolutely aware of what should
happen, for instance in case of infinite decimal
expansion (such as 1

3 = 0.33333333 . . .), i.e., how
rounding should be applied. Such issues are very
important when dealing with monetary units and
should be dealt with cautiously. You are referred
to the API documentation for BigDecimal:
http://docs.oracle.com/javase/7/docs/
api/java/math/BigDecimal.html.

getBool Returns the value of a field of type Boolean. If
the field does not have this type or if the field
does not exist, an exception is thrown. The
returned value is represented as a Java native
boolean.

c©Deltek Inc. 2013–2019, All Rights Reserved 81 Version 1.4.021, software version 2.5.0 (21.0.sp100)

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

4.3. IMPLEMENTING DATA-CARRYING EVENTS

Method Remarks
getDate Returns the value of a field of type Date.

If the field does not have this type or if
the field does not exist, an exception is
thrown. The returned value is represented
as a Java GregorianCalendar. Although a
GregorianCalendar abstracts both a date and a
time of the day, the returned value is only signif-
icant with respect to the date portion. If needed,
you can add time information to the returned
value.

getInt Returns the value of a field of type Integer. If
the field does not have this type or if the field
does not exist, an exception is thrown. The
returned value is represented as a Java native
int.

getPopup Returns the value of a field of type Popup. If
the field does not have this type or if the field
does not exist, an exception is thrown. The
returned value represents the literal value of the
popup value. Since literal values are not case
sensitive, the returned value is represented as a
MiKey value. Note that the literal value is not
the same as the title. The ordinal value will
never be localized!

getPopupOrdinal Returns the value of a field of type Popup. If the
field does not have this type or if the field does
not exist, an exception is thrown. The returned
value represents the ordinal value of the popup
value. The ordinal value is returned as a Java
native int.

getReal Returns the value of a field of type Real. If the
field does not have this type or if the field does
not exist, an exception is thrown. The returned
value is the Java BigDecimal. Please see the
description related to Amounts above.

getStr Returns the value of a field of type String. If the
field does not have this type or if the field does
not exist, an exception is thrown. The returned
value is the Java String type.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 82 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
getTime Returns the value of a field of type Time. If

the field does not have this type or if the
field does not exist, an exception is thrown.
As for Date, the return type for this method
is a Java GregorianCalendar. Although
GregorianCalendar values comprise a date as
well as a time of the day, the value returned from
this method is only significant for the time part.
If needed, you can add date information to the
returned value.

getType Val Similar to getType except that the returned
value is of the appropriate McDataValue
sub-type, e.g., McIntegerDataValue or
McAmountDataValue. Hence, there is one
method for each type, e.g., getPopupVal and
getStrVal etc.

getType OrElse Similar to the getType except that if the spec-
ified field is not found, a default value of
the appropriate type is returned. The default
value is passed as an argument to the method.
Hence, there is one method for each type, e.g.,
getBoolOrElse and getStrOrElse etc.

Listing 4.4: Extracting Values from Original Data
2 final MiValueInspector originalData = eventData.

getOriginalData ();
3

4 // Ob ta in in g t h e v a l u e as a b u i l t −in Java t y p e
5 // makes i t p o s s i b l e t o use t h e v a l u e w i t h s t anda rd
6 // Java l i b r a r i e s and methods
7 final String customerNumber = originalData.getStr("

CustomerNumber");
8 if (customerNumber.matches("t[0 -9]+")) {
9 containerRunner.call()

10 .error("You are not allowed to use a template customer");
11 }
12

13 // You can a l s o o b t a i n t h e v a l u e as Maconomy−encoded
14 // r e p r e s e n t a t i o n .
15 final McStringDataValue customerNumberSdv = originalData.

getStrVal("CustomerNumber");
16 // From t h e r e you can r e t r i e v e i n t e r n a l r e p r e s e n t a t i o n s

c©Deltek Inc. 2013–2019, All Rights Reserved 83 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

17 customerNumberSdv.stringValue ();
18

19

20 // I t i s mos t l y used w i t h popup−v a l u e s where t h e " v a l u e " may
21 // have mu l t i p l e a s p e c t s
22 final McPopupDataValue popupVal = originalData.getPopupVal("

Statistics1");
23 final MiLiteralName literalValue = popupVal.getLiteralName ();
24 final Integer ordinalValue = popupVal.getValue ();
25

26 if (literalValue.isLike("Foreign") || ordinalValue == 4) {
27 doSomething ();
28 }
29

30 // F i n a l l y , i t i s p o s s i b l e t o o b t a i n v a l u e s as
31 // g e n e r i c da ta v a l u e s
32 final McDataValue val = originalData.getVal("SomeField");
33 if (val.getType ().isType(MiDataType.MeType.AMOUNT)) {
34 doSomethingElse ();
35 }

Apart from the methods mentioned above, the MiValueInspector contains other
methods that can be used for various purposes. For example, copying the value inspector
and presenting it as a modifiable record type, asking whether a certain field is found in
the inspector etc. Some of the most interesting methods are listed below. For further
information on the available methods, you are referred to the IDE content help for more
details.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 84 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
copyValues This method comes in a number of flavours.

• No arguments: the method returns a
MiRecordValues object where the value is
initially a copy of the current value inspector.
As the return type is not a value inspector, you
can modify the returned value.
• An argument which is an iterable of field names:

this method works similar to the no-argument ver-
sion except that only the fields contained by the
iterable will be included in the returned record.
If the iterable contains a field name that does not
exist in the current value inspector, an exception
will be thrown.
• A comma-separated list of MiKeys or Strings.
This method is identical to the version above,
except that the fields are specified directly.
• An argument which is a value inspector. This
method works similar to the above, except that
only the fields defined by the argument value-
inspector are taken into account.

copyValuesIfExist This method comes in a number of flavours. They are
all equivalent to copyValues above, except that it is
allowed to specify fields that are not defined by the
current value inspector: these fields will be ignored.

copyValuesOpt This method comes in a number of flavors. They
are all equivalent to the above methods, except that
the return value is an optional record value. If one
or more of the argument fields are not found in the
current value inspector a McOpt.none object will be
returned. Otherwise the returned value will be defined
and contain a value corresponding to copyValues.

setAllCopy This method takes a value inspector as an argument.
The returned record value which is a “copy” (i.e., a
new record) can be thought of as the set “union” of
the current value inspector and the argument value
inspector. The value of a given field will have the value
specified the argument value inspector if it is defined
in that. Otherwise it will have the value as found in
the current value inspector.

c©Deltek Inc. 2013–2019, All Rights Reserved 85 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

Method Remarks
absorbAllCopy This method takes a value inspector as an argument.

The returned record value which is a “copy” (i.e., a
new record) can be thought of as the set “intersection”
of the current value inspector and the argument value
inspector. The returned record will only contain fields
names that are found in both the current and the
argument value inspector. The values will be the ones
defined by the argument value inspector. See also
retainAllValuesCopy below.

absorbAllValuesCopy This method takes a value inspector as an argument.
The returned record value which is a “copy” (i.e., a new
record) can be thought of as the set “intersection” of the
current value inspector and the argument value. The
difference between this method and absorbAllCopy is
that absorbAllValuesCopy takes both field name and
value into account. Hence, the returned record will
contain only fields that occur with identical values in
the current value inspector and the argument value
inspector.

removeAllCopy This method takes a value inspector as an argument.
The returned record value which is a “copy” (i.e., a
new record) can be thought of as the set “complement”
of the current value inspector and the argument value.
The returned record therefore only contains field names
that are defined in the current value inspector, but not
defined in the argument value inspector.

removeAllValuesCopy This method is similar to removeAllCopy except that
it takes both field name and associated value into
account. Hence, the returned record will contain all
field/values from the current value inspector where a
similar field with the same value does not exist in the
argument value inspector.

containsAll This method takes a value inspector as an argument.
It returns true if the current value inspector contains
all field names defined by the argument value inspec-
tor. Hence, this corresponds to asking whether the
argument is a sub-set of the current value inspector.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 86 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
containsAllValues This method is similar to containsAll except that

both field names and the associated values are taken
into account. Hence, the method returns true only if
all field of the argument value inspector are defined
and associated with the same value in the current value
inspector.

contains This method asks whether a specified field (name) is
defined in the current value inspector. If so, the method
returns true, otherwise false.

containsValue This method asks whether a specified field (name) is
defined in the current value inspector with a specified
value. If so, the method returns true, otherwise false.

equalsTS This method takes a value inspector as argument. It
returns true if the argument is equal to the current
value inspector for all fields. Hence, the two value
inspectors define exactly the same field names with
exactly the same values.

entries This method returns an Iterable of Map.Entry repre-
senting the field name and associated value. All fields
in the value inspector will be reflected through this
method.

stream This method returns a Stream of Map.Entry represent-
ing the field name and associated value. All fields in
the value inspector will be reflected by the returned
Stream.

Working with User Data

As outlined in Table 4.10, for events that allows user-changes (Create and Update), it is
possible to obtain information about the values changed by the user. As explained, this
information is provided via the eventData parameter using the method getUserData

which returns an interface of type MiUserData . At the core, the MiUserData interface
is just a MiValueInspector (see above), with a few additional methods. The user-data
object represents the values the user sees when the event is invoked. The user-data
does not only represent the fields that were actually changed. You can ask for any field
value!

Suppose that a user sees the following record (for brevity, only three fields are shown):

JobNumber Description StartingDate Remark1
10250001 Importat Job 〈blank〉 An important job!

c©Deltek Inc. 2013–2019, All Rights Reserved 87 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

Now, the user discovers the spelling error in the description field: It should spell
“Important Job.” So, the user changes the value of the field Description to this, and
while he’s at it, also specifies a starting date: 01-09-2013. Then he submits the record,
which will lead to an Update event. The event data will contain a user-data part with
the following values:

JobNumber Description StartingDate Remark1
10250001 Important Job 01-09-2013 An important job!

Hence, querying about the value of the field StartDate will give a date representing:
01-09-2013. This is different from the original data which is also provided with the event,
as can be seen below:

JobNumber Description StartingDate Remark1
Original data 10250001 Importat Job 〈blank〉 An important job!
User-data 10250001 Important Job 01-09-2013 An important job!

Hence, for the values that are unchanged, asking for that value from the user-data will
return the same value as asking the original data for the same field value.

Often you need to do some checks or do some logic if a certain field is changed by the
user. So how do you know whether or not a field value has been changed? Of course, you
can extract the values from the user-data and from the original data and compare them.
This is, however, somewhat cumbersome and obfuscates the business logic. Instead,
the MiUserData type offers a few methods that makes it easier to check things like
that.

Method Remarks
changed Tests whether a specified field is changed by the user, i.e.,

whether the value in user-data is the same as the one found
in original data.

unchanged The opposite of changed. I.e., tests whether a specific field
is not changed.

getUserChange Returns a MiValueInspector interface comprising all fields
that were changed. If the resulting value inspector is empty,
i.e., contains no field values, it means that nothing was
changed. Please be aware, that this method is “expensive”
performance-wise, and should therefore be used infrequently
and judiciously. For instance, it should not be used inside a
loop.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 88 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

In addition to looking at changed (or unchanged) values in the user-data object, it is
possible to modify the values in the user-data object. What does this mean, and why is
it relevant? Modifying the user-data object is the only way to attempt to modify fields
belonging to other container contributions!

As an example, suppose you want to make an extension to the container maconomy:Jobs.
The extension you would like to have is this: whenever the ProjectManagerNumber field
is changed, you wish to update the LocationName field of the job so that it matches the
LocationName value of the employee assigned as project manager. The problem is that
the LocationName field is not your ownership! You cannot dictate the value of this field.
To solve the task, you have two possibilities:

• In the “Pre”-script, you can change the value of the field LocationName on behalf
of the user. Technically, you do this by modifying the user-data values for fields
belonging to some following container contribution, e.g., the root.

• In the “Post”-script, you can programmatically do another update based on this
container, thereby—acting as an end-user—invoke an update of the field.

If the first option is possible, that is the best choice because it leads to no additional
update events, and therefore performs better. The latter approach will result in two
update events, and it may even be necessary to enforce a re-read of the container as
well. However, since user-data is only available in Create and Update events, these are
the only events offering this possibility. You may wonder why we cannot just change
the user-value in the “Post” method. In order to understand this, let us take a look at
how container contributions are invoked in an event life-cycle. Figure 4.6 illustrates why

Container

Ext1
onUpdatePre()

onUpdatePost() RootonUpdatePre()

onUpdatePost()

Update

Result

Figure 4.6: The onUpdatePre method is invoked before the root container is even made
aware of this event. Hence, any modifications to the user-data structure is—seen from the
root—the same as if the “real” user had made similar changes. When the onUpdatePost
event is invoked, the root is done and will not be notified about any changes to the
user-data. Which is why is doesn’t work to modify user-data in the “Post”-method.

it makes sense to alter the user-data in a “Pre”-script but not in a “Post”-script: the
onUpdatePre is executed before any of the event-scripts in the root. Therefore, modifying
user-data in the onUpdatePre of the Ext1 implies that the user-data—as seen from the
root—is seen as having the values that resulted from the modifications made to the
user-data in Ext1. The root doesn’t know (or care!) whether the user-data was modified
by the actual end-user or programmatically by some preceding container contribution. It

c©Deltek Inc. 2013–2019, All Rights Reserved 89 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

will react identically. Hence, updating the user-data in Ext1, corresponds to emulating
that the user did the same update.

Also, it is very important to understand why it doesn’t work to update the user-data in
the onUpdatePost script in Ext1. As you can see from the figure, the root has already
been run, and will not be invoked again! It corresponds giving your son an old note
reading “Buy salt, please,” and then—when he returns with the salt—take the note and
change “salt" into “pepper,” expecting him to have bought pepper. Just like your son
has no chance of figuring out that you really wanted, the root contribution will have no
chance of reacting to user-data-modifications done in the “Post”-script.

In order to make it possible to modify the values of the user-data, the MiUserData type
extends an interface called MiValueAdmission . The MiValueAdmission interface is an
extension of the interface MiValueInspector, and therefore allows to to efficiently look
up field values of different types. In addition, it allows you to change the values in an
efficient way as well, i.e., by allowing you to give values using standard Java types. The
section below, dealing with result-data, will explain this in more detail.

Listing 4.5 shows an example involving user data. In the example, if a field called
HundredsNumberOf is changed, we wish to emulate that the user has changed the field
NumberOf to one hundred times that value. Also, in case either the field LocationName
or the field EntityName is changed, some logic is performed.

Listing 4.5: Checking and Modifying User-Data
2 final MiUserData userData = eventData.getUserData ();
3

4 if (userData.changed("HundredsNumberOf")) {
5 userData.setReal("NumberOf",
6 userData.getReal("HundredsNumberOf").

multiply(new BigDecimal("100")));
7 }
8

9 if (userData.changed("LocationName")
10 || userData.changed("EntityName")) {
11 doSomething ();
12 }

Working with Result Data

Above, we have seen how to access the original data and the user-data. However, we
haven’t yet seen how we can actually affect the result value. For this purpose, the
eventData parameter gives access to the result data. The only event that does not give
access to the result data is the Delete-event, as it makes no sense to update the value of
a record that is going to be deleted anyway.

The result-data is made available to the programmer via the eventData parameter
through the getResultData method. By modifying the values of the result data, you

Version 1.4.021, software version 2.5.0 (21.0.sp100) 90 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

communicate to the framework what the field-values of the event record are as an effect
of running the event in question. There are some very important things to notice related
to this:

• You must only change the values of fields and variables that are declared in the
domestic specification of your container contribution! You have no business setting
the result values of fields that are not domestic to your extension!

• The Extension Framework will, if required, automatically persist the values that
need to be persisted. The framework will do so when it sees fit. Hence, setting the
value of field myField to 4 and then setting it to 2 immediately after, will not lead
to two updates in the underlying database. When your logic is done, the framework
will persist your fields for you! Hence, you should not manage persisting of values
yourself.

• You are allowed to modify the value of any domestic field or variable. It does not
matter whether the field is declared as being “open” or not. Since your extension
contribution has declared the fields or variables, your extension contribution has
full right (and responsibility) of setting the fields/variables to whatever value you
want.

Some default-behavior related to the result-data of the domestic fields is implemented
automatically by the Extension Framework:

• By default, the result-data will be set to the original values, if they exist. For
Read events, the record will be read using the persistence strategy instead. For
Initialize events, all fields will be blanked using the “empty”/“zero” value for
the corresponding type.

• In addition, in case of the presence of user-data (see above), the user-data values
will be accepted as result-data.

• If the user-data contains a modification to a field value that has been declared as
“closed,” an exception will be thrown. Therefore, you are not allowed to program-
matically modify the user-data of closed fields belonging to other contributions!

• The above will be done prior to your logic being invoked (i.e., the “Pre”-script in
case of a container-extension contribution, and the event script in case of a root
contribution.)

• For data-models used with root containers, and for data-models extending the
McAbstractPersistingExtendedDataModel class, the result values for the do-
mestic fields will automatically be persisted or deleted if needed. This will happen
after the execution of the “Post” method (or after the execution of the event method
for roots.)

This means that if you just wanted to provide an interface to some database fields
(applying no logic at all), you don’t need to program anything in the data-model, except

c©Deltek Inc. 2013–2019, All Rights Reserved 91 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

defining the domestic spec and the persistence strategy to be used. The rest will happen
automatically.

It is very important to understand why you must only make changes to fields that
are domestic to your contribution! The first thing you must know is that the result-
data abstraction is introduced by the data-models. The data-models are introduced at
each contribution level, so the result-data structure is not passed on between extension
contributions. While you may modify the result-data of your own domestic fields and
variables in the “Pre”-script, this only means that these will automatically be suggested
as result-values by the Extension Framework when the “Post”-script is invoked. So, every
time a “Post” event-script is invoked, the Extension Framework will ensure that the
domestic values at that level are assigned whatever value they had when the “Pre”-script
terminated. Obviously, it is possible to make further modifications to the result data in
the “Post”-script. So, why can’t you just make changes to fields belonging to following
contributions, e.g., the root? As explained in Listing 4.6, the main reason is that once
the “Post” method of a container contribution is invoked, the following contributions are
completed, and will not be invoked again. Hence, they will even have the possibility of
persisting the fields. Also, remember that the way to request a value change of some field
is to emulate a user-edit by modifying user-data. Hence, the result data can and must
only be used to set the value of domestic fields! If this was not the case, data-integrity
could be severely damaged. Imagine that you introduce two fields, and imagine that it
is vital to your logic that these two fields relate to each other in a certain way. Then,
if other extensions could just change your fields behind your back, your logic would be
ruined.

At present, it is technically possible to assign values to result-data for fields belonging
to other contributions. In the future, this may result in a run-time error. In any case,
presently, it has no other effect that that the data eventually being presented to the
end-user is wrong, and will likely lead to a “data change by another user” error the next
time the user tries to do anything. The lesson is: only modify result-data of fields and
variables that are introduced by the current container contribution!

As with the original data, field values are implemented using sub-types of the generic
McDataValue method. As already explained, working with these values is often quite te-
dious. Often, you would much rather work with standard Java types. Since the result-data
has the type MiDataValues , which is an extension of the general MiValueAdmission
type, a number of methods are available to make this easily done. All the getType -
methods listed in the orignal-data section are also available on the result-data object.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 92 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
setAmount Sets the value of some field of type Amount. If the field does

not have this type, an exception is thrown. If the field does
not already exist, it is added to the underlying record-value.
This method comes in a number of flavours: the value argu-
ment can be of a number of different formats:
BigDecimal which should be considered the pre-

ferred Java-type for representing amounts. See
http://docs.oracle.com/javase/7/docs/api/
java/math/BigDecimal.html for more documenta-
tion on this type.

int which allows you to conveniently write code such as
resultData.setAmount("CostPrice", 0)

double which allows you to conveniently write code such
as resultData.setAmount("CostPrice", 100.50).
For internal calculations you are strongly encouraged
to use BigDecimal.

McAmountDataValue allowing you to assign the value
to values obtained from other framework-related
data without having to convert from and to
McAmountDataValues. For example,
resultData.setAmount("Cost",

emp.getAmountVal("Cost"))

setBool Sets the value of some field of type Boolean. If the field does
not have this type, an exception is thrown. If the field does
not already exist, it is added to the underlying record-value.
This method comes in a couple of flavours: the value argu-
ment can be of a number of different formats:
boolean which is the natural Java type to use with boolean

logic.
McBooleanDataValue allowing you to assign the value

to values obtained from other framework-related
data without having to convert from and to
McBooleanDataValues. For example,
resultData.setBool("Blocked",

job.getBoolVal("Blocked"))

c©Deltek Inc. 2013–2019, All Rights Reserved 93 Version 1.4.021, software version 2.5.0 (21.0.sp100)

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

4.3. IMPLEMENTING DATA-CARRYING EVENTS

Method Remarks
setDate Sets the value of some field of type Date. If the field does

not have this type, an exception is thrown. If the field does
not already exist, it is added to the underlying record-value.
This method comes in a number of flavours: the value argu-
ment can be of a number of different formats:
GregorianCalendar which is considered the preferred type

for working with date-related information.
int, int, int which makes it possible to conveniently spec-

ify a date by providing the year, moth and day, such
as: setDate("EndDate", 2013, 12, 31)

McDateDataValue allowing you to assign the value to values
obtained from other framework-related data without
having to convert from and to McDateDataValues. For
example,
resultData.setDate("StartDate",

job.getDateVal("StartDate"))

setInt Sets the value of some field of type Integer. If the field does
not have this type, an exception is thrown. If the field does
not already exist, it is added to the underlying record-value.
This method comes in a couple of flavours: the value argu-
ment can be of a number of different formats:
int which is the natural Java type to use for integer values.
McIntegerDataValue allowing you to assign the value

to values obtained from other framework-related
data without having to convert from and to
McIntegerDataValues. For example,
resultData.setInt("Duration",

calLine.getIntVal("Duration"))

Version 1.4.021, software version 2.5.0 (21.0.sp100) 94 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
setPopup Sets the value of some field of type Popup. If the field does

not have this type, an exception is thrown. If the field does
not already exist, it is added to the underlying record-value.
This method comes in a couple of flavours: the value argu-
ment can be of a number of different formats:
McPopupDataValue This variant allows you to reassign the

value to values obtained from other framework-related
data without having to convert. This is the only form
to provide all information (e.g., ordinal value as well as
literal value) related to a popup value. This should be
done with result-data! You can construct such values
by using the McPopup utility class which provides a
number of factory methods for producing values of type
McPopupDataValue.

MiKey, MiKey This variant allows you to set a popup value
of a specified type and a specified literal value. You
should not use this to assign values to result-data,
because the ordinal value is not resolved! You may
use this variant to set values in user-data, since the
Maconomy root implementation can resolve the ordinal
values if missing.

String, String This variant is similar to the variant above,
except that it allows you to specify the type name and
literal value using Strings for convenience.

c©Deltek Inc. 2013–2019, All Rights Reserved 95 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

Method Remarks
setReal Sets the value of some field of type Real. If the field does

not have this type, an exception is thrown. If the field does
not already exist, it is added to the underlying record-value.
This method comes in a number of flavours: the value argu-
ment can be of a number of different formats:
BigDecimal which should be considered the pre-

ferred Java-type for representing reals. See
http://docs.oracle.com/javase/7/docs/api/
java/math/BigDecimal.html for more documenta-
tion on this type.

int which allows you to conveniently write code such as
resultData.setReal("NumberOf", 0)

double which allows you to conveniently write code such
as resultData.setReal("NumberOf", 100.2). For
internal calculations you are strongly encouraged to
use BigDecimal.

McRealDataValue allowing you to assign the value to values
obtained from other framework-related data without
having to convert from and to McRealDataValues. For
example,
resultData.setReal("NumberOf",

entry.getRealVal("NumberOf"))

Version 1.4.021, software version 2.5.0 (21.0.sp100) 96 c©Deltek Inc. 2013–2019, All Rights Reserved

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

CHAPTER 4. CONTAINER EVENTS

Method Remarks
setStr Sets the value of some field of type String, possibly trun-

cating the input. If the field does not have this type, an
exception is thrown. If the field does not already exist, it is
added to the underlying record-value.
This method comes in a number of flavours: the value argu-
ment can be of a number of different formats:
String which is the natural Java-type for representing

strings. The string will be truncated to 255 bytes, if
it is longer than that! Hence, the abbreviated form:
setStr (which truncates the term “String.”

String, int which is similar to the variant above, except
that the integer argument specifies the number of bytes
the value may contain before truncating.

McStringDataValue allowing you to assign the value
to values obtained from other framework-related
data without having to convert from and to
McStringDataValues. For example,
resultData.setStr("Name",

emp.getStr("Name1"))
The maximum length is that specified by the argument
value.

setString Sets the value of some field of type String, without truncat-
ing the input. If the field does not have this type, an exception
is thrown. If the field does not already exist, it is added to
the underlying record-value. Hence, this method is very sim-
ilar to setStr above, except that the non-abbreviated name,
setString indicates that “long strings” are supported, i.e.,
with to truncation.

c©Deltek Inc. 2013–2019, All Rights Reserved 97 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.3. IMPLEMENTING DATA-CARRYING EVENTS

Method Remarks
setTime Sets the value of some field of type Time. If the field does

not have this type, an exception is thrown. If the field does
not already exist, it is added to the underlying record-value.
This method comes in a number of flavours: the value argu-
ment can be of a number of different formats:
GregorianCalendar which is considered the preferred type

for working with time-related information.
int, int, int which makes it possible to conveniently spec-

ify a time by providing the hour, minute and second,
such as: setDate("CheckIn", 13, 00, 00). Notice
that the hour-part is 24-hour based, so 0 is midnight
and 12 is noon.

McTimeDataValue allowing you to assign the value to values
obtained from other framework-related data without
having to convert from and to McTimeDataValues. For
example,
resultData.setTime("CheckIn",

ts.getTimeVal("TimeCheckedInDay1"))

setAll This method takes a MiValueInspector and for each
comprised value, sets the corresponding value in this
record. So, if you have built a sub-record with values,
you can set these as values in the result data by doing:
resultData.setAll(subRecord).

setVal Sets the value of some field to the value of a generic
McDataValue. This method comes in a couple of flavours:
MiOpt<McDataValue> if the optional data-value is defined,

this specified field will get the defined value. If the
optional data-value is undefined (i.e., is a None value,)
this method does nothing and leaves the value of the
field unchanged.

McDataValue Changes the value of the field to one provided
in the argument. There is no check that the provided
value is really a sensible value!

getValues Returns this record as an MiRecordValues type. Modifying
the elements on the returned value will also modify this
(the current object.)

asDataValues Returns this record as an MiDataValues type. Modifying
the elements on the returned value will also modify this
(the current object.)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 98 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
asKeyValues Returns this record as an MiKeyValues type. Modifying the

elements on the returned value will also modify this (the
current object.)

asUnmodifiable Returns this record through an object that will throw a run-
time exception if an update of the values is attempted. Any
changes to this (the current object) will be reflected by the
returned object, though.

Listing 4.6 shows an example where result-data is modified. Two things are done: an
amount field called ThirdOfTotal is set to 1

3 of the value of the field Total. Also, a field
called NumberOfDays is set to the number of days between two dates represented by the
fields MyStart and MyEnd.

Listing 4.6: Modifying Result Data
2 final MiDataValues resultData = eventData.getResultData ();
3

4 final MathContext MATH_CONTEXT = new MathContext (12,
RoundingMode.HALF_UP);

5 resultData.setAmount("ThirdOfTotal",
6 resultData.getReal("Total").divide(new

BigDecimal("3"), MATH_CONTEXT));
7

8 if (! resultData.getDateVal("MyStart").isNull ()
9 && !resultData.getDateVal("MyEnd").isNull ()) {

10 final int numberOfDays =
11 (int)((resultData.getDate("MyEnd").getTimeInMillis ()
12 - resultData.getDate("MyStart").getTimeInMillis ())
13 / 86400000L); // mi l i−s e conds per day
14 resultData.setInt("NumberOfDays", numberOfDays);
15 } else {
16 resultData.setInt("NumberOfDays", 0);
17 }

4.4 Implementing Initialize Events
In this section, we shall have a closer look at Initialize events. The Initialize
event is a data-carrying event, and consequently has a “Pre”- and a “Post”-event script:
onInitializePre and onInitializePost . When you make a root container and use
a data model, the data model offers you the possibility to implement a method called
onInitialize . In general, the event life-cycle for the Initialize event follows the
same pattern as shown for general data-carrying events. Figure 4.7 shows this.

If your container has the ability to create new records, it must be prepared to handle the
following two events: Initialize and Create. The reason for this is that “creating” a

c©Deltek Inc. 2013–2019, All Rights Reserved 99 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.4. IMPLEMENTING INITIALIZE EVENTS

Container

Ext1onInitializePre()

onInitializePost() RootonInitializePre()

onInitializePost()

Initialize

Result

DatamodelExt1

onInitializePre()

onInitializePost()

DatamodelRoot
onInitialize()

Figure 4.7: The life-cycle for the Initialize event implemented using data-
models. For a root contribution, the onInitialize method is invoked from the
container’s onInitializePost method. For extensions, the onInitializePre and
onInitializePost methods invoke similarly named methods in the data model.

new record is a two-step process:

1. The user runs an action which is typically labeled something like “New Entity” (for
card panes/wizards,) “Insert Entity” or “Add Entity” (for table panes.) When one
of these actions are invoked, a template record is presented to the end-user. The
presented template-record is the result of the Initialize event!

2. The user can optionally edit fields from this record and if the creating of the record
is really desired, the “Save Entity” action can be run. This event is the Create
event which will be covered later.

As shown in Table 4.10, the event-data object given to a data model’s onInitializePre,
onInitializePost or onInitialize methods only provides access to result data. Pro-
viding information about original data makes no sense: the record to be created might
even be the very first record ever.

Typically, a template record merely presents “empty” or “zero” fields. By default, the
Extension Framework will populate all fields with such values. You are free to change
one or more of the field values. For example, you may wish to provide the employee
number related to the current user, today’s date or something similar.

4.4.1 Automatic Management of Line Positions

For root containers, the Extension Framework can be asked to automatically manage
the ordering of lines. This feature is known under several names such as “Line-Number
Control” and “Auto-Position.” Let us start out by looking at an example. Suppose you
want to create a container that can be used to list a number of personal development
activities (PDA) for a given employee. This would be modeled by a card/table container
displaying employee information in the card and containing PDA entries for that employee

Version 1.4.021, software version 2.5.0 (21.0.sp100) 100 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

in the table part. When entering the PDA’s you want the users to add and insert each
line just where they want. It means that it should be possible to insert and add lines,
and you would like the users to be able to move the lines after creation. Thereby, the
order is only known by the user. This kind of container is found many places in the core
Maconomy application. Examples include maconomy:TimeSheets, maconomy:JobBudets,
maconomy:PurchaseOrders and many more. The way this is achieved in the Maconomy
application is to let each record contain a field that denotes the position of that record
in its “natural” context. This field is an Integer-typed field, by convention called
LineNumber. When an initialize event happens, meta-data tells whether the line should
be inserted before some other line (and if so, which line), or appended at the end. A set
of records could look like:

EmpNo LineNumber Description Completed InstanceKey
11221 1 PRINCE2 false IK00001
11221 2 Extend Customer Net-

work
false IK00002

11221 3 Improve Communica-
tion Skills

false IK00003

The field LineNumber indicates the preferred display order7. Now suppose that the user
wants to insert a new line between the current line 1 and 2. The desired outcome, once
that record is eventually created is the following:

EmpNo LineNumber Description Completed InstanceKey
11221 1 PRINCE2 false IK00001
11221 2 Turning Conflicts into

Opportunities
false IK00004

11221 3 Extend Customer Net-
work

false IK00002

11221 4 Improve Communica-
tion Skills

false IK00003

Notice that the lines with Instance Keys “IK00002” and “IK00003” have had the line
number changed: when the inserted line was inserted in the table, this must happen
in order to maintain the ordering defined by the end-user. Correspondingly, if a line is
deleted, subsequent lines need to have their line number decreased.

The Extension Framework offers automatic support for this kind of behavior. This is
done by letting your table data-model extend one of the abstract classes

• McAbstractAutoPositionRootDataModel which enables automatic management
of auto-position field (e.g., LineNumber.) The actual field to use for this purpose is

7The end-user can always change the presentation sorting in the client

c©Deltek Inc. 2013–2019, All Rights Reserved 101 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.4. IMPLEMENTING INITIALIZE EVENTS

specified by the domestic spec in the method defineDomesticSpec .

• McAbstractTreeStructuredRootDataModel which additionally enables tree-struc-
tured data and management thereof.

The latter will add the capability of visualizing data in tree-structures. If you do so,
the framework will automatically override the value of the field used to denote the
“auto-position.” In the example above, the LineNumber field. This happens after the call
to the onInitialize event method. No renumbering of the auto-position field will take
place until the Create event is executed. This will all be taken care of by the framework.
Consequently you don’t need to manage re-numbering the auto-position field manually.
So, by extending the proper abstract data-model, the framework will do this for you. You
don’t need to initialize the value of the auto-position field in the onInitialize method:
that value will be overridden by the framework.

Listing 4.7 shows an example implementation of a root data-model that handles auto-
position. The example shows the implementation of the onInitialize method as well
as the methods definePersistenceStrategy (which declares that data should be
persisted in a custom table) and defineDomesticSpec which defines which fields are
present, the auto-position field and the auto-position context. The context is necessary
in order to maintain the line numbers. Here, the auto-position context is specified as a
singleton set: {EmpNo}. This implies that the numbering sequence of LineNumber will
be maintained for all collections having the same value in the field EmpNo. It is possible
to specify several fields as auto-position context fields.

Listing 4.7: Implementing an Initialize event.
2 private final static MiKey ENTITY_NAME = key("TRI_PDATable");
3 private final static MiKey FIELD_LINENUMBER = key("LineNumber");
4 private final static MiKey FIELD_EMP_NO = key("EmpNo");
5 private final static MiKey FIELD_DESCRIPTION = key("Description"

);
6 private final static MiKey FIELD_COMPLETED = key("Completed");
7 private final static MiKey FIELD_INSTANCEKEY = key("InstanceKey"

);
8

9 /∗∗
10 ∗ De f i n e s t h e t h e f i e l d s i n t r o du c e d by t h i s pane .
11 ∗ Also , t h e pane i s d e c l a r e d as an auto−p o s i t i o n pane .
12 ∗ The f i e l d LineNumber i s s p e c i f i e d as t h e auto−p o s i t i o n f i e l d .
13 ∗ The f i e l d EmpNo i s s p e c i f i e d as t h e auto−p o s i t i o n " c o n t e x t " .
14 ∗/
15 @Override
16 public MiRoot defineDomesticSpec(final MiDefine containerRunner)

{
17 return McPaneSpec.McRoot.autoPositionPane(
18 text("Personal Development Actions"),
19 ENTITY_NAME ,

Version 1.4.021, software version 2.5.0 (21.0.sp100) 102 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

20 text("Personal Development Action"),
21 // LineNumber i s t h e auto−p o s i t i o n f i e l d
22 FIELD_LINENUMBER)
23

24 // Employee No . i s d e c l a r e d as auto−p o s i t i o n c o n t e x t
25 .addStringField(FIELD_EMP_NO , "Employee No.").autoPosContext

().open().then()
26 .addIntegerField(FIELD_LINENUMBER , "Line No.").then()
27 .addStringField(FIELD_DESCRIPTION , "Description").open().

mandatory ().then()
28 .addBooleanField(FIELD_COMPLETED , "Completed").open().then()
29 .addStringField(FIELD_INSTANCEKEY , "Instance Key").key()
30 .end();
31 }
32

33 /∗∗
34 ∗ Se t s t h e v a l u e o f i n i t i a l i z e d r e c o r d s .
35 ∗ Here we s e t a t emp l a t e d e s c r i p t i o n and a
36 ∗ v a l u e f o r t h e key f i e l d .
37 ∗/
38 @Override
39 public void onInitialize(final MiInitializePost containerRunner ,
40 final MiInitialize eventData) throws

Exception {
41 final MiDataValues resultData = eventData.getResultData ();
42 final MiValueInspector cardData = eventData.getContext ().

getPaneData ().get().getResultData ().get();
43

44 resultData.setVal(FIELD_EMP_NO , cardData.getVal("
EmployeeNumber"))

45 .setStr(FIELD_DESCRIPTION , "Enter the description")
46 .setStr(FIELD_INSTANCEKEY , getGloballyUniqueKey ());
47 }

4.5 Implementing Create Events

In this section, we shall have a closer look at Create events. The Create event is a data-
carrying event, and consequently has a “Pre”- and a “Post”-event script: onCreatePre
and onCreatePost . When data-models are being used8, the logic related to Create is
implemented by two kinds of event-scripts:

• A “change” script, which is meant to contain all logic that is common for Create
and Update events, i.e., all events that involves some kind of user-change. Very
often, the core logic of these evens are identical. For example, suppose you have a
field for which the content should be an employee number. Hence, if it is filled out,

8Which you should always do

c©Deltek Inc. 2013–2019, All Rights Reserved 103 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.5. IMPLEMENTING CREATE EVENTS

it must be identical to an existing employee number. This employee number may
be entered during creation or during updating. The code validating this, however,
is identical for both cases. Likewise, if you have three fields: Quantity, UnitPrice
and TotalPrice, the user may enter the value of the these fields during creation
or during updating. The code to ensure that they all relate correctly to each other,
i.e., that Quantity× UnitPrice = TotalPrice, is identical for both cases.

• A “create” script, which is meant to contain logic pertaining exclusively to the
creation step. For example, it might be the case, that upon creating a record, you
need to derive information that should not be re-derived for every update. You can
implement such logic in this script.

Hence, for root contributions, you can implement two methods: onChange and onCreate .
onChange will be invoked by the framework and immediately followed by an invocation
of onCreate. For extension contributions, the onCreatePre of the container will first
invoke onChangePre immediately followed by an invocation of onCreatePre in the
data model. Similarly, the onCreatePost method of the container will first invoke
onChangePost immediately followed by onCreatePost in the data model.

In general, the event life-cycle for the Create event follows the same pattern as shown
for general data-carrying events. Figure 4.8 shows this.

Container

Ext1
onCreatePre()

onCreatePost() RootonCreatePre()

onCreatePost()

Create

Result

DatamodelExt1

onChangePre()
onCreatePre()

onChangePost()
onCreatePost()

DatamodelRoot
onChange()
onCreate()

Figure 4.8: The life-cycle for the Create event implemented using data-models. For
a root contribution, the methods onChange followed by onCreate method are invoked
from the container’s onCreatePost method. For extensions, the onCreatePre invokes
the onChangePre followed by onCreatePre in the data model. onCreatePost methods
invoke the onChangePost followed by onCreatePost in the data model.

As pointed out in Section 4.4, the Create event is the second phase of the “Creation
life cycle.” The first phase, the Initialize event, provides a template record which
the end user may edit before it is eventually persisted. Once the user has edited the
record, and the “Save” action is run, a Create event takes place. For this reason, the
Create event-data gives access to: original data (the template record created by the
Initialize event), user-data (because the user may have edited some of the fields) and

Version 1.4.021, software version 2.5.0 (21.0.sp100) 104 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

the result-data (because a resulting record needs to be made and the result presented to
the end-user.)

Suppose we are building on top of the example given in Listing 4.7. In this example, we
implemented an Initialize event. The corresponding Create event implementation is
shown in Listing 4.8.

Obviously, when a record is created, it needs to be persisted. Typically, data is persisted
in a database table. It is important to notice, that the Extension Framework will auto-
matically persist the data to be created. You should not do this manually! The framework
knows how to persist the data by invoking the method definePersistenceStrategy .
By implementing this method, you declare how to persist and fetch data, e.g., by persist-
ing data in a specific database table. In the example given in Listing 4.8, this method
declares that data should be persisted in the MOL table TRI_PDATable in the Maconomy
database. This is all declared in one statement (lines 34–35), and that’s all you need to
do with regards to persistence! The databaseApi is an instance variable initialized in
the constructor of the data-model. This will be covered later.

Listing 4.8: Implementing a Create event.
1 /// exampleCreate -start
2 /∗∗
3 ∗ Do l o g i c p e r t a i n i n g s p e c i f i c a l l y t o " Crea te " .
4 ∗ Check t h a t t h e De s c r i p t i o n f i e l d was changed by t h e
5 ∗ use r (we don ’ t a l l ow t h e d e f a u l t t emp l a t e t e x t
6 ∗ p r o v i d e d by t h e o n I n i t i a l i z e s c r i p t) .
7 ∗/
8 @Override
9 public void onCreate(final MiCreatePost containerRunner ,

10 final MiCreate eventData) throws Exception
{

11 final MiUserData userData = eventData.getUserData ();
12 containerRunner.check(userData.changed(FIELD_DESCRIPTION))
13 .error("You must specify a description");
14 }
15

16 /∗∗
17 ∗ Here we can p l a c e any l o g i c which i s common f o r Crea te and
18 ∗ Update e v e n t s .
19 ∗/
20 @Override
21 public void onChange(final MiChange containerRunner ,
22 final MiUserChange eventData) throws

Exception {
23 // l o g i c common to Crea te and Update
24 }
25

26 /∗∗
27 ∗ De f i n e s t h e p e r s i s t e n c e s t r a t e g y t o use w i t h t h i s data−model .

c©Deltek Inc. 2013–2019, All Rights Reserved 105 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.6. IMPLEMENTING UPDATE EVENTS

28 ∗ Data i s s t o r e d in t h e custom t a b l e
29 ∗ TRI_PDATable
30 ∗ in t h e Maconomy da t a b a s e .
31 ∗/
32 @Override
33 public MiAutoPositionPersistenceStrategy

definePersistenceStrategy(final MiContainerRunner.MiDefine
containerRunner) {

34 return McMolAutoPositionablePersistenceStrategy
35 .create(ENTITY_NAME , FIELD_LINENUMBER , getApiProvider ());
36 }
37 /// exampleCreate -end

4.6 Implementing Update Events

In this section, we shall have a closer look at Update events. The Update event is a data-
carrying event, and consequently has a “Pre”- and a “Post”-event script: onUpdatePre

and onUpdatePost . When data-models are being used, the logic related to Update is
implemented by two kinds of event-scripts: a “change” script and an “update” script.
This is similar to Create events (see Section 4.5.)

Hence, for root contributions, you can implement two methods: onChange and onUpdate .
onChange will be invoked by the framework and immediately followed by an invocation
of onUpdate. For extension contributions, the onUpdatePre of the container will first
invoke onChangePre immediately followed by an invocation of onUpdatePre in the
data model. Similarly, the onUpdatePost method of the container will first invoke
onChangePost immediately followed by onUpdatePost in the data model.

In general, the event life-cycle for the Update event follows the same pattern as shown
for general data-carrying events. Figure 4.9 shows this.

So, exactly when does an Update event occur? It happens when the user edits data
that already exists (i.e., not a template record as offered by the Initialize event, see
Section 4.4.) The usual case would be that the user looks up some record, changes one
or more fields, and presses the “Save” button.

However, in some cases, the Update event may occur implicitly. This happens in cases
where the user edits fields of a record and then does one of the following things:

• Starts typing in some other pane. The workspace client will in this case ask the
user whether data should be saved or not. If the user opts to save the data, an
update event takes place.

• Switches to a tab that will imply that the pane being edited is hidden. Again, the
workspace client will prompt the user whether the changes should be saved or not.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 106 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Container

Ext1
onUpdatePre()

onUpdatePost() RootonUpdatePre()

onUpdatePost()

Update

Result

DatamodelExt1

onChangePre()
onUpdatePre()

onChangePost()
onUpdatePost()

DatamodelRoot
onChange()
onUpdate()

Figure 4.9: The life-cycle for the Update event implemented using data-models. For
a root contribution, the methods onChange followed by onUpdate method are invoked
from the container’s onUpdatePost method. For extensions, the onUpdatePre invokes
the onChangePre followed by onUpdatePre in the data model. onUpdatePost methods
invoke the onChangePost followed by onUpdatePost in the data model.

• Closes the client. Again the workspace client will ask the user whether the data
should be saved.

• The user runs an action in the pane being edited. In this case, the workspace client
does not ask the user whether data should be saved: that will be done implicitly.
Once the update has been successfully completed, the selected action will be run
on the result of the Update event. Notice that wizards with editable fields will be
treated in this way as well9.

Especially the last case is important to understand: it implies that when an action is
run, the action-event never has knowledge about the data that was updated “at the
same time” (or so the user may believe.) Similarly, the Update event will not know that
an Action event will be executed afterwards. Such two events are always completely
de-coupled, and the logic around them must work without any assumptions regarding
this.

Obviously, when a record is updated, the updated record needs to be persisted, typically
in a database table. It is important to notice, that the Extension Framework will
automatically persist the data being updated. You should not do this manually! As
explained for Create events (see Section 4.5,) the framework knows how to persist the
data by invoking the method definePersistenceStrategy .

Listing 4.9 shows an example of an extension to the TimeSheets container. The extension
adds two editable fields

Trifolium:Locked which is a boolean field meant to indicate that a specific time sheet
line must not be deleted.

9Except for Create-wizards which will result in a Create event as expected.

c©Deltek Inc. 2013–2019, All Rights Reserved 107 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.6. IMPLEMENTING UPDATE EVENTS

Trifolium:DefaultHours which is a real field. When the user changes the value of that
field, the entered value is automatically set for all of the days of this time sheet
line. Unless the user—at the same time—changed such a value. So, for example, if
the user enters the following values

Trifolium:DefaultHours = 4, NumberDay2 = 1

This should correspond to entering “4” for all days except Tuesday (day 2) where
the value is “1.” Once entered, the DefaultHours should be reset, allowing the
user to change it again.

The listed code does basically three things:

1. The existence of the new fields is declared. This happens in lines 14–19 in the
method defineDomesticSpec .

2. It is declared that the new fields should be persisted using a database table called
TRI_TimeSheetLine by implementing definePersistenceStrategy . In this case,
the method is a one-liner (line 29.) This allows the framework to automatically
handle persistence of the new fields.

3. The actual business logic pertaining to editing the DefaultHours field is imple-
mented using the method onChangePre in lines 40–66.

Using the onChangePre rather than onUpdatePre means that the same logic will
be applied to Create events.

The onChangePre method calls the private method resolveHours which does
something interesting in line 74: here the user-data is modified on behalf of the
user. This is possible because the code is run in the “Pre” phase. Doing the same
thing in the “Post” phase would not work, as explained in Section 4.3.

Notice that the code does nothing about the value of the field Locked. Since the field is
declared as open, it can be edited by the end-user. The framework automatically persists
the value entered by the user, since there is no logic changing the value of the field, and
since user-input is by default accepted as the result-value.

Listing 4.9: Implementing an Update event.
2 private final static MiKey ENTITY_NAME = key("TRI_TimeSheetLine"

);
3 private final static MiKey FIELD_LOCKED = NS("Locked");
4 private final static MiKey FIELD_DEFAULT_HOURS = NS("

DefaultHours");
5

6 /∗∗
7 ∗ Add two f i e l d s :
8 ∗ Locked (b o o l) : t h e l i n e cannot be d e l e t e d wh i l e l o c k e d
9 ∗ Defau l tHour s (r e a l) : e d i t i n g t h i s f i e l d w i l l s e t t h i s

10 ∗ number o f hours f o r a l l days t h a t are not e d i t e d a t

Version 1.4.021, software version 2.5.0 (21.0.sp100) 108 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

11 ∗ t h e same t ime by t h e u s e r .
12 ∗/
13 @Override
14 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
15 return McPaneSpec.McExtended.pane()
16 .addBooleanField(FIELD_LOCKED , "Lock Line").open().then()
17 .addRealField(FIELD_DEFAULT_HOURS , "Default Hrs.").open()
18 .end();
19 }
20

21 /∗∗
22 ∗ De f i n e s t h e p e r s i s t e n c e s t r a t e g y t o use w i t h t h i s data−model .
23 ∗ Data i s s t o r e d in t h e custom t a b l e
24 ∗ TRI_TimeSheetLine
25 ∗ in t h e Maconomy da t a b a s e .
26 ∗/
27 @Override
28 public MiPersistenceStrategy definePersistenceStrategy(final

MiContainerRunner.MiDefine containerRunner) {
29 return McMolPersistenceStrategy.create(ENTITY_NAME ,

getApiProvider ());
30 }
31

32 /∗∗
33 ∗ Used f o r bo t h Update and Crea te !
34 ∗ I f t h e u s e r changes t h e f i e l d " De fau l tHour s " , t h a t
35 ∗ v a l u e i s t r a n s f e r r e d t o any quan t i t y−day f i e l d
36 ∗ t h a t t h e u s e r has not e d i t e d a t t h e same t ime .
37 ∗ Then t h e De fau l tHour s f i e l d i s r e s e t .
38 ∗/
39 @Override
40 public void onChangePre(final MiChangePre containerRunner ,
41 final MiUserChange eventData) throws

Exception {
42 final MiUserData userData = eventData.getUserData ();
43 final MiDataValues resultData = eventData.getResultData ();
44

45 if (userData.changed(FIELD_DEFAULT_HOURS)) {
46 final BigDecimal defaultHours = userData.getReal(

FIELD_DEFAULT_HOURS);
47

48 // e r r o r i f d e f a u l t hours < 0 , i . e . , check t h a t hours >= 0
49 containerRunner.check(defaultHours.compareTo(BigDecimal.ZERO

) >= 0)
50 .error("Default hours must be positive");
51

52 // On b e h a l f o f t h e user , s e t t h e q u a n t i t y f o r each day t o
53 // t h a t i n d i c a t e d by t h e " d e f a u l t hours " f i e l d .

c©Deltek Inc. 2013–2019, All Rights Reserved 109 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.7. IMPLEMENTING DELETE EVENTS

54 resolveHours(userData , key("QuantityDay1"), defaultHours);
55 resolveHours(userData , key("QuantityDay2"), defaultHours);
56 resolveHours(userData , key("QuantityDay3"), defaultHours);
57 resolveHours(userData , key("QuantityDay4"), defaultHours);
58 resolveHours(userData , key("QuantityDay5"), defaultHours);
59 resolveHours(userData , key("QuantityDay6"), defaultHours);
60 resolveHours(userData , key("QuantityDay7"), defaultHours);
61

62 // Rese t t h e f i e l d such t h a t i t changes back t o z e r o aga in
63 // (t h e f i e l d i s used on l y t o e d i t s e v e r a l f i e l d s by proxy) .
64 resultData.setReal(FIELD_DEFAULT_HOURS , BigDecimal.ZERO);
65 }
66 }
67

68 private void resolveHours(final MiUserData userData ,
69 final MiKey dayQuantityField ,
70 final BigDecimal defaultHours) {
71 // on l y upda te a f i e l d i f i t was unchanged by t h e u s e r ;
72 // o t h e rw i s e , l e t t h e u s e r ’ s own v a l u e win
73 if (userData.unchanged(dayQuantityField)) {
74 userData.setReal(dayQuantityField , defaultHours);
75 }
76 }

4.7 Implementing Delete Events

In this section, we shall have a closer look at Delete events. The Delete event is a data-
carrying event, and consequently has a “Pre”- and a “Post”-event script: onDeletePre
and onDeletePost . When you make a root container and use a data model, the data
model offers you the possibility to implement a method called onDelete , whereas you
may implement onDeletePre and onDeletePost methods for extension data models.
In general, the event life-cycle for the Delete event follows the same pattern as shown
for general data-carrying events. Figure 4.10 shows this.

One thing makes the Delete event slightly different from other data-carrying events:
since the event-record is eventually being deleted, it makes no sense to provide a “result”
value for that record! Consequently, the eventData object does not offer access to any
result data. Only the original data is available.

Also, remember that in the onDeletePost method, all following contributions have
already been executed and will not be invoked again. So, if you extend, say, the macono-
my:TimeSheets container, the Time Sheet Line of the event has already been deleted
when the onDeletePost method is invoked in your data model! Therefore, you will not
be able to look up the corresponding TimeSheetLine in the Maconomy database at this
time. If you have added custom fields to time sheet lines, and these are stored in a custom
table, that custom-table record will not have been deleted when the onDeletePost

Version 1.4.021, software version 2.5.0 (21.0.sp100) 110 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Container

Ext1
onDeletePre()

onDeletePost() RootonDeletePre()

onDeletePost()

Delete

Result

DatamodelExt1

onDeletePre()

onDeletePost()

DatamodelRoot
onDelete()

Figure 4.10: The life-cycle for the Delete event implemented using data-models. For a
root contribution, the onDelete method is invoked from the container’s onDeletePost
method. For extensions, the onDeletePre and onDeletePost methods invoke similarly
named methods in the data model.

method is invoked.

Obviously, the idea about Delete events is that a record should be deleted. You should
not delete the record yourself: the Extension Framework will automatically do this. This
is true for the “main” record. If you have additional related records, that the framework
knows nothing about, you will have to delete these yourself. As explained in Section 4.5,
how a record is deleted is declared by the definePersistenceStrategy method.

If your code determines that for some reason, the deletion cannot be accepted, you
can show an error-message to the end-user. Doing so will automatically roll back the
current transaction. Notice that all contributions in the container are being executed
in the same transaction. So in the example above, even if the root-contribution for
maconomy:TimeSheets (the “core application”) may have already deleted a specific time
sheet line in the database, giving an error in an extension’s onDeletePost-script will
imply that the deletion in the Maconomy-database is being rolled back.

Continuing the example from Listing 4.9, let us show how the logic around deletion would
be implemented. Remember that lines where the custom field Locked has the value true,
must not be deleted. The code is shown in Listing 4.10.

Notice that there is no code that actually deletes any records: this is all automatically
handled by the Extension Framework.

Listing 4.10: Implementing a Delete event.
1 /// deleteExample -start
2 /∗∗
3 ∗ In orde r t o f a i l as q u i c k l y as p o s s i b l e , we implement our
4 ∗ guard in t h e Pre−s c r i p t . The b e h a v i o r would be e x a c t l y
5 ∗ t h e same , i f imp lemented as onDe l e t ePo s t .
6 ∗/

c©Deltek Inc. 2013–2019, All Rights Reserved 111 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.8. IMPLEMENTING ACTION EVENTS

7 @Override
8 public void onDeletePre(final MiDeletePre containerRunner ,
9 final MiDelete eventData) throws

Exception {
10 final MiValueInspector originalData = eventData.

getOriginalData ();
11

12 containerRunner.check (! originalData.getBool("Locked"))
13 .error("The line cannot be deleted");
14 }/// deleteExample -end

4.8 Implementing Action Events
In this section, we shall have a closer look at Action events. The Action event
is a data-carrying event, and consequently has a “Pre”- and a “Post”-event script:
onActionPre and onActionPost . The general life-cycle of Action-events is shown
in Figure 4.11. Compared to other data-carrying events, the Action event is slightly
different because there is really not just one action event. The “Action” event is an entire
class of events. A specific Action event is associated with a name that makes it unique
compared to other Action-events. For example, in the maconomy:TimeSheets dialog,
there are a number of different actions, e.g., SubmitTimeSheet, ApproveTimeSheet and
ReopenTimeSheet. Invoking the SubmitTimeSheet action is quite different from invoking
the ApproveTimeSheet action, and they should not be mixed up! Because there are
infinitely many possible action names, it is not possible to have dedicated event-methods
for each specific action. Instead, invoking some action, will result in a generic Action
event. The event-information, however, informs about the name of the action.

Container

Ext1
onActionPre()

onActionPost() RootonActionPre()

onActionPost()

Action

Result

DatamodelExt1

@Action

onActionPre()

onActionPost()

DatamodelRoot
@Action

onAction()

Figure 4.11: The life-cycle for the Action event implemented using data-models. For a
root contribution, the onAction method is invoked from the container’s onActionPost
method. For extensions, the onActionPre and onActionPost methods invoke similarly
named methods in the data model. Notice that the invoked event methods are not
implemented directly in the data model. Instead they are implemented in @Action-
annotated inner action-handler classes.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 112 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

When using data-models, it has been chosen not to have one generic “onAction” method
that will be invoked for all actions. This more easily leads to errors, and requires the
programmer to have switch on the action name in order to handle the event correctly. It
would be a pity, if invoking the SubmitTimeSheet action accidentally implemented the
ApproveTimeSheet behavior instead!

Instead, it has been decided that each action must have its own dedicated event methods.
This is achieved by using Java inner classes and Java annotations. For each action you
want to contribute to, you must do the following:

Declare an inner class inside the data model class. The class can be a static class or
a non-static class. A non-static class is necessary if the inner class must access
non-static information contained in the data-model class. Otherwise, a static
class should be declared.

This inner class, which we refer to as an action-handler class, must extend one of
the following abstract classes:

McAbstractDataModelExtendedAction if your data model is an extension con-
tribution and the action in question is not declared by your extension.

McAbstractDataModelRootAction if your data model is a root contribution or
the action in question is introduced by your extension.

Annotate the class with an @Action-annotation10, declaring the name of the ac-
tion that is being implemented by that code. If the name of the action is
SubmitTimeSheet, you make an annotation like:

@Action("SubmitTimeSheet")

If the action name is CalculateProfit the annotation would look like:

@Action("CalculateProfit")

Although it is good style to use the same casing all over, the name of an action
is case-insensitive, so the following two annotations are considered the same:
@Action("abc") and @Action("AbC").

It is important to notice that for actions that you don’t want to contribute to, you don’t
have to do anything!

In order to get a better understanding of all of this, let us have an example: suppose
you want to make an extension to the maconomy:TimeSheets container. Your client has
requested that you modify the SubmitTimeSheet action such that if no hours have been
registered, the time sheet can’t be submitted. Also, unless there are more than 2 hours
registered, a warning should be issued upon approval.

10Formally the annotation class: com.maconomy.toolkit.panes.datamodels.Action

c©Deltek Inc. 2013–2019, All Rights Reserved 113 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.8. IMPLEMENTING ACTION EVENTS

So, what do you need to do? Obviously, you aim is to extend an existing container, extend-
ing two existing actions. Since you want to modify the behavior of two different actions,
you need to declare two inner classes and annotate both of them using the @Action an-
notation. Since the actions are not introduced by your extension11, you declare the inner
classes as extensions of the abstract class McAbstractDataModelExtendedAction.

This may seem complicated, but it really isn’t. Listing 4.11 shows the implementation
of an entire data-model class handling the above functionality. There are two inner
classes, each extending McAbstractDataModelExtendedAction. The class implementing
the extended behavior of the SubmitTimeSheet action is found in lines 8–19. The event-
method is found in line 10. By the @Action-annotation in line 7, the framework knows
that this code belongs to the SubmitTimeSheet action.

The other action-handler class, implementing the extension to the ApproveTimeSheet
action, is implemented in lines 22-34. The annotation telling the framework which action
this is meant for is found in line 21. The actual event handling method starts in line
24.

Listing 4.11: Implementing Action events.
2 public class ActionDataModel extends McAbstractExtendedDataModel {
3 public ActionDataModel(final MiDataModelFactory.MiResources

resources) {
4 super(resources);
5 }
6

7 @Action("SubmitTimeSheet")
8 private static final class SubmitTimeSheetHandler extends

McAbstractDataModelExtendedAction {
9 @Override

10 public void onActionPre(final MiActionPre containerRunner ,
11 final MiAction eventData) throws

Exception {
12 final MiValueInspector originalData = eventData.

getOriginalData ();
13

14 final BigDecimal totalTime = originalData.getReal("
TotalNumberOfWeekVar");

15 containerRunner
16 .check(totalTime.compareTo(BigDecimal.ZERO) == 0)
17 .error("Please register time before submitting!");
18 };
19 }
20

21 @Action("ApproveTimeSheet")
22 private static final class ApproveTimeSheetHandler extends

McAbstractDataModelExtendedAction {

11They are introduced by the root contribution in this case.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 114 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

23 @Override
24 public void onActionPre(final MiActionPre containerRunner ,
25 final MiAction eventData) throws

Exception {
26 final MiValueInspector originalData = eventData.

getOriginalData ();
27

28 final BigDecimal totalTime = originalData.getReal("
TotalNumberOfWeekVar");

29 containerRunner
30 .check(totalTime.compareTo(new BigDecimal("2")) <= 0)
31 .warning(String.format("Only %2.1f hours registered",
32 totalTime.doubleValue ()));
33 };
34 }

The annotations help the programmer and the run-time to easily identify the code
implementing an action. As for other data-carrying events, you have the possibility of
implementing a “Pre”-method and/or a “Post”-method.

Sometimes, you may desire to add an entirely new action to a container. Naturally, you
can do nothing else than that when implementing a root contribution. But sometimes,
an extension contribution may invent entirely new actions. Such actions are regarded
as root-level actions, and the framework will automatically ensure that the container in
which the action is added, is treated as the root. An event-flow as shown in Figure 4.12 is
taking place. Notice that contributions following the one in which the action is executed
are not invoked12. There’s a really good reason for this: a contribution following the
introducing one, cannot know anything about the particular action. First of all, it has
not invented it itself. Secondly, it can only rely on behaviors of contributions that it
extends itself. As it is further towards the root than the one introducing the actions,
it cannot know that this actions exists. So what should it do, when asked to execute
some action? Absolutely nothing! For this reason, the Extension Framework treats the
introducing container as the root in this particular case!

It is also important to notice that contributions extending the contribution which in-
troduces an action, will be invoked as usually. Such extensions can know about the
existence of the action, since they extend the contribution that defines it. Again, let
us clarify this by looking at an example. Suppose we want to introduce two actions
in the maconomy:Jobs: one that marks the job as being “Blocked” for time registra-
tions, amount registration, invoicing and budgeting. And another one that similarly
“Unblocks” the job. Thus, we need to introduce two new actions. Since they are in-
troduced by our extension contribution, the action-handler classes must extend the
McAbstractDataModelRootAction . Extending this class let us only implement the
method onAction . Apart from that, there’s really no big difference from extending an

12This is the behavior enforced when using data-models. If you write a container directly using
containers, this behavior is not guaranteed. As usual, you should always use data-models.

c©Deltek Inc. 2013–2019, All Rights Reserved 115 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.8. IMPLEMENTING ACTION EVENTS

Container

Ext1
onActionPre()

onActionPost() RootonActionPre()

onActionPost()

Action

Result

DatamodelExt1

@Action

onAction()

Figure 4.12: The life-cycle for the Action event in the case where the executed action is
introduced in an extension contribution. When such an action is executed, the contribution
that introduces the action is treated as the root for that action-execution.

existing action. Listing 4.12 shows an entire data-model implementation that contributes
two new actions: Trifolium:Block and Trifolium:Unblock. The Trifolium:Block
action (annotated in line 21) is implemented by the inner action-handler class in lines
22–34. Notice the method name onAction in line 24 (not onActionPre or onActionPost)
which does the actual implementation. Also notice that the annotation in 21 references
the constant ACTION_BLOCK_STR which is of type String (as required by Java annota-
tions) and which is also the action name without the name space Trifolium: this name
space is automatically prepended by the Extension Framework: since the action is a root
action contribution it must have the same name space as the one used in the @Namespace
annotation for the data-model class. And therefore it is optional to include the name
space here. We recommend following the pattern of lines 8–9: first we declare the simple
(i.e., non name spaced) name as a String, then we declare the full name of the action as
a MiKey using the NS action. In this way, the name of the action is declared once and it
can be used with the @Action annotation as well as in name-spaced settings.

Similarly, the action Trifolium:Unblock (annotated in line 36) is implemented by the
action-handler class in lines 37–49. Again, the name of the event-method is onAction
which is found in line 39.

Listing 4.12: Implementing Action events for new actions.
2 @Namespace("Trifolium")
3 public class RootActionDataModel extends

McAbstractExtendedDataModel {
4 public RootActionDataModel(final MiDataModelFactory.MiResources

resources) {
5 super(resources);
6 }
7

8 private static final String ACTION_BLOCK_STR = "Block";
9 private static final MiKey ACTION_BLOCK = NS(ACTION_BLOCK_STR);

Version 1.4.021, software version 2.5.0 (21.0.sp100) 116 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

10 private static final String ACTION_UNBLOCK_STR = "Unblock";
11 private static final MiKey ACTION_UNBLOCK = NS(

ACTION_UNBLOCK_STR);
12

13 @Override
14 public MiPaneSpec.MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
15 return McPaneSpec.McExtended.pane()
16 .addAction(ACTION_BLOCK , "Block Job").then()
17 .addAction(ACTION_UNBLOCK , "Unblock Job")
18 .end();
19 };
20

21 @Action(ACTION_BLOCK_STR)
22 private static final class BlockHandler extends

McAbstractDataModelRootAction {
23 @Override
24 public void onAction(final MiActionPost containerRunner ,
25 final MiAction eventData) throws

Exception {
26 final MiContainerExecutor jobs = containerRunner.executor ().

construct ();
27 jobs.update(dataValues ()
28 .setBool("BlockedForTimeRegistrations", true)
29 .setBool("BlockedForInvoicing", true)
30 .setBool("BlockedForBudgeting", true)
31 .setBool("BlockedForAmountRegistrations", true))

;
32 containerRunner.fullRefresh ();
33 }
34 }
35

36 @Action(ACTION_UNBLOCK_STR)
37 private static final class UnBlockHandler extends

McAbstractDataModelRootAction {
38 @Override
39 public void onAction(final MiActionPost containerRunner ,
40 final MiAction eventData) throws

Exception {
41 final MiContainerExecutor jobs = containerRunner.executor ().

construct ();
42 jobs.update(dataValues ()
43 .setBool("BlockedForTimeRegistrations", false)
44 .setBool("BlockedForInvoicing", false)
45 .setBool("BlockedForBudgeting", false)
46 .setBool("BlockedForAmountRegistrations", false)

);
47 containerRunner.fullRefresh ();
48 }

c©Deltek Inc. 2013–2019, All Rights Reserved 117 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.8. IMPLEMENTING ACTION EVENTS

49 }

For the sake of clarity, the shown implementation almost duplicates the code of the
two actions. In a real-life implementation, an abstract class would be made, and the
action-handler for the two classes would extend that class. Listing 4.13 shows this: the
behavior is identical to the one shown above, but here we let our annotated action-handlers
extend a custom class. The annotations are used by the framework to identify the class
implementing the behavior of a given action. As long as this class is a subtype of the right
abstract class, it is of no importance whether it extends the required sub class directly
or by extending some other abstract class. Here, the common behavior is implemented
by the abstract inner class in line 16, whereas the actual action implementations now
merely extend this class, which can be seen in lines 3 and 10.

Listing 4.13: Implementing Action events using an abstract class.
2 @Action(ACTION_BLOCK_STR)
3 private static final class BlockHandler extends AbstractHandler{
4 BlockHandler () {
5 super(true);
6 }
7 }
8

9 @Action(ACTION_UNBLOCK_STR)
10 private static final class UnblockHandler extends

AbstractHandler{
11 UnblockHandler () {
12 super(false);
13 }
14 }
15

16 private static abstract class AbstractHandler extends
McAbstractDataModelRootAction {

17 private final boolean value;
18 AbstractHandler(final boolean blockValue) {
19 this.value = blockValue;
20 }
21 @Override
22 public void onAction(final MiActionPost containerRunner ,
23 final MiAction eventData) throws

Exception {
24 final MiContainerExecutor jobs = containerRunner.executor ().

construct ();
25 jobs.update(dataValues ()
26 .setBool("BlockedForTimeRegistrations", value)
27 .setBool("BlockedForInvoicing", value)
28 .setBool("BlockedForBudgeting", value)
29 .setBool("BlockedForAmountRegistrations", value)

);
30 containerRunner.fullRefresh ();

Version 1.4.021, software version 2.5.0 (21.0.sp100) 118 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

31 }
32 }

When adding actions, these will by default be exposed as “enabled” whenever it makes
sense. However, it is not always desired that an action is exposed as enabled. An enabled
action will be rendered as “clickable” in the GUI, whereas a disabled action will be
rendered in a grayed-out manner.

In order to control the enabledness of actions (including the “standard actions” such
as Initialize, Update, Delete and Print), the Extension Framework will invoke the
method refreshActions in the data model. Notice that this action is not (only)
invoked for action events; it is called for each event (including reads), thereby ensuring
that the enabledness reflect the data being presented. Please refer to Section 4.11 for
more information on this topic.

4.9 Implementing Print Events

In this section, we shall have a closer look at Print events. The Print event is a data-
carrying event, and consequently has a “Pre”- and a “Post”-event script: onPrintPre
and onPrintPost . When you make a root container and use a data model, the data
model offers you the possibility to implement a method called onPrint , whereas you
may implement onPrintPre and onPrintPost methods for extension data models. In
general, the event life-cycle for the Print event follows the same pattern as shown for
general data-carrying events. Figure 4.13 shows this.

Container

Ext1
onPrintPre()

onPrintPost() RootonPrintPre()

onPrintPost()

Print

Result

DatamodelExt1

onPrintPre()

onPrintPost()

DatamodelRoot
onPrint()

Figure 4.13: The life-cycle for the Print event implemented using data-models. For a
root contribution, the onPrint method is invoked from the container’s onPrintPost
method. For extensions, the onPrintPre and onPrintPost methods invoke similarly
named methods in the data model.

It may come as a surprise that the Print event is data carrying? Why doesn’t it just
show a print-out of the record in question? The truth is that the Print very much
corresponds to an Action-event. Only this particular action has a pre-defined name and

c©Deltek Inc. 2013–2019, All Rights Reserved 119 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.10. IMPLEMENTING MOVE EVENTS

consequently a dedicated event. By custom, this event generates a “print out.” The truth
is, however, that nothing requires this event to generate print-outs.

The event does support updates of data. For instance, you might want to implement
a PrintOutDateAndTime that stores a time stamp for when a print was last generated.
Doing so requires updating the data. For this reason, you can address both original data
as well as result data from the event.

The coupling service comes bundled with a PDF-library called “iText” [iTe08,Low10].
This 3rd-party library is documented elsewhere, and going into how to use it is therefore
not in the scope of this document.

Just as your print action (or any other action!) can result in some PDF-document, you
are allowed to produce one or more documents of any type. A document is returned
to the user through the call-back mechanism. If the client-machine knows about the
specific document type, it can be opened on the client machine. For example, the output
could be a text (.txt) document, a Microsoft Word (.doc) or Microsoft Excel (.xls)
document instead of a PDF. Callbacks are covered in Section 5.4.

4.10 Implementing Move Events

In this section, we shall have a closer look at Move events. The Move event is a data-
carrying event, and consequently has a “Pre”- and a “Post”-event script: onMovePre
and onMovePost . When you make a root container and use a data model, the data
model offers you the possibility to implement a method called onMove , whereas you
may implement onMovePre and onMovePost methods for extension data models. In
general, the event life-cycle for the Move event follows the same pattern as shown for
general data-carrying events. Figure 4.14 shows this.

Container

Ext1
onMovePre()

onMovePost()
Root

onMovePre()

onMovePost()

Move

Result

DatamodelExt1

onMovePre()

onMovePost()

DatamodelRoot
onMove()

Figure 4.14: The life-cycle for the Move event implemented using data-models. For a root
contribution, the onMove method is invoked from the container’s onMovePost method.
For extensions, the onMovePre and onMovePost methods invoke similarly named methods
in the data model.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 120 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

The Move-event, like the Action-event, is a class of events. It may occur as a result of
one of the following user-events:

Move Up This occurs when the user “moves a line upwards,” e.g., by pressing the
button .

Move Down This occurs when the user “moves a line downwards,” e.g., by pressing
the button .

Indent This happens when the user “indents a line,” e.g., makes a line a child-line of
another line. This may happen by pressing the button .

Outdent This happens when the user “outdents a line,” e.g., makes a child-level-line
move into the same level as its parent. This may happen, e.g., by pressing the
button .

“Drag’n’Drop” This happens when the user, using the mouse, drags a line from one
position in a table and drops it at some other location. This may be equivalent to
one of the above operations, or to a series of such operations. Only one event will
occur.

In the Extension Framework, each move-event provides additional information that
is needed to interpret the event, including what kind of move operation has been
performed. Information is given about the source row—the row being moved—as well as
a target row—the row relative to which the move operation must be interpreted. This
information can be obtained from the eventData parameter by invoking the methods
getSourceRowNumber and getTargetRowNumber respectively. The source and target
row numbers are interpreted in the following way:

1. The indexes are 0-based. So the first line is line number 0.

2. If there is a tree-structure, the line indexes are relative to the flattened list of lines
organized using the default server-side sorting order.

For example, consider Table 4.20. This tables shows an a number of records organized
in a tree-structure. The lines are ordered with respect to the Line-numbers of records
at each level, an such that the tree-structure is respected, i.e., that top-level nodes are
placed first, and child nodes follow their parent node. The table then shows how the index
used for the getSourceRowNumber and getTargetRowIndex methods. For example,
the top-most line (the first line not having any parents, P1) has index 0. The first child
of that line has index 1 etc.

Index Description LineNumber Key ParentKey
0 Parent 1 1 P1 〈blank〉
1 Child(P1) 1 1 C1P1 P1
2 Child(P1) 2 2 C2P1 P1
3 Child(C2P1) 1 1 C1C2P1 C2P1
4 Parent 2 2 P2 〈blank〉

c©Deltek Inc. 2013–2019, All Rights Reserved 121 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

Index Description LineNumber Key ParentKey
5 Child(P2) 1 1 C1P2 P2
6 Child(P2) 2 2 C2P2 P2
Table 4.20: The row indexes correspond to the 0-based posi-
tion of a line in the “visual order” of the default server-side
ordering. This is the “flattened list.”

In addition to the source and target row index, the getMoveOperation method on
the containerRunner object, returns an enum-type that reflects how to interpret the
source row relative to the target row. In combination this information specifies what the
move-operation is all about. The possible values of the getMoveOperation are:

MOVE_AFTER Which means that the source row is moved immediately after the target
row, having the same parent13 as the target row.

MOVE_BEFORE Which means that the source row is moved immediately before the target
row, having the same parent as the target row.

MOVE_INTO Which means that the source row becomes the first child of the target row.

If you make a root-contribution allowing tree-operations, you should note that maintaining
the tree-structure is handled by the Extension Framework. The aim of event-methods is
to do additional logic pertaining to moving data. This could include validating if a specific
move is allowed or should lead to an error message, or maintaining the values of fields
that relate to moving. Usually, the logic around moving data is virtually non-existing,
in which case there is no reason to implement data. If your data-structure contains
aggregated data, you will need to implement logic that maintains this when Move events
occur.

4.11 Implementing Read Events

In this section, we shall have a closer look at Read events. The Read event is a data-
carrying event, and consequently has a “Pre”- and a “Post”-event script: onReadPre
and onReadPost . When you make a root container and use a data model, the data
model offers you the possibility to implement a method called onRead . In general,
the event life-cycle for the Read event follows the same pattern as shown for general
data-carrying events. Figure 4.15 shows this. The support for implementing “read events”
is mostly for the sake of completeness. Actually implementing logic pertaining to merely
reading data is probably very rare. An example could be record-level access control on
custom data.

Most often, you would not need to implement anything specifically for Read events. Most
13If the table is not a tree-structured table, all lines will be considered having an “empty” parent.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 122 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Container

Ext1
onReadPre()

onReadPost()
Root

onReadPre()

onReadPost()

Read

Result

DatamodelExt1

onReadPre()

onReadPost()

DatamodelRoot
onRead()

Figure 4.15: The life-cycle for the Read event implemented using data-models. For a root
contribution, the onRead method is invoked from the container’s onReadPost method.
For extensions, the onReadPre and onReadPost methods invoke similarly named methods
in the data model.

of what could reasonably take place for reads is handled by the Extension Framework or
by other means. The following could be considered tasks for a Read event:

1. Fetching the desired data from the database. The Extension Framework automati-
cally handles this, and you should not do this yourself. For root-level data-models,
obviously some data should be read, for instance from a database. For extension
contributions one of two scenarios may occur:

(a) The extension adds new (persisted) fields. In this case, the framework will
automatically gather the needed data. The framework can even do this more
efficiently, because it does so prior to invoking the data model.

(b) The extension does not add any (persisted) fields. In this case, there’s no need
to read any data whatsoever.

By invoking the method definePersistenceStrategy , the framework uses knows
how reading is performed, e.g., by looking up data from a custom database table in
the Maconomy database.

2. Calculating values for added variables (“non-persisted fields.”) While this obser-
vation is true, you should remember that a similar task should be carried out for
any data-carrying event! Because of this, calculating variable values is maintained
by the refreshVariables method which will automatically be invoked by the
framework whenever needed. In general, this method may be needed for all records
in a data-response, not only the event-record of the actual event. The bottom line
is: your implementation of Read should not carry out this task!

3. Calculate the action-enabledness status. Each pane has a set of attributes indicating
which actions are enabled and which are not. This information is used by the
workspace client to show actions/operations as enabled or disabled. Whereas it

c©Deltek Inc. 2013–2019, All Rights Reserved 123 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

is true, this should be carried out for any data-carrying event! Because of this,
calculating the action enabledness state is maintained by the refreshActions
method which will automatically be invoked by the framework whenever needed.
The bottom line is: your implementation of Read should not carry out this task.

4. Imposing a built-in restriction for data-selection for root contributions. Suppose you
are building a root container, and suppose that you want a table-pane to contain
records each corresponding to some piece of “equipment.” Your equipment records
may be “blocked.” Suppose that you want a particular container to only show
non-blocked equipment. In this case, you should ensure that a particular condition
(where-clause) is always applied. This is not done directly by the data-models
onRead method. In fact, the onRead is invoked for each record that is being fetched
by the framework. This situation is handled by letting your data model implement
the method defineAdditionalReadCondition . See Section 4.11.1.

5. Imposing a specific default ordering on data in a pane. Again, suppose you are
building a root container, and suppose that you want a table-pane to contain
records each corresponding to some piece of “equipment.” Among other things, an
equipment record contains a field DataOfPurchase. Suppose that you want the
default-ordering of data in this pane to show the most recently purchased equipment
at the top. You can control this by applying a default ordering. Like above, this
is not a task for the onRead method which is invoked for each record being read.
Instead, you provide this information to the framework by letting your data-model
implement the method defineDefaultSortOrder . See Section 4.11.1.

As you can see from the above, all the “obvious” tasks related to Read-events are
automatically handled by the framework.

4.11.1 Controlling Restrictions and Sorting

When building a root contribution, sometimes you may want to impose certain built-in
restrictions to data shows in a pane. And sometimes you may wish to control the
default-sorting. Notice that this makes sense only for root contributions: if you extend a
container, you cannot dictate that some data is not part of a given pane. It is because
the root said so! The same goes for the default sorting14.

The methods defineAdditonalReadCondition and defineReadCondition are used
to restrict the data potentially being read. You are encouraged to implement the
defineAdditionalReadCondition if possible.

The way reading works is that eventually, the framework needs to read data. Based
on the key (for card and table panes) or requested restriction (for filter panes), the
framework deduces a suggested restriction. The method defineReadCondition is
invoked, and it the suggested restriction is given as input in the form of an expression.

14The user can always change the client-side sorting.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 124 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

The default implementation simply invokes defineAdditionReadCondition and builds
an expression corresponding to

suggestedRestriction ∧ defineAdditionReadCondition(...)

Hence, by implementing the defineAdditionReadCondition method, you don’t have to
remember to add the suggested restriction.

In rare cases, you might need to override the implementation of defineReadCondition.
This could be the case, if the suggested condition does not match your data. For example,
suppose your container is meant to take an EmployeNumber as a key, thus allowing you to
<Bind> your container in a workspace using an Employee-related foreign key. For some
reason, does not contain an EmployeeNumber field. The suggested restriction will match
the binding key, e.g. something like EmployeeNumber = ’100992’. In this case, you
need to override the implementation of defineReadCondition so that it transforms the
suggested restriction into an expression that makes sense for your data, e.g., EmployeeID =
’100992’ or even EmployeeNumber = ’777228’! Unless your implementation explicitly
invokes and conjugates the result of defineAdditionalReadCondition, that method
will now no longer work as intended!

Most often, you can rely on the suggested condition and you will want only to implement
defineAdditionReadCondition.

The default sorting of items in a table-pane will be defined (more or less arbitrarily) by the
database if nothing is specified. However, if your data-model contains auto-positioned data
and, therefore, your data-model extends McAbstractAutoPositionRootDataModel , the
default sort-order will (and must) be ordering by the auto-position field. The framework
will ensure this. Similarly, the framework will enforce an auto-positional ordering
respecting tree structures when the pane contains tree-structured data, thereby extending
McAbstractTreeStructuredRootDataModel . For plain table panes (i.e., without auto-
positionable content and without tree-structured data), you can specify the default sort-
order by implementing the method defineDefaultSortOrder . This method should
return a list of McSortOrder s. A sort order comprises a field name and an ordering
(ascending or descending.) The returned list is interpreted such that the first element
in the list is the most significant sort-order. For items with equal values, the next sort
order will be applied and so on.

Listing 4.14 shows an example that specifies an additional where clause that is dynamically
changed depending on settings in an associated card pane: Equipment marked as being
“blocked” will be excluded from the list, unless a field, IncludeBlocked, contained in
the card pane is set to true. Furthermore, the list of equipment will be shown using
a default sorting that sorts the equipment by the CompanyNumber owning the piece of
equipment, and—secondary—by PurchaseDate, showing the most recently purchased
equipment first.

Listing 4.14: Custom data-restrictions and sorting.
1 /// readrestrictionexample -start

c©Deltek Inc. 2013–2019, All Rights Reserved 125 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

2 /∗∗
3 ∗ Exc lude b l o c k e d i tems , u n l e s s t h e a s s o c i a t e d card pane
4 ∗ s p e c i f i e s t h a t b l o c k e d f i e l d s s h ou l d be i n c l u d e d
5 ∗/
6 @Override
7 public MiExpression <McBooleanDataValue >

defineAdditionalReadCondition(
8 final MiContainerRunner.MiDefine containerRunner ,
9 final MiContextData contextData) throws Exception {

10 final MiContextPaneData cardPane = contextData.getPaneData ().
get();

11 // don ’ t i n c l u d e b l o c k e d u n l e s s " I n c l u d eB l o c k e d "
12 // i s s e t in t h e card pane (assumed to be p r e s e n t !)
13 if (! cardPane.getResultData ().get().getBool("IncludeBlocked"))

{
14 return dataValues ().setBool("Blocked", false).asExpression ()

;
15 } else {
16 return McExpressionUtil.TRUE;
17 }
18 }
19

20 /∗∗
21 ∗ The d e f a u l t s o r t o rde r i s :
22 ∗ Company No . (a s c end in g) : pr imary
23 ∗ Purchase Date (d e s c end in g) : s e condary
24 ∗/
25 @Override
26 public MiList <McSortOrder > defineDefaultSortOrder(
27 final MiContainerRunner.MiDefine containerRunner ,
28 final MiEventData eventData) {
29 final McSortOrder companyOrder =
30 new McSortOrder(FIELD_COMPANY_NO ,
31 MeSortType.ASCENDING);
32 final McSortOrder newestFirst =
33 new McSortOrder(FIELD_PURCHASE_DATE ,
34 MeSortType.DESCENDING);
35 return McTypeSafe.createArrayList(companyOrder , newestFirst);
36 }
37 /// readrestrictionexample -end

4.11.2 Refreshing Variable Values

As indicated on page 124, calculated fields (a.k.a. variables) should be calculated when
data is read. Or when any other data-carrying event is executed, for that matter!

The Extension Framework will automatically invoke the method refreshVariables for

Version 1.4.021, software version 2.5.0 (21.0.sp100) 126 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

each record in a response15. In this way, it is ensured that calculated values are always
correctly updated relative to each specific record.

As an example, suppose your client wants to include the “job description” and the
“popup1” of the job for each line in a time sheet. Each line already has a JobNumber
field, and the corresponding job name is shown in a calculated field. However, the
job description and popup1 are not available. By introducing two new variables in an
extension to the maconomy:TimeSheets container, we can add information about the
job description for each line. Listing 4.15 shows the implementation of such a data
model.

In the example, there are a few things to notice: the implementation makes use of a utility
class called McDataCaches , see Section 6.2.6. This is declared in lines 17–25. This class
makes it possible to abstract from whether a given record foreign key actually points out a
value in the database or not. At the same time, this class implements a caching behavior
which may lead to drastic performance improvements: if a given piece of information
has already been obtained, the database will not be queried. Fortunately the calling
application program does not have to worry about such details, which helps making your
code more clear and focused on the functionality, and less on implementation-specific
details. So, if your code looks up information based on the same key several times, only
one database query will be made. It is important that such McDataCaches are short-lived!
You shouldn’t keep such objects for a long time. It is generally adequate to keep such
objects as member variables in data models, since each event will create new data-model
instances.

In the example, the addition of the two variables is declared by the method defineDomes-
ticSpec starting in line 37. The values of these variables are calculated in the method
refreshVariables in lines 47–67. The “calculation” is done by looking up the
JobDescription and the Popup1 fields of the JobHeader table, based on the current
value of the JobNumber field of the time sheet line. Line 53 obtains a record from the
JobHeader data cache, based on the current value of the JobNumber field in the data
model. Of course, it may happen that there is not yet a job specified on the time sheet
line in question. This case is automatically handled by the data cache, because the
interface to the JobHeader table is asked to “ignore” blank job numbers. In this case, a
look-up will result in a record containing default values for each of the data fields, in this
case an empty string/nil value. The fetching of the specific data fields happens in lines
57 and 62.

Listing 4.15: Calculating Variables.
2 // l a z i l y i n i t i a l i z e d da ta cache s
3 private MiOpt <McDataCaches > dataCaches = McOpt.none();
4 public ExtendedTimeSheetsTableDataModel(final MiDataModelFactory

.MiResources resources) {

15Remember that this is not necessarily the same as all records in a pane, since pane-level responses
may be partial!

c©Deltek Inc. 2013–2019, All Rights Reserved 127 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

5 super(resources);
6 }
7

8 /∗∗
9 ∗ Returns t h e data−cache in use f o r t h i s da ta model .

10 ∗ The da ta cache s must not be i n i t i a l i z e d in t h e c o n s t r u c t o r .
11 ∗ There fore , we i n t r o d u c e t h i s method to l a z i l y i n i t i a l i z e i t
12 ∗ on demand , and to more n a t u r a l l y o b t a i n cache s .
13 ∗ @return The da ta cache w i t h t h e s p e c i f i e d name .
14 ∗/
15 private McDataCaches getDataCaches () {
16 if (this.dataCaches.isNone ()) {
17 final McDataCaches caches =
18 McDataCaches.create(getApiProvider ())
19 .defineCache("JobHeader") // t a b l e name
20 .key("JobNumber") // name o f key f i e l d −
21 // empty j o b numbers are
22 // i gno r e d by d e f a u l t
23 .str("JobDescription")
24 .popup("Popup1").ofType("JobPopupType1")
25 .end();
26 this.dataCaches = opt(caches);
27 }
28 return this.dataCaches.get();
29 }
30

31 private static final MiKey VAR_JOB_DESCRIPTION =
32 NS("JobDescriptionVar");
33 private static final MiKey VAR_JOB_POPUP1 =
34 NS("JobPopup1Var");
35

36 @Override
37 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
38 return McPaneSpec.McExtended.pane()
39 .addStringVariable(VAR_JOB_DESCRIPTION , "Job Descr.").then()
40 .addPopupVariable(VAR_JOB_POPUP1 ,
41 "Job Popup 1",
42 key("JobPopupType1")).then()
43 .end();
44 }
45

46 @Override
47 public void refreshVariables(final MiContainerRunner.MiDataPost

containerRunner ,
48 final MiResult eventData) throws

Exception {
49 final MiDataValues resultData = eventData.getResultData ();
50 final MiDataCache jobHeader = getDataCaches ().getCache("

Version 1.4.021, software version 2.5.0 (21.0.sp100) 128 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

JobHeader");
51 // r e t r i e v e t h e j o b r e co rd hav ing t h e j o b number i n d i c a t e d
52 // by t h e JobNumber f i e l d in t h e r e s u l t da ta
53 final MiValueInspector job = jobHeader.getRecord(resultData);
54 // r e t r i e v e t h e J o bDe s c r i p t i o n from t h a t j o b . I f t h e j o b does
55 // not e x i s t , da ta f i e l d s w i l l have a d e f a u l t v a l u e
56 // (in t h i s ca s e " " / b l a n k) .
57 final McDataValue jobDescription = job.getVal("JobNumber");
58

59 // r e t r i e v e t h e Popup1 from t h a t j o b . I f t h e j o b does not
60 // e x i s t , da ta f i e l d s w i l l have a d e f a u l t v a l u e
61 // (in t h i s ca s e t h e n i l popup v a l u e)
62 final McDataValue jobPopup1 =job.getVal("Popup1");
63

64 // Ass i gn t h e v a r i a b l e v a l u e s in t h e r e s u l t
65 resultData.setVal(VAR_JOB_DESCRIPTION , jobDescription)
66 .setVal(VAR_JOB_POPUP1 , jobPopup1);
67 }

The implementation shown above will work. But it has a slight problem: if there are
many lines in a specific time sheet, then potentially, a new database query will be made
for each line. Although—because of the McDataCaches—only one query will be made for
each unique job number.

In order to give the programmer a chance to do something about this, the Extension Frame-
worklets the programmer optionally implement the method refreshVariablesPrepare .
This method will be invoked by the Extension Framework before refreshVariables is
invoked16.

The method refreshVariablesPrepare gives information to the data model stat-
ing something like: “in a short while, you can expect refreshVariables to be in-
voked for each record in a given set of records. The idea is, that an implementa-
tion of refreshVariablesPrepare may perform an optimized query, extracting all
the needed information, and cache this in a short-living cache, that may be used by
refreshVariables.

By using the McDataCaches such behavior comes almost for free. The interface used to
look up data is even robust against a situation where the desired information has not
already been pre-fetched, while using a cached version if information is already available.
So the code in refreshVariables will—using data caches—be the same regardless of
whether the refreshVaraiblesPrepare has been invoked or not.

Listing 4.16 shows an implementation of refreshVariablesPrepare that works with
the example shown in Listing 4.15 above. In line 9 the implementation makes use of a
utility class McDataModelUtil and a method extractKeyValues that is capable of

16In versions 2.3 and earlier, the invocation of refreshVaraiblesPrepare was not guaranteed: it would
only be invoked if there were more than one records. This has been changed in version 2.4 and forward.

c©Deltek Inc. 2013–2019, All Rights Reserved 129 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

extracting a set of unique (foreign) key values from a set of records. In the example,
we extract all unique JobNumber keys occurring in the set of time sheet lines. In line
16 these values are used to populate the data cache with respect to these values. This
performs better than looping over the records and fetching data corresponding to each
record, because one single database query is being built. Thereby, the cache is populated
so that when the refreshVariables method is invoked for each record shortly after, the
data is present, and no further database queries are needed.

Applying this pattern for extracting related information from the database is strongly
encouraged.

Listing 4.16: Preparing Variable Calculation.
2 @Override
3 public void refreshVariablesPrepare(
4 final MiContainerRunner.MiDataPost containerRunner ,
5 final MiCollection <MiRecordInspector > records) throws

Exception {
6 final MiKey jobNumberField = key("JobNumber");
7 // Ex t r a c t a l l d i s t i n c t v a l u e s o f t h e f i e l d " JobNumber "
8 // in t h e s e t o f r e c o r d s
9 final MiSet <MiKeyValues > occuringValues =

10 McDataModelUtil.extractKeyValues(records , McTypeSafe.
singletonSet(jobNumberField));

11

12 // Given t h a t s e t o f r e co rd s , p o p u l a t e t h e
13 // cache " JobHeader " w i t h f i e l d v a l u e s s t o r e d in t h e JobNumber

f i e l d (which
14 // i s d e c l a r e d as t h e key f i e l d) .
15 getDataCaches ().getCache("JobHeader")
16 .populate(occuringValues);
17 }

An alternative, and slightly simpler version can be implemented by making use of the
fact that it is possible to provide a record containing more fields than the formal key
fields. If you do that, the extra fields will be disregarded, and the key is extracted by
just considering the formal key fields. Listing 4.17 shows how to do this.

Listing 4.17: Populating Directly.
1 getDataCaches ().getCache("JobHeader").populate(records);

With the combination of Listings 4.15 and 4.16/4.17, we have a full implementation
of a data model extending the time sheet table to include two read-only fields each
reflecting the job description and the popup1 associated with the job that might be
specified on each time sheet line. Because the framework automatically invokes the
refreshVariables method whenever needed, the implementation automatically works
for all cases: creations of new time sheet lines, updating a time sheet line, refreshing etc.
For more information on data caches, see Section 6.2.6.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 130 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

4.11.3 Refreshing Action States

Just as refreshing variables is needed in a number of cases (reading, maybe, being the
most obvious) the action state needs to be updated for each data-carrying event. The
action-states always relate to the current record. Hence, actions in a table-pane always
related to the current line in the table. However, the action-states are assumed to be
the same for all records in a pane. This means that it must be possible to compute the
action states for any given record in a pane.

The action state is basically a mapping that defines whether a specific action is enabled
(“clickable”) or not (“grayed out.”) Sometimes it can enhance the usability to enable
and disable certain actions depending on the context. In other cases, better usability
may be obtained by letting an action appear as enabled, and then (if invoked in a state
that makes no sense) give an error-message explaining the user why this action cannot
currently be executed.

The action-enabledness state covers all actions—not just the named actions. This means
that you may control the enabledness of whether or not it is possible to Initialize
(start creating a new record), Update (edit an existing record), Delete (deleting existing
records) and Print (printing the current record.) Move operations are considered enabled
if Update is enabled. Of course, only actions that have been declared as available in the
specification for the container (i.e., declared in the defineDomesticSpec for some data
model) will be considered potentially enabled. So, if you have a container that doesn’t
even allow Delete, it makes no sense to attempt to “enable” deletion: this will have no
effect!

By default, the Extension Framework will consider all actions as enabled when rele-
vant17. By letting your data model implement the method refreshActions , you can
dynamically enable or disable actions.

Like many other data-model methods, the refreshActions receives two parameters: a
containerRunner and eventData. For this method, the eventData has a getResult .
However, unlike the normal event-methods, the result is not record-level data, but rather
a structure defining the enabledness of the actions of this pane. The result type for
getResult is an MiActionStates object. This object can be modified and queried in a
“builder-style” manner. The framework will use the resulting value of this object to build
the adequate return values from the container.

The eventData offers the following methods that are special for refreshActions:

17If a pane in in the “new” state, i.e., an Initialize has just occurred, then attempting to enable
deletion will be disregarded as nonsense: the only thing that makes sense in this state is to allow Create.

c©Deltek Inc. 2013–2019, All Rights Reserved 131 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

Method Remarks
getCurrentRecord This method returns an optional current record: if the

pane for which action states are being calculated has a
current record (i.e., is non-empty), then the returned op-
tional (MiOpt) will contain a MiValueInspector that rep-
resents the current record value. Otherwise a none object
(McOpt . none()) will be returned. Typically, you will use
the current record values to determine the enabledness of
your actions.

getResult Returns the result data which—in this case—is an
MiActionStates object. By modifying this object, you
can change the action state.

The MiActionStates type resulting from the getResult method offers a number of
methods:

Method Remarks
defaultAll Sets all actions to the default enabledness state relative to the

state, the pane is currently in. For example, if the pane is in
INIT-mode, Create should be enabled, but Update, Delete and
named Actions should be disabled.
This method returns the MiActionStates object itself, allowing
method chaining.

defaultAdded This method is similar to defaultAll, except that it involves only
actions introduced by this data-model!

enable This method returns an MiActionEnabler object. This is itself a
builder-style object, that can be used to enable one or more actions.
For example:
MiActionStates result = eventData.getResult();
result.enable().update()

.delete()

.actions("Submit", "RemoveAll");
will enable Update, Delete and the two actions Submit and
RemoveAll. See below for more details.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 132 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
disable This method is similar to enable above, but returns an

MiActionDisabler object. This is itself a builder-style object,
that can be used to disable one or more actions. For example:
MiActionStates result = eventData.getResult();
result.disable().update()

.delete()

.actions("Submit", "RemoveAll");
will disable Update, Delete and the two actions Submit and
RemoveAll. See below for more details.

initialize This method returns a MiEnablednessChecker that can be used
to determine whether Initialize is currently enabled or not. For
example:
MiActionStates result = eventData.getResult();
if (result.initialize().isEnabled()) {

// Initialize is enabled
} else {

// Initialize is disabled
}
See below for more details.

create Similarly to the initialize-method above, this method returns a
MiEnablednessChecker that can be used to determine whether
Create is currently enabled or not.

read Similarly to the initialize-method above, this method returns a
MiEnablednessChecker that can be used to determine whether
Read is currently enabled or not.

update Similarly to the initialize-method above, this method returns a
MiEnablednessChecker that can be used to determine whether
Update is currently enabled or not.

delete Similarly to the initialize-method above, this method returns a
MiEnablednessChecker that can be used to determine whether
Delete is currently enabled or not.

print Similarly to the initialize-method above, this method returns a
MiEnablednessChecker that can be used to determine whether
the “Print. . . ” action is currently enabled or not. This method
should not be confused with printThis (see below.) It involves the
Print...-”action”, which merely may re-direct to a card-style pane
offering the possibility of doing batch printing. The Print-event
relates to the printThis method!

printThis Similarly to the initialize-method above, this method returns a
MiEnablednessChecker that can be used to determine whether
Print is currently enabled or not. Notice the difference between
print (above) and printThis!

c©Deltek Inc. 2013–2019, All Rights Reserved 133 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

Method Remarks
action Similarly to the initialize-method above, this method returns a

MiEnablednessChecker that can be used to determine whether a
specifically named Action is currently enabled or not. For example:
MiActionStates result = eventData.getResult();
if (result.action("SubmitTimeSheet").isEnabled()) {

// submit time sheet is enabled.
} else {

// submit time sheet is disabled
}

The types MiActionEnabler and MiActionDisabler have similarly named methods.
The only difference is the actual effect of that method (whether it enables or disables a
specific method.) The list of common methods is

Method Remarks
initialize This method sets the enabledness of Initialize. If the object

is an enabler, it becomes enabled. If it’s a disabler, it becomes
disabled.

create This method sets the enabledness of Create. If the object is an
enabler, it becomes enabled. If it’s a disabler, it becomes disabled.

read This method sets the enabledness of Read. If the object is an
enabler, it becomes enabled. If it’s a disabler, it becomes disabled.

update This method sets the enabledness of Update. If the object is an
enabler, it becomes enabled. If it’s a disabler, it becomes disabled.
Update also controls those Move operations that may be applicable.

delete This method sets the enabledness of Delete. If the object is an
enabler, it becomes enabled. If it’s a disabler, it becomes disabled.

print This method sets the enabledness of the Print...-”action.” If
the object is an enabler, it becomes enabled. If it’s a disabler, it
becomes disabled. This should not be confused with the printThis
method (see below!)

printThis This method sets the enabledness of Print. If the object is an
enabler, it becomes enabled. If it’s a disabler, it becomes disabled.
This should not be confused with the print method (see above!)

action This method sets the enabledness of one or more Actions. If the
object is an enabler, the specified actions become enabled. If it’s a
disabler, they become disabled. For example:
myEnabler.action("Act1", "Act2", "Act3");
myDisabler.action("Act4", "Act5", "Act6");

Version 1.4.021, software version 2.5.0 (21.0.sp100) 134 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
all This method sets the enabledness of all actions. If the object is

an enabler, they become enabled. If it’s a disabler, they become
disabled.

Listing 4.18 shows an example of a data-model that adds a “Submit→Approve/Reject”
metaphor on top of Jobs. The idea here is that Text20 is being used as a status-field.
The actions should only be enabled if it makes sense. Hence, a Job that has not yet
been submitted, or has been rejected, should be able to be submitted. A submitted job
should be able to be either approved or rejected. If a job can be submitted, it cannot be
approved or rejected then. The refreshActions is implemented in line 18. Initially,
the three new actions are all marked as being disabled. This is done by the statement in
line 25. Then, if a current record exists, we read the status (Text20) field and enable the
relevant actions, depending on the status. This takes places in lines 37 and 40.

Listing 4.18: Setting Action Enabledness.
2 private static final MiKey SUBMIT_JOB_ACT = NS("SubmitJob");
3 private static final MiKey APPROVE_JOB_ACT = NS("ApproveJob");
4 private static final MiKey REJECT_JOB_ACT = NS("RejectJob");
5

6 @Override
7 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
8 return McPaneSpec.McExtended.pane()
9 .addAction(SUBMIT_JOB_ACT , "Submit Job").then()

10 .addAction(APPROVE_JOB_ACT , "Approve Job").then()
11 .addAction(REJECT_JOB_ACT , "Reject Job").then()
12 .changeField("Text20").title("Approval Status").closed ()
13 .end();
14 }
15

16 @Override
17 public void refreshActions(
18 final MiContainerRunner.MiData containerRunner ,
19 final MiActionState eventData) throws Exception {
20

21 final MiOpt <MiValueInspector > currentRecord =
22 eventData.getCurrentRecord ();
23

24 final MiActionStates result = eventData.getResult ();
25 result.disable ().actions(SUBMIT_JOB_ACT ,
26 APPROVE_JOB_ACT ,
27 REJECT_JOB_ACT);
28 if (currentRecord.isDefined ()) {
29 final MiValueInspector currentJob = currentRecord.get();
30 final String status = currentJob.getStr("Text20");
31 final boolean isSubmitted = status.equals("Submitted");

c©Deltek Inc. 2013–2019, All Rights Reserved 135 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

32 final boolean isRejected = status.equals("Rejected");
33 final boolean isApproved = status.equals("Approved");
34

35 if (isRejected
36 || (! isSubmitted && !isApproved)) {
37 result.enable ().actions(SUBMIT_JOB_ACT);
38 }
39 if (isSubmitted) {
40 result.enable ().actions(APPROVE_JOB_ACT , REJECT_JOB_ACT);
41 }
42 }
43 }

4.11.4 Pane-Level Read Data

When working with data-models, the event methods described in this chapter are record-
centric. This means that the event methods have the event record as the focal point.
It is not possible to control other records in the pane, or the value of other panes in
the container! There is, however, one exception to this: when a Read-event occurs,
the data-model is, as usually, invoked from the framework container implementation.
This implementation builds a container value which is the result type for events at the
container level. Just before this container value is returned, the data-model responsible
for the event in question is invoked one last time. The invoked method is onReadPane .
Here, the data-model may contribute to all aspects of the container value.

Usually, this is not needed. Sometimes, however, you might want to make your data-
model enforce certain conditions on the shown data. Or maybe your data-model is so
advanced, that it significantly changes the data. For instance, it could merge several
lines in a table into one logical line (so called “emulated long texts.”)

In such cases, the onReadPane method comes into action. You may think of the
onReadPane as a convenient (and controlled!) way of operating at the container-level
rather than at the data-model level. A lot of the boiler-plate code that would be needed
in a container-level implementation has just been taken care of.

Listing 4.19 shows a complete listing of a data model making use of the onReadPane
method to ensure that when a job budget is read, the budget type will automatically
be set to a budget type specified in the constructor. In lines 57–70 two data-model
factories are defined. These can then be used by a containers defineConfiguration
method. The implementation of onReadPane is found in lines 21–55. The current value
of the field ShowBudgetTypeVar is looked up. If it is not the desired one, the container
is programmatically updated by setting this field to the desired value (lines 39–45), and
the resulting value is merged into the current container response (line 50), overriding the
pane values for the card and the table.

Listing 4.19: Using onReadPane to fix budget type.
2 @Namespace("Trifolium")

Version 1.4.021, software version 2.5.0 (21.0.sp100) 136 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

3 public class FixedBudgetDataModel extends
McAbstractExtendedDataModel {

4 private static final MiKey SHOW_BUDGET_TYPE_FIELD = key("
ShowBudgetTypeVar");

5 private final String fixedBudgetType;
6 private static final MiKey doNotUpdateParameter = key(

FixedBudgetDataModel.class.getName () + ":do_not_update");
7

8 protected FixedBudgetDataModel(final MiDataModelFactory.
MiResources resources ,

9 final String fixedBudgetType) {
10 super(resources);
11 this.fixedBudgetType = fixedBudgetType;
12 }
13

14 @Override
15 public MiPaneSpec.MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
16 return McPaneSpec.McExtended.pane()
17 .changeField(SHOW_BUDGET_TYPE_FIELD).closed ().end();
18 }
19

20 @Override
21 public void onReadPane(final MiReadPost containerRunner ,
22 final MiEventData.MiReadPane eventData)

throws Exception {
23 // Un l e s s t h e doNotUpdateParameter i s s p e c i f i c a l l y s e t t o t r u e
24 if (! McBool.of(containerRunner.getParameters ().getValues ().

getElseTS(doNotUpdateParameter , McBool.FALSE))) {
25 final MiContainerAdmission resultContainer = eventData.

getResult ();
26 final MiOpt <MiPaneInspector > cardPane =
27 resultContainer.getPaneInspectorOpt(MePaneType.CARD.

getPaneName ());
28 if (cardPane.isDefined ()) {
29 final MiOpt <MiRecordInspector > cardCurrentRecordValue =
30 cardPane.get().getCurrentRecordInspector ();
31 final boolean cardDefined = cardCurrentRecordValue.

isDefined ();
32 if (cardDefined) {
33 final MiRecordInspector currentCardValue =

cardCurrentRecordValue.get();
34 final MiLiteralName popup = currentCardValue.getPopupVal

(SHOW_BUDGET_TYPE_FIELD).getLiteralName ();
35 if (! popup.isLike(fixedBudgetType)) {
36

37 // p r o g r amma t i c a l l y upda te t h e c on t a i n e r t o show
38 // t h e r i g h t b ud g e t t y p e
39 final MiContainerExecutor jobBudgetCard =

c©Deltek Inc. 2013–2019, All Rights Reserved 137 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.11. IMPLEMENTING READ EVENTS

containerRunner.executor ().construct(MePaneType.
CARD);

40 final MiParameters doNotUpdateParameters =
McParameters.create ().setBool(doNotUpdateParameter ,

true);
41 final MiDataValues updateBudgetType =
42 dataValues ().setPopup("ShowBudgetTypeVar",
43 "JobBudgetTypeType",
44 fixedBudgetType);
45 jobBudgetCard.reread(doNotUpdateParameters).update(

updateBudgetType);
46

47 // merge t h e update−r e s u l t i n t o t h e c u r r e n t r e s u l t ,
48 // u s i n g t h e card and t a b l e o c c u r r i n g from th e upda te
49 // i n s t e a d o f v a l u e o r i g i n a l l y read
50 resultContainer.merge(jobBudgetCard.getContainerValue

());
51 }
52 }
53 }
54 }
55 }
56

57 public static final MxFactory FACTORY_WORKING = new MxFactory("
Original");

58 public static final MxFactory FACOTRY_CONTRACT = new MxFactory("
Reference");

59

60 public static final class MxFactory implements
MiExtendedDataModelFactory {

61 private final String fixedBudgetType;
62 public MxFactory(final String fixedBudgetType) {
63 this.fixedBudgetType = fixedBudgetType;
64 }
65

66 @Override
67 public MiExtendedDataModel create(final MiDataModelFactory.

MiResources resources) {
68 return new FixedBudgetDataModel(resources , fixedBudgetType);
69 }
70 }

So, why would you want to change, e.g., the maconomy:JobBudgets container to always
show a fixed job budget type? The answer is, you wouldn’t. You want some instances to
always show a fixed budget type. To achieve this, we do the following:

1. We define two new containers, Trifolium:WorkingBudget and Trifolium:Con-
tractBudget that are both identical copies of the maconomy:JobBudgets container,
including any extension!

Version 1.4.021, software version 2.5.0 (21.0.sp100) 138 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

2. Next, we define an extension contribution for Trifolium:WorkingBudget that
makes use of the data-model above, enforcing that container to show only working
budgets.

3. Similarly, we define an extension contribution for Trifolium:ContractBudget that
uses the same data-model, but this time instantiated to show only contract budgets.

Listing 4.20 shows the implementation of the extension contribution for Trifolium:Work-
ingBudget: it merely refers the factory constant FixedBudgetDataModel.FACTORY_WORK-
ING defined in the data-model above. The implementation of the container contribution
for Trifolium:ContractBudget is not shown; it is left as an exercise to the reader to
figure out how to make that.

Listing 4.20: A Fixed-Budget Container.
2 public class WorkingBudgetContainer extends

McAbstractExtendedContainer {
3 protected WorkingBudgetContainer(final MiContainerFactory.

MiResources resources) {
4 super(resources);
5 }
6

7 @Override
8 protected MiContainerConfiguration.MiExtended

defineConfiguration () {
9 final MiContainerConfiguration.MiExtended configuration =

10 McContainerConfiguration.McExtended.card(
FixedBudgetDataModel.FACTORY_WORKING);

11 return configuration;
12 }
13

14 public static final class Factory implements MiContainerFactory
{

15 public MiContainerEvents createContainer(final
MiContainerFactory.MiResources resources) {

16 final MiContainerEvents container = new
WorkingBudgetContainer(resources);

17 return container;
18 }
19 }

Finally, let us see how these container contributions are declared in the plugin.xml
file. Notice the first two contributions that defines the existence of the containers
Trifolium:WorkingBudget and Trifolium:ContractBudget. This is done simply by
“cloning” the maconomy:JobBudgets container! Once this is done, we can contribute the
extensions to these two specific containers, without influencing the maconomy:JobBudgets
at all!

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <? eclipse version ="3.2"? >

c©Deltek Inc. 2013–2019, All Rights Reserved 139 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.12. PARAMETERIZING EVENTS

3 <plugin >
4 <extension name=" Extending standard containers "
5 point="com. maconomy .api. container ">
6 <create container =" Trifolium : WorkingBudget " id="com. trifolium .

budgets . cloned : WorkingBudget ">
7 <clone container =" Maconomy : JobBudgets "/>
8 </create >
9 <create container =" Trifolium : ContractBudget " id="com. trifolium .

budgets . cloned : ContractBudget ">
10 <clone container =" Maconomy : JobBudgets "/>
11 </create >
12 <extend container =" Trifolium : WorkingBudget " id="com. trifolium .

Budgets . WorkingBudget " >
13 <factory class="com. trifolium . examples .spec. containers .

WorkingBudgetContainer$Factory " />
14 </extend >
15 <extend container =" Trifolium : ContractBudget " id="com. trifolium .

Budgets . ContactBudget " >
16 <factory class="com. trifolium . examples .spec. containers .

ContractBudgetContainer$Factory " />
17 </extend >
18 </extension >
19 </plugin >

4.12 Parameterizing Events

In the following sections, you have learned how to implement various events of a con-
tainer. The events may react slightly differently depending on the data (e.g., deleting a
“Sum/Text”-type of job budget line might be slightly different from deleting a “Time”-type
of line.) But what if you want some more significant variation to your actions? And
what if you want to signal that some event has been called programmatically, rather than
“regularly” by an end-user?

In order to address such issues, the concept of parametrized events has been introduced.
Any event may be associated a set of parameters. A parameter can be seen as a “meta-data”
value. Or at least, it is a value that is not tied to the data of the event-record.

Usually, the parameter-set of an event is the empty set. But this need not be the case.
Parameters may occur for two reasons:

1. The parameters has been declared in the layout. Currently, only Action-events can
be parametrized from the layout.

2. An event may be generated programmatically, and thereby have one or more
associated parameters.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 140 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

4.12.1 Parameters from the Layout

From an MDML-layout [CMd], you can specify one or more parameters for <Action>
references. Currently, it is only supported to parametrize Actions from the layout—other
types of events cannot be parametrized. A parameter is a name and an associated value.
In the layout, the value may be given using the valueString attribute, meaning that
the type of the parameter value is a String and that the value is the literal string
specified18. Or you may use the attribute value meaning that the type will be that of
the specified expression. The expressions will be evaluated on the client-side using the
information present in the relevant pane, and other panes (e.g., parent panes) if needed.
The expressions will be partially evaluated, meaning that if there are some variable
references or expressions that cannot be resolved on the client side, the expression will
merely be “reduced” as much as possible. The partially evaluated expression (which is
often a constant-value-expression) will be associated with the parameter of the specified
name. When the action in question is invoked, the specified parameters will be associated
with the event, and the event-handling methods may react based on that information.
This is used in several situations, for example:

• The ExportDataSet (“Export to Excel”) action heavily relies on parameters in
order to work. The parameters specify things such as which fields should be
exported, what the column titles should be, and what format to export to: the
action is capable of exporting to both plain text and Excel format.

• The EmailOnAction action heavily relies on parameters to work. The actions are
used to specify things such as: what is the IP-address of the mail server? What is
the mail-server port? Which action should really be run? Should output documents
be sent as mail only, or should they (also) be passed on the the end-user? Should
the mail be sent from the server-side, or should a mail template be created in
.eml-format, so that it can be opened by a mail-application on the client-machine?
And several other things.

• The RunReport action (run a Business Objects report) relies on parameters to work:
it uses parameters to indicate which report to run and which report-parameters to
apply to the report, as well as the output format.

Parameters are especially practical, if there is some degree of configuration to the actions.
Also remember, that you can add the same action multiple times in the same layout
with different parameters. This may allow you to let the end-user decide to use one or
another variant of the same action. The result—as far as the end-user is concerned—is
two different things. As an example, the EmailOnAction may be used to associate two
different actions with the e-mail functionality. Technically, the implemented action may
be the same, but the result is very much different from a user point of view!

18Allowing expression using the ˆ{}-syntax.

c©Deltek Inc. 2013–2019, All Rights Reserved 141 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.12. PARAMETERIZING EVENTS

4.12.2 Programmatic Event Parameters

When container events are made programmatically, it is also possible to associate the
event with a number of parameters. And you can do so for any container event, not only
Action-events.

This is especially used in cases, where your action may need to invoke itself program-
matically: in order to avoid infinite loops, you can programmatically add a parameter
indicating that the action should not call itself again. For example, suppose you have a
Requisition. When the Requisition is approved0, you client wants the “Remark1” field
updated with a time stamp indicating exactly when the approval took place. You can do
this, but you need to programmatically update the Requisition. When the Requisition is
updated, the approval is broken. If you update prior to approving, the Requisition is
no longer submitted, and needs to be re-submitted. And if you do this, you must also
do the actual approval programmatically in order to avoid a “data changed by another
user”-error. Which leads to that the implementation of the “Approve Requisition” action
must invoke itself programmatically. By introducing a parameter when the approval is
invoked programmatically, we can avoid doing the extra update (assuming this has just
been done) by examining whether a specific parameter has indeed been specified. This
pattern is common in real-life extensions at customer installations.

4.12.3 Using Parameters

The parameters can be obtained from the containerRunner parameter, that is passed
to all events. This happens through the method getParameters . This method returns
a type, MiParameters . This type is basically a sub-type of MiValueAdmission which
is explained in Section 4.3.1. This means that you can get and set parameters with
specific types. For example
final MiParameters parameters = containerRunner.getParameters ();
final int portNo = parameters.getInt("MailPort");
final int exportFormat = parameters.getStr("Format");
parameters.setBool("MyParameter", true);

It is important to notice, however, that treating the parameters as constant values (using
the getType)-methods only works if the parameters are truly constant expressions!. This
may obviously be a requirement from your extension. If a given parameter may be a
(non-constant) expression, you can access the value of the parameter, but you must give
a so-called evaluation context. An evaluation context may contribute values for variables
in the expression, and may event contribute functions.

For this reason, the MiParameters type contains a number of additional methods.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 142 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Method Remarks
getType All the typed get-variants are found in an over-

loaded method that takes an evaluation context
as an argument. The returned value is the value
of the underlying expression evaluated in this
evaluation context.

getType Opt All the typed get-Opt-variants are found in an
overloaded method that takes an evaluation con-
text as an argument. The returned value is the
value of the underlying expression evaluated in
this evaluation context, or none if no such pa-
rameter exists.

getType OrElse All the typed get-OrElse-variants are found in
an overloaded method that takes an evaluation
context as an argument. The returned value is
the value of the underlying expression evaluated
in this evaluation context, or the specified default
value if no such parameter exists.

getExpr Returns the value of the parameter with a speci-
fied name, as an MiExpression rather than a
value.

getExprOpt Returns the value of the parameter with a speci-
fied name, as an MiExpression rather than a
value. If no parameter exists with the specified
name, a none value is returned.

setExpr Sets the value of a parameter with a specified
name to a specific expression. If the parameter
already exists, its value is overridden.

asParametersByNameSpaceCopy Returns a new parameter set where all param-
eters that begins with a specified name-space
are found with the same value as in this pa-
rameter set. Only, the specified name-space is
stripped off! A name-space is assumed to be
of the form [a-zA-Z][a-zA-Z0-9_]*:, for ex-
ample: SubmitTimeSheet:, MyNameSpace: or
Trifolium:. Parameters with several nested
name-spaces will only be stripped of the top
name-space. Notice that the returned parame-
ters object contains copies of the specified pa-
rameters.

c©Deltek Inc. 2013–2019, All Rights Reserved 143 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.12. PARAMETERIZING EVENTS

If you need to finally evaluate expression in some context (e.g., evaluate some parameters
after having done a certain part of an action), you must provide a MiEvaluationContext .
Such a context can be built using the McEvaluationContext class and the builder
method that it provides. There is, however, a convenient way of creating an evaluation
context that matches what you typically want when it comes to evaluation parame-
ters. This is the type McParameters.McContextBuilder . This has a factory method,
create which is found in two flavors:

• A variant without parameters. This just returns a builder for an initially empty
evaluation context, i.e., an evaluation context that knows the value of nothing.

• A variant that takes a MiValueInspector, such as a record value. This method
will create an evaluation-context builder which is capable of resolve the value of
any field that exists in the provided value inspector with its corresponding value.
Only, the variable that can be resolved is prefixed with “result..” For example, if
the record contains

PurchaseOrderNumber = 123456, SupplierNumber = ’201008’

then the evaluation context being created can resolve the following values:

result.PurchaseOrderNumber = 123456, result.SupplierNumber = ’201008’

This is useful if you need to bind expression variables that cannot be evaluated
finally on the client side, must must be evaluated based on some kind of “result”
during the action execution.

The returned evaluation context builder has a number of methods that you may use:

Method Remarks
add Which takes a prefix and a MiValueInspector. The evaluation context

will be augmented to contain the fields/values contained by the value
inspector, but—like in the case with the create method above— with a
specific prefix. Instead of the default result-prefix, you can specify your
own. This may be needed either if the name result for some reason
seems off, or in case you need to have parametrizations from several
different sources.

build This returns a MiEvaluationContext with the capabilities specified
for the builder until now.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 144 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

4.13 Other Container Events

By now, we have covered all data-carrying events as well as the supportive event
defineSpec. There are, a few more supportive events.

4.13.1 Open and Close Events

When a container is going to be used, it must first be “opened.” After using the container,
it must be “closed.” For normal operations, the Extension Framework will automatically
open and close the containers it needs to address. When programmatically accessing
containers, you will need to Open and Close these.

The Open-event exists to notify a container that it’s going to be used for one or more
operations. The Close-event similarly exists to let the container know that it is no longer
needed. The Open-event may be used to allocate needed resources, setting up connections
etc. For exactly this reason, it is vital that if a container is Opened, it is also Closed; the
allocated resources can be released on the Close event.

Currently, implementing the Open and Close events is not optimally supported, and it is
expected to be changed in the near future. If you must implement these methods, please
consult Deltek Engineering first!

4.13.2 Restrict Events; Modifying Searches

When using the workspace client, searching frequently takes place: every time you type
something in a field decorated with a magnifying glass or a drop-down button, a search is
invoked as soon as you pause for a while. This feature is known as “search-as-you-type.”
Generally, this is just a way of doing what is generally called a “foreign-key search” or a
“Ctrl+G” search.

In a naïve implementation, such a foreign-key search for something, would just find all
“somethings.” Often, this is far from desirable. What is frequently needed is a certain
foreign-key condition. A foreign-key condition is a specific search-restriction that is being
applied when searching, without the user explicitly being aware of this. For example, a
foreign-key condition could be “JobHeaders where Blocked = false.” While this is a
perfectly valid and possible foreign-key condition, often you want something even more
elaborate. You need the foreign-key condition to adapt to the data you are currently
editing.

For example, suppose you want to enforce that the only employees who can be appointed
ProjectManager for a job are those associated with the same CompanyNumber as the job.
This means that when you edit a job belonging to CompanyNumber “1,” only employees of
company 1 may be assigned as project manager. But when you have a job belonging to
CompanyNumber “2,” only employees of company 2 may be assigned as project manager.
This cannot be expressed with a static foreign-key condition—you need dynamically
generated foreign-key conditions.

c©Deltek Inc. 2013–2019, All Rights Reserved 145 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.13. OTHER CONTAINER EVENTS

1: “Search” with
user restrictions

Merge user
restrictions with

foreign-key
condition

2: Restrict
Host container

3: Result:
Foreign-key
condition

4: Read
Search container

5: Result

5: “Search”
result

Figure 4.16: When a search is taking place, the restrictions imposed by the user is merged
with the foreign-key condition obtained from the “host” container before the “search”
container is read.

This is where the Restrict event occurs. When a search is taking place, this is basically
a Read event of some filter pane in some container. Notice, that it is usually a completely
different container than the one you are making the search from! For example, searching
for a project manager in the maconomy:Jobs container will lead to a Read event in
the container maconomy:Find_Employees! When you add or change foreign-keys using
the defineDomesticSpec , you can specify the name of an associated container; that
container is the one that is invoked when a search is made using that foreign-key (see
Section 4.2.3.) Before the Read event occurs, the container from where you are searching
(called the host) will be invoked: the Restrict event occurs. This gives the host the
opportunity to identify a restriction that must be applied to the search. Part of the
event-data is information about the uncommitted data which currently resides in the
host pane!

Figure 4.16 shows the steps involved when a search is taking place. Notice that the
search may have some restricitons imposed by the user (e.g., “CustomerName starts with
‘Bri’” or Blocked=false.) A Restrict event then takes place in the host container. The
resultin foreign-key condition (which may simply be true to indicate that no further
restrictions is applied) will be “merged” with the user restrictions. Merging means that
the foreign-key condition is “and’ed” with the user restrictions. Using the combined
restriction, a Read event takes place on the search container, and the result from that
event is the search result.

By now, we know about Read events. Let us take a close look at the Restrict event.
The Restrict event is not data-carrying, and it does not have “Pre” and “Post” scripts.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 146 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

Container

Ext1Ext2Ext3Ext4 Root

Restrict

Result

Figure 4.17: The Restrict container-event method is a supportive event. The container
must be able to produce an expression, known as a foreign-key condition. The default
foreign-key condition is true (i.e., all records for which true is true, that is: all records.)
Notice that the event starts from the Root and goes through the extensions from there.

This is shown in Figure 4.17. Notice that the process starts at the root level.

The Restrict event is supported by data models. Figure 4.18 shows the life-cycle of
Restrict events using data-models. Like other events, the event method onRestrict
takes two parameters: containerRunner and eventData. The eventData method offers

Container

Ext1

onRestrict()
Root

onRestrict()

Restrict

Result

DatamodelExt1

onRestrict()

DatamodelRoot
onRestrict()

Figure 4.18: The life-cycle for the Restrict event implemented using data-models. For
both root and extension contributions, the method onRestrict method is invoked from
the container’s onRestrict method.

a number of methods that are specific for this particular event:

Method Remarks
getForeignKeyName This method returns the name of the foreign-key for

which a foreign-key condition should be returned.
getRestrictionValues This method returns a MiValueInspector specifying

the value of the current uncommitted fields in the host
pane. Hence, if the user has modified two fields (but not
“Saved”,) and then invokes some search, the modified
values will be reflected. Fields that have not been
edited by the user will reflect the original value.

c©Deltek Inc. 2013–2019, All Rights Reserved 147 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.13. OTHER CONTAINER EVENTS

Method Remarks
getQueryExpressionAdmission This method returns an object of type

MiQueryExpressionAdmission . This object re-
flects the current foreign-key condition. You can
modify and inspect the foreign-key condition through
this object.

The MiQueryExpressionAdmission type contains a few interesting methods:

Method Remarks
and This method can be used to “and” an additional con-

dition to the foreign-key condition. Usually, you will
want to use this.

clear Clears the entire foreign-key condition, leaving it as a
true expression (“show all.”)

andContainerSpecific This method is for advanced use only, and should be
used only for root contributions. It adds a condition
in a form that isn’t represented in a normal expression.
This might be used to communicate with back-ends
that are not able to communicate enforced foreign-
key conditions in a way that can be translated to an
expression, i.e., by using some kind of token.

toQueryExpression This method converts the current content of this object
to a MiQueryExpression . Using this object, you can
extract an MiExpression for further inspection, as well
as any container specific condition.

As an example, suppose that your client asks for a “Expense Reason” in the table of the
maconomy:ExpenseSheets container. This possible reasons should be presented using
a drop-down-like interface. It must be possible for a system administrator to configure
the set of allowed expense reasons. You can implement this by using “Option Lists”: we
dedicate a specific option list to contain the value of expense reasons. The field Remark1
on the expense sheet lines is used to contain the reason.

The onRestrict event can be implemented like this:

public void onRestrict(final MiRestrict containerRunner , final
MiEventData.MiRestrict eventData) {

if (eventData.getForeignKeyName ().equalsTS(
FK_EXPENSE_REASON_OPTION)) {

Version 1.4.021, software version 2.5.0 (21.0.sp100) 148 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

eventData.getQueryExpressionAdmission ().and(
EXPR_OPTIONLIST_EXPENSE_REASON);

}
}

Notice the check concerning which foreign key/search key is in scope. Only if it is the one
matching the constant maconomy:FK_EXPENSE_REASON_OPTION, do we apply the desired
restriction. It is an important point, that searches are not done from a field, but rather
via a foreign-key or a search key! If a given foreign key contains more than one field, then
a specific foreign-key restriction should be applied no matter which field the search was
initiated from. Sometimes, a field may be associated with several foreign keys/search keys.
In this case, it makes little sense to know that a search was initiated from that field: we
need to know which search. You may affect the priority of which foreign key/search key is
being used from a specific field. Please refer to Section 4.2.1 for more information.

The code snippet above assumes that the field Remark1 has been search-enabled, and
that the maconomy:Find_TheOption is used for searching from within this field. Listing
4.21 shows the entire implementation of all the things that should be done:

• The field Remark1 should have its default title changed, and should be specified as
having “on-demand” (drop-down-like) search. This is done in the defineDomestic-
Spec method.

• A new foreign key or search key involving the field Remark1 should be specified.
It should reference TheOption, using the maconomy:Find_TheOption container
as search container. In this case, we must use a search key because we cannot
reference all key fields from the option list. The foreign-key condition produced by
onRestrict will ensure that the search is adequately delimited. In the example,
this takes place in line 17.

• The onRestrict (lines 37–41) method must be implemented, restricting the
searches for option lists such (made using the new search-key) that only options in
the dedicated option list is presented.

• The onChange (lines 24–34) event should be implemented in order to ensure that
the user does not “manually” (i.e., without selecting an option from a search-result)
enter a reason that is not specified as an option in the expense-reason option list.

In the example, lines 3–7 declares a number of constants that makes the code more easily
maintainable and readable.

Listing 4.21: Restricting Values Using an Option List.
2 public class OptionListDataModel extends

McAbstractExtendedDataModel {
3 private static final MiKey FIELD_EXPENSE_REASON = key("Remark1")

;
4 private static final MiKey FK_EXPENSE_REASON_OPTION = key(

FIELD_EXPENSE_REASON.asString () + "_TheOption");

c©Deltek Inc. 2013–2019, All Rights Reserved 149 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.13. OTHER CONTAINER EVENTS

5 private static final McStringDataValue
EXPENSE_REASON_SETUP_OPTION_LIST = McStr.val("
Trifolium_Expense_Reason_Setup");

6 private static final MiValueInspector OPTIONLIST_NAME =
dataValues ().setVal("OptionListNumber",
EXPENSE_REASON_SETUP_OPTION_LIST);

7 private static final MiExpression <McBooleanDataValue >
EXPR_OPTIONLIST_EXPENSE_REASON = OPTIONLIST_NAME.asExpression
();

8

9 public OptionListDataModel(final MiResources resources) {
10 super(resources);
11 }
12

13 @Override
14 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
15 return McPaneSpec.McExtended.pane()
16 .changeField(FIELD_EXPENSE_REASON).title("Reason").

onDemandSearch ().then()
17 .addSearchKey(FK_EXPENSE_REASON_OPTION ,
18 "Expense Reason",
19 "maconomy:Find_TheOption").link(

FIELD_EXPENSE_REASON , key("Name"))
20 .end();
21 }
22

23 @Override
24 public void onChangePost(final MiChangePost containerRunner ,

final MiUserChange eventData) throws Exception {
25 final MiDataValues resultData = eventData.getResultData ();
26 if (eventData.getUserData ().changed(FIELD_EXPENSE_REASON)) {
27 final MiExpression <McBooleanDataValue > checkValidOption =
28 McExpressionUtil.and(EXPR_OPTIONLIST_EXPENSE_REASON ,

dataValues ().setVal("Name", resultData.getVal(
FIELD_EXPENSE_REASON)).asExpression ());

29 containerRunner
30 .check(getDatabaseApi ().mcount("TheOption").where(

checkValidOption).getResult () > 0)
31 .error(McMsg.msg("Please choose a value from the list.",
32 FIELD_EXPENSE_REASON));
33 }
34 }
35

36 @Override /// onRestrictStart
37 public void onRestrict(final MiRestrict containerRunner , final

MiEventData.MiRestrict eventData) {
38 if (eventData.getForeignKeyName ().equalsTS(

FK_EXPENSE_REASON_OPTION)) {

Version 1.4.021, software version 2.5.0 (21.0.sp100) 150 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 4. CONTAINER EVENTS

39 eventData.getQueryExpressionAdmission ().and(
EXPR_OPTIONLIST_EXPENSE_REASON);

40 }
41 }
42 /// onRestrictEnd

The above example statically applies a specific foreign-key condition to a specific foreign-
key search. Sometimes, the foreign-key conditions need to be dynamic, i.e., dependent of
the data in the host pane (the pane from where the search is initiated.) Suppose that
your client wants you to make the following: when selecting a project manager for a job,
it must only be possible to enter employees belonging to the same company as the job
belongs to.

In this case, we need to build the foreign-key condition depending on the uncommitted job
data. Hence, if the user has entered company “2” then the search for project managers
should only show employees of company 2. However, changing the company to “1” should
imply that searches for employees should only reveal employees of company 1. In this
case, the implementation of onRestrict could be something like:

public void onRestrict(final MiRestrict containerRunner ,
final MiEventData.MiRestrict eventData)

throws Exception {
final MiValueInspector restrictionValues =

eventData.getRestrictionValues ();
if (eventData.getForeignKeyName ().isLike("

ProjectManagerNumber_Employee")) {
eventData.getQueryExpressionAdmission ()

.and(restrictionValues.copyValues("CompanyNumber").
asExpression ());

}

Notice the use of the McExpressionUtil . createExpression . This method makes
an expression from a set of values. As argument, it gets the sub-set of fields from the
uncommitted data, comprising only the field CompanyNumber.

In a real-life example, we might additionally want to implement a check in onChange
ensuring that the user does not manually enter an employee that is not allowed.

c©Deltek Inc. 2013–2019, All Rights Reserved 151 Version 1.4.021, software version 2.5.0 (21.0.sp100)

4.13. OTHER CONTAINER EVENTS

Version 1.4.021, software version 2.5.0 (21.0.sp100) 152 c©Deltek Inc. 2013–2019, All Rights Reserved

Chapter 5

Container Call-backs

In this chapter we shall have a look at the call-back events that can occur from a
container. Call-back events are events that are initiated programmatically with the
purpose of interacting with the client-side/user.

In the previous chapter, a few examples has made use of call-backs. Until now, this
has been unexplained. In this chapter, you will learn how to initiate a call-back, what
the run-time model for call-backs is and how to make extensions that interact with
the call-backs on behalf of the user. This includes modifying, changing and “ignoring”
call-backs.

5.1 The Call-Back Mechanism

Let us start out by asking: “why do we need call-backs at all?” The main reason is
increased usability. The secondary reason is that sometimes, call-backs are really needed.
Let us have a look at the different kinds of call-backs that can be made:

Message call-backs give some kind of message to the end-user. There are three kinds
of message call-backs: Errors, Warnings and Notifications.

Progress call-backs are used to communicate progress to the end-user. For long-
running tasks, it can be highly desirable to communicate that work is being done,
is progressing and giving the user some kind of idea of when the operation can be
expected to be finished. Visually, progress call-backs will display a progress bar
and a status message in the workspace client.

Document call-backs are used to communicate documents to and from the end-user.
For example, presenting a PDF with a printed invoice is implemented by making
a document call-back, requesting the client to show a given document. In some
cases, the logic needs some kind of input file that the user selects. This is also a
document call-back, this time requesting a file from the user.

153

5.2. MESSAGE CALL-BACKS

Container

Ext1
onCb ()

Ext2
onCb ()

Ext3
onCb ()

Ext4
onCb () cb()

Root
Call-back: cb

Figure 5.1: The event flow of procedural call-back events. In this example, the call-back,
cb , is initiated in the Root contribution. It might just as well be initiated in any of the
extension contributions.

Miscellaneous call-backs In the current version, a specific call-back instructs the
client to render itself in “test-mode.”

5.1.1 The General Call-Back Event Flow

When a call-back is initiated, it is initiated in some container contribution. This may
be the root contribution or some extension contribution. Most call-back events are
procedural. This means that there is no “return value” from the call-back. The call-back
is made. Period. A few call-backs are functional, which means that the call-back results
in a return value. The flow is a little different in the two cases. Figure 5.1 shows the
general flow for procedural call-backs. In the shown example, the call-back is initiated in
the Root contribution. It might as well be initiated in any of the extension contributions.
Only contributions between the initiating one and the user will be notified about the
call-back. Once a call-back, Cb , is initiated the “next” contribution (i.e., the contribution
towards the client side/user) will be notified. This happens by invoking the method
onCb in that container. This goes on until there are no more extension contributions.
At that time, the resulting call-back will be invoked in the client. As usual, this event
will by default delegate to a corresponding method in the data-model. This is shown in
Figure 5.2. Notice that the contribution from where the call-back is initiated does not
have its call-back handling method (onCb) invoked.

5.2 Message Call-Backs
The message call-backs cover the following specific call-backs:

Error call-backs which provides a nice error message to the end-user indicating that
some condition is not fulfilled. For example that the cost price cannot be negative,
or that a reference to a non-existing employee is attempted. The Error call-back is
probably the most widely used.

Warning call-backs which provides a message to the end user. The user may either
choose to cancel the operation (in which case the transaction is rolled back and
the control flow is terminated—just like for error call-backs.) Or the user may
choose to continue, in which case the transaction continues without further ado.
The Warning call-back should be used with great thought. The reason is that while

Version 1.4.021, software version 2.5.0 (21.0.sp100) 154 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

Container

Ext1

onCb ()
Root

cb()

Call-back: cb

DatamodelExt1

onCb ()

DatamodelRoot

Figure 5.2: The event flow of procedural call-back events. In this example, the call-back,
cb , is initiated in the Root contribution. The call-back event-handling method, onCb is
only invoked in the “next” contributions. I.e., the contribution that initiates a call-back
does not have its onCb method invoked.

the use decides whether to continue or cancel the operation, the entire transaction
is paused. If some data-base operations have been initiated and locks have been
taken, these locks will be maintained until the user takes a decision. This may
lead to performance issues for other users. For exactly this reason, Warnings will
automatically time-out after 5 minutes (defaulting to Cancel) in the workspace
client.

Notification call-backs which provides a nice informative message to the end-user.
The information is shown on the client side, and the control flow continues.

Fatal call-backs which provides no-so-nice error messages to the end-user. Basically,
fatal errors should never occur! If they do, you should be prepared to receive an
error report; it means that your code is wrong or that some database invariant has
been violated! The message shown to the end-user is therefore more of an internal
“debug-like” nature, and will include a stack-trace that helps you identify the source
of the error.

For Error and Warning call-backs, you may optionally indicate the name of a field which
should take focus. In case of Warning, the field focus is only taken into account if the
user cancels the operation.

In many cases, requesting field-focus in relation to error-messages or warnings highly
improves usability. For example, suppose that you specify an error message saying “The
amount cannot be negative.” The user gets this error and wonders which amount is being
referred to. Of course, a better error message would help. But even a message like “The
cost price cannot be negative” may be annoying to the end user. Suppose the user has
edited a number of fields. The field currently having focus is probably not the “Cost
Price” field. Now when the message appears, the user will have to identify the Cost
Price field, put focus in it and change the value. It is much more convenient if the client

c©Deltek Inc. 2013–2019, All Rights Reserved 155 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.2. MESSAGE CALL-BACKS

automatically puts focus in the field in question.

5.2.1 Invoking Message Call-Backs

All message-like call backs are triggered based on some condition. The general way of
thinking is:

Check that some condition is true. If this is not the case, I want a specific
message/error/warning.

In the Extension Framework the way to invoke a message is basically a two-step process:
first you invoke a check. This returns an object that lets you do an error, a warning or a
notification. The error/message/warning is, however, only processed if the condition was
true. Otherwise, nothing happens.
containerRunner.check (! userData.getStr("JobNumber").isEmpty ())

.error("You must specify a Job");

Hence, fist the method check is invoked on the containerRunner. This returns an
object on which you can specify an error or another message call-back. If the condition
passed to the check evaluated to true, then doing so does nothing at all. Otherwise, an
error (or whatever message call-back is requested) occurs. You may store the result of the
check method in a local variable if you wish. The expression passed to the check method
is evaluated immediately when the check-method is applied—not when the corresponding
call-back is requested! The return type of the check method is MiContainerChecker .
Usually, you don’t store this type in a local value. Instead you directly invoke one of the
following methods:

Version 1.4.021, software version 2.5.0 (21.0.sp100) 156 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

Method Remarks
error This error displays a (nice) error-message to the end-user,

rolls back the transaction and terminates the control flow.
This method comes in a number of flavours: the value argu-
ment can be of a number of different formats:
String The string content will be displayed in the error

message.
MiMsg The MiMsg type comprises a text message and a

focus field. If a field with the specified name is visible
in the pane in which the error occurs, that focus will
get focus. Otherwise, a focus change is not performed.
You can construct a MiMsg by using the McMsg class,
which provides a static method, msg . By using static
imports, this may let you simply write msg(...) rahter
than McMsg.msg(...).

MiText The MiText type embeds textual information that
should be presented to an end-user. This is similar to
the String variant. Unless you inline your messages,
you should use this variant or the MiMsg variant. In
order to obtain a localized message, you should use a
term method to obtain the text, see Section 7.11.

Parameterized versions of the above methods. Just like
you can invoke container-events with parameters, you
may invoke the call-backs using parameters. E.g.,
error("Message", parameters). If you do not ex-
plicitly specify a parameter set, the call-back will by
default be associated with the parameters in scope (i.e.,
the parameters for the current event or call-back.)

warning This error displays a (nice) warning-message to the end-user,
letting the user decide whether to cancel (which rolls back the
transaction and terminates the control flow) or continue the
current operation, in which case the control flow continues
as if nothing had happened. This method comes in variant
similar to error as shown above.

notification This error displays a (nice) information-message to the end-
user. The control flow continues as if nothing had happened.
This method comes in variant similar to error as shown
above. No focus changes will be applied for notifications
though.

c©Deltek Inc. 2013–2019, All Rights Reserved 157 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.2. MESSAGE CALL-BACKS

Method Remarks
fatal This error displays a (non-nice) error-message to the end-user.

The message is not intended for the end-user but for the
programmer. If a fatal error triggers, it corresponds to an
assertion violation. The error dialog shown to the user will
contain a “Details” button which reveals a stack trace. The
fatal method comes in a number of flavours corresponding
to those for error as shown above. In addition, you may
optionally specify any number of Java-objects for which you
wish to see the content in case the fatal error is triggered.
The content is generated by invoking the toString method
on each object.

The examples of Chapter 4 contain several uses of error invocations. In Listing 5.1 more
examples are shown. Notice that the pattern is roughly the same for Error, Warning,
Notification and Fatal. Fatal, however, is different in that the arguments are merely
just raw information-objects that we’d like to see in case the assertion doesn’t hold.
In the example, the assertion is that if an employee has a LocationName associated,
then that location can be looked up. This should certainly hold! If not, we need to see
the value of the LocationName as well as the EmployeeNumber in question. Notice that
the information objects can be arbitrary complex data-structures. In order to gain any
benefit, though, the associated objects must have a toString implementation that shows
an adequate amount of details in a readable format. For brevity, the listing assumes that
McMsg has been statically imported. This allows the programmer to write msg(...,
...) instead of McMsg.msg(..., ...).

Listing 5.1: Invoking Message Call-Backs.
2 public void onUpdatePost(final MiUpdatePost containerRunner ,
3 final MiUpdate eventData) throws

Exception {
4

5 // Demonstra t ion o f v a r i o u s ways o f do ing message
6 // c a l l −bac k s
7 final MiUserData userData = eventData.getUserData ();
8 final MiDataValues resultData = eventData.getResultData ();
9

10 // I f t h e l i n e i s l o c k ed , and MyField i s
11 // changed , g i v e an error , p u t t i n g
12 // f o c u s in MyField .
13 containerRunner
14 .check(userData.unchanged("MyField")
15 || !userData.getBool("Locked"))
16 .error(msg("Field cannot be changed when line is locked",
17 "MyField"));
18

Version 1.4.021, software version 2.5.0 (21.0.sp100) 158 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

19 final BigDecimal billingPrice = userData.getAmount("
BillingPrice");

20 final BigDecimal cost = userData.getAmount("CostPrice");
21 // I f t h e b i l l i n g p r i c e i s l owe r than t h e
22 // cos t , g i v e a warning . I f u s e r
23 // cance l s , pu t f o c u s in B i l l i n g P r i c e f i e l d .
24 containerRunner
25 .check(userData.unchanged("BillingPrice")
26 || billingPrice.compareTo(cost) < 0)
27 .warning(msg("Billing Price is lower than Cost Price",
28 "BillingPrice"));
29

30 if (userData.changed("EmployeeNumber")) {
31 final MiDataCache employeeCache = dataCaches.getCache("

Employee");
32 // I f t h e u s e r e n t e r s an employee number t h a t
33 // does not e x i s t , g i v e an e r r o r w i t h
34 // f o c u s in EmployeeNumber f i e l d
35 containerRunner
36 .check(employeeCache.exists(userData))
37 .error(msg("Employee does not exist",
38 "EmployeeNumber"));
39

40 final MiValueInspector employee = employeeCache.getRecord(
userData);

41 final String employeeLocation =
42 employee.getStr("LocationName");
43 if (! employeeLocation.isEmpty ()) {
44 // l o o k up t h e d e s c r i p t i o n o f t h e employee ’ s l o c a t i o n
45 // I t i s assumed t h a t t h e l o c a t i o n MUST e x i s t
46 final MiDataCache location = dataCaches.getCache("Location

");
47 containerRunner
48 .check(location.exists(employee))
49 .fatal("Location missing", employee);
50

51 resultData.setStr("LocationName", employeeLocation);
52

53 // I f t h e d e r i v e d l o c a t i o n i s d i f f e r e n t from
54 // what t h e u s e r has j u s t seen , n o t i f y
55 // t h e u s e r abou t t h a t .
56 containerRunner
57 .check(employeeLocation
58 .equals(userData.getStr("LocationName")))
59 .notification("Location has been changed to "
60 + employeeLocation);
61 }
62 }

c©Deltek Inc. 2013–2019, All Rights Reserved 159 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.2. MESSAGE CALL-BACKS

Sometimes you want to unconditionally do some message call-back. Maybe, the code
structure is such that if the control flow passes a certain statement, then an error/warning
condition has occurred. Or maybe you want to unconditionally show some message to
the user, e.g., “The job has been copied.”

In such cases, you can obviously write

containerRunner.check(false)
.notification("The job has been copied");

However, it feels awkward to do so: you specify false as a condition because you want
the message. In order to make such code more readable, you may obtain an object
that will unconditionally lead to a given message-callback. This method is called call .
Using this method, the above example could be written:

containerRunner.call().notification("The job has been copied");

Which is less awkward, more readable and less error prone. In this way you can invoke
any message call-back unconditionally.

5.2.2 Reacting on Message Call-Backs

You may choose to react when a given message call-back occurs, although you can only
react to call-backs that occur in contributions nearer to the root; you are never notified
of call-backs occurring in contributions “before” your contribution.

Why would you want to react to a message call-back? There are several use-cases,
including:

• Discard/suppress warnings. When reacting on a warning call-back, you may choose
to discard the warning, continuing as if nothing has happened. This is particularly
useful if you make operations that programmatically invokes a number of events of
which some may invoke warnings that you don’t want to propagate to the end-user
in particular cases.

• Discard/suppress notifications. Some notifications are seen as annoying and irrele-
vant in some customer installations. Such notifications may be discarded.

• Turn warnings into errors. You may choose to do an Error callback instead of a
given Warning callback. You can change the warning message or reuse it for the
error.

• You may wish to change the message or the field focus.

Notice that you can discard Warning and Notification call-backs, but you cannot
discard Error and Fatal call-backs: if an error occurs in some contribution, it occurs,
and the operation must be aborted! Figure 5.3 shows the life-cycle of message call-backs
exemplified by the Warning call-back.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 160 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

Container

Ext1

onWarning()
Root

warning()

Warning

DatamodelExt1

onWarning()

DatamodelRoot

Figure 5.3: All message call-backs are procedural: even the warning! The warning does
not return, e.g., false if the user cancels. Instead the control-flow is aborted. The
life-cycle of the other message call-backs are similar to the one shown for Warning.

Listing 5.2 shows an example reacting on Warnings and Errors. Notice, that any warning
invoked in contributions closer to the root in the container in question will result in
the onWarning method being invoked. It is frequently the case, that a certain call-back
behavior is only sometimes needed. You may use parameters to communicate such
information. In the shown example, we check for certain parameters in order to determine
whether to: discard/suppress/skip the warning, continuing as if nothing has happened.
Or to make the warning into an error, using the same message. Or to change the warning
message entirely. Notice the use of the method skip in line 13. Invoking skip implies
that the next contributions (e.g., between this contribution and the client) are not notified
about this call-back, and after the callback-handling method terminates, the control flow
continues as if nothing has happened. It is not syntactically possible to invoke skip for
Error and Fatal events.

Line 19 shows how to turn a warning into an error: you simply start a new call-back, in
this case an Error call-back. Since the control-flow cannot continue after an error, there
is no need to also skip the warning.

Line 24 is interesting: it shows how to continue the current call-back but with modified
arguments. This is done by invoking the next method on the containerRunner. This
is different from merely invoking a new warning call-back. Doing so could lead to two
consecutive warnings to the user: if the first is accepted, the current warning would
continue. The current call-back continues after the call-back-handling method terminates
unless either next or skip have been called.

The next method is also used in the implementation of onError in line 36: here the
task is to always set focus to some field, MyField, when an error occurs. This is done by
modifying arguments of the current Error event.

Listing 5.2: Reacting on Message Call-Backs.
2 @Override

c©Deltek Inc. 2013–2019, All Rights Reserved 161 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.3. PROGRESS CALL-BACKS

3 public void onWarning(final MiWarning containerRunner ,
4 final MiMsg message) throws Exception {
5 final MiParameters parameters = containerRunner.getParameters

();
6

7 if (parameters.getBoolOrElse("SkipWarn", false)) {
8 // d i s c a r d t h e warning ; t h e " nex t " c o n t r i b u t i o n
9 // i s not n o t i f i e d abou t t h e warning a t a l l and

10 // c o n t r o l f l ow c on t i n u e s from where t h e warning
11 // was made . This c o r r e s pond s t o t h e u s e r
12 // s e l e c t i n g "OK" .
13 containerRunner.skip();
14 }
15

16 if (parameters.getBoolOrElse("WarnAsError", false)) {
17 // Make t h e warning i n t o an e r r o r by
18 // i n v o k i n g an e r r o r c a l l −back
19 containerRunner.call().error(message);
20 }
21

22 if (parameters.getBoolOrElse("ChangeMsg", false)) {
23 // Comp l e t e l y change t h e warning message
24 containerRunner.next(msg("This is a changed warning message"

));
25 }
26

27 }
28

29 @Override
30 public void onError(final MiError containerRunner ,
31 final MiMsg message) throws Exception {
32 // Always pu t f o c u s in " MyField " i f an e r r o r oc cu r s
33 final MiMsg myFieldFocusMsg =
34 msg(message.asText (), "MyField");
35

36 containerRunner.next(myFieldFocusMsg);
37 }

5.3 Progress Call-Backs

The progress call-backs are meant to control various aspects of progress indication to
end-users. Progress-indication is highly useful for long-running operations. Experience
shows that an operation that is perceived as “slow” by the users can be seen as “ok”
by the same users, just by adding progress indication! With the progress callbacks you
can:

Initialize a progress bar Hence presenting a no-progressed progress-bar with a certain

Version 1.4.021, software version 2.5.0 (21.0.sp100) 162 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

initial message and the estimated number of steps to process. Currently, only one
progress indicator is supported.

Update the status of a progress bar This will change the status of the progress bar,
e.g., increasing the progress. You may also change the message displayed in the
progress bar. You must not update the status of a progress bar unless one has been
initialized and has not been closed yet.

End a progress bar Hence, “closing” the progress indication.

5.3.1 Invoking Progress Information

In order to do invoke progress information, you must do the following steps:

1. Initiate a progress bar

2. Do zero or more updates to the progress status

3. End the progress bar

In order to get a handle to communicate progress-information, you must invoke the
method progress on the containerRunner. By doing this, you get access to the
following methods:

Method Remarks
start Starts a progress bar. This method must be invoked prior

to invoking step. Only one open progress bar is supported.
This method comes in a number of flavours, but common
for all is that a status message (in the form of a String or
a MiText) must be provided. In addition, you may option-
ally provide the estimated total number of steps that will
be undertaken during progress feedback. Finally, you may
provide a set of parameters. If you do not explicitly specify
a parameter set, the call-back will by default be assoicated
with the parameters in scope (i.e., the parameters for the
current event or call-back.)
This method returns an object of the type
MiContainerProgresser . MiProperties which may
be used to control the progress behavior in a slightly
advanced way. Typically, however, the easiest is to let this
object alone. See page 166 below for more information on
advanced progress management.

c©Deltek Inc. 2013–2019, All Rights Reserved 163 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.3. PROGRESS CALL-BACKS

Method Remarks
step When this object is called, the progress indicator is up-

dated. In normal use-cases, the step method will increase
the progress with one step out of the total amount of steps
declared for the start callback. If the total number of steps
has not been defined, the progress indicator will only be
advanced if you use advanced progress management. If the
total number of steps has been defined, the progress indicator
will be advanced by one step, unless you have been managing
the progress properties manually.
You may opt to change the status message upon stepping.
Doing so will simply update the displayed message in the
progress indicator.
You may choose to specify a set of parameters to be associated
with this call-back. If you don’t, the parameters currently in
scope (i.e., the parameters for the current event or call-back)
will be used.

end This method terminates the progress indicator. You should
not start more than one progress indicator at a time, and
you must end on that has been started!

The typical usage for progress indications is when your logic iterates over something
in cases where each step might take some time. Or it could be a combined opera-
tion comprising a number of steps, and where each step takes a noticeable amount of
time.

Listing 5.3 shows an example implementation of an action that submits and approves a
number of time sheets. The selection of the time sheets and the actual submitting and
approval is not shown, since this is not the important part here. What is important is
how progress indication is used to give feedback to the end-user that the operation is
running and progressing. In line 9 the progress indicator is started with a status message.
Also notice that the estimated number of total steps is provided as information. In this
case, the number of time sheets that has been selected for submission and approval.
Following that, we loop over every selected time sheet and submits & approves each of
them. For each of these time sheets, the progress indicator should be updated with one
step. This is done in line 12. Since no status message is provided, the current status
message is left unchanged. Finally, after the loop, the progress indicator is removed in
line 15 by invoking the end method. Notice that the step method is invoked before
doing the main operation. Whether to do this before or after is a matter of taste. You
should notice a couple of things:

• If you update the progress after an operation (e.g., indicating what has already

Version 1.4.021, software version 2.5.0 (21.0.sp100) 164 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

been accomplished) the end-user will rarely experience the progress-bar going to
100, since it is closed immediately after the last (100%) step.

• The current progress-indicator implementation in the workspace client attempts to
“animate” the progress bar. And this takes a while. So, for example, if you have two
steps, then step 1 will lead to an animation from 0% to 50%. The second step will
lead to an animation from 50% to 100%. Since the animation takes some time, the
progress indicator will likely be closed in good time before the animation is done if
the update is the last thing happening before the progress indicator is ended.

Listing 5.3: Invoking Progress Call-Backs.
2 public void onAction(final MiActionPost containerRunner ,
3 final MiAction eventData) throws

Exception {
4 final MiSet <MiKeyValues > selectedTimeSheets =
5 getTimeSheetsToSubmitAndApprove(containerRunner);
6

7 final int totalSteps = selectedTimeSheets.size();
8 if (totalSteps > 0) {
9 containerRunner.progress ().start("Automatically submitting

and approving time sheets",
10 totalSteps);
11 for (final MiKeyValues timeSheet : selectedTimeSheets) {
12 containerRunner.progress ().step();
13 submitAndApprove(containerRunner , timeSheet);
14 }
15 containerRunner.progress ().end();
16 }

In the example above, the status message displayed by the progress indicator was static.
You may want to update the status message to indicate either a “phase” or some kind
of counter. Listing 5.4 shows an implementation that is almost identical to that in
Listing 5.3, except that the status message is updated to let the user know exactly how
many time sheets have been processed. The difference is found how the step method is
invoked in line 13: this time it provides a status message rather than keeping the current
message.

Listing 5.4: Updating Status Messages During Progress Indication.
2 public void onAction(final MiActionPost containerRunner ,
3 final MiAction eventData) throws

Exception {
4 final MiSet <MiKeyValues > selectedTimeSheets =
5 getTimeSheetsToSubmitAndApprove(containerRunner);
6

7 final int totalSteps = selectedTimeSheets.size();
8 if (totalSteps > 0) {
9 int currentStep = 0;

c©Deltek Inc. 2013–2019, All Rights Reserved 165 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.3. PROGRESS CALL-BACKS

10 containerRunner.progress ().start(getCurrentStatus(
containerRunner , totalSteps , currentStep),

11 totalSteps);
12 for (final MiKeyValues timeSheet : selectedTimeSheets) {
13 containerRunner.progress ().step(getCurrentStatus(

containerRunner , totalSteps , ++ currentStep));
14 submitAndApprove(containerRunner , timeSheet);
15 }
16 containerRunner.progress ().end();
17 }
18 }
19

20 private String getCurrentStatus(final MiActionPost
containerRunner ,

21 final int totalSteps ,
22 final int currentStep) {
23 return String.format("Automatically submitting and approving

time sheets: %d of %d",
24 currentStep ,
25 totalSteps);

You should notice, that the end-user may cancel an operation by “cancelling” the progress
indication. If the user does so, an McInterruptedException is thrown. If uncaught, the
operation will be aborted, and a roll-back will be made. Normally, you should not catch
such an exception, and you don’t have to end the progress indicator in this case: that
will be taken care of automatically.

Advanced Progress Management

On rare occasions, you may not find it easy to estimate the number of steps or de-
termine exactly when a full “step” has been accomplished. In such cases, you can
control the progress indication more manually. In order to do this, you must access the
MiContainerProgresser . MiProperties which is returned from the start call-back.
By modifying this object, you can control in a more fine-grained way how to update the
progress indicator. Modifying this object does not in itself lead to any progress indication
update. However, upon the next invocation of step , the update takes place. If you have
manually changed the progress part (i.e., the “percentage”, not just the status message),
the step method will not automatically change the progress “percentage”; instead the
values having been provided by you will be used.

The properties object gives access to a number of methods:

Method Remarks
getDecimalPos Returns the current decimal-valued representation of the

current progress. A value of 1 corresponds to 100%.
getDefaultStepSize Returns the amount with which the decimal position (see

above) will be increased when a normal step is invoked.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 166 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

Method Remarks
getMessage Returns the current status message.
getNextPos Returns the next step-wise position of the “next” step. I.e,

the progress as an integer (compared to the number of total
steps.)

getPos Return the current step-wise position of the “next” step. I.e,
the progress as an integer (compared to the number of total
steps.)

getTotalSteps Returns the currently specified total number of steps.
setDescription Changes the description associated with the progress indica-

tor. No call-back is actually made until the step method is
invoked.

setPct Changes the current progress indication value to a certain
amount, expressed as a percentage (0%–100%.) The client
may not be able to visualize a decreasing completion percent-
age! No call-back is actually made until the step method is
invoked.

setPosition Changes the current progress indication value to a certain
“position”, i.e., a certain number of absolute steps (compared
to the currently specified total number of steps.) No call-back
is actually made until the step method is invoked.

setTotalSteps Changes the current progress indication value by changing
the estimated number of total steps to be carried out. No
call-back is actually made until the step method is invoked.

getSubNextPos
getSubPos
getSubTotalSteps

These methods are intended to be called by the framework,
and are intended to support a notion of “sub-steps.” This
mechanism is experimental and subject to change. You
should not use these method unless you have discussed this
with Deltek Engineering!

By invoking the progress-property object using the methods listed above, you are able to
manually calculate, e.g., a certain percentage-of-completion, which can be used when the
step-size is non-linear or if the number of progress steps cannot be easily determined.

5.3.2 Reacting on Progress Call-Backs

Just like you can react on message call-backs, you can react on progress call-backs. As
for message call-backs, only contributions between the one invoking the call-back and
the end-user will be notified. The framework will invoke the onStart , onStep and

c©Deltek Inc. 2013–2019, All Rights Reserved 167 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.3. PROGRESS CALL-BACKS

Container

Ext1

onStep()
Root
step()

Step

DatamodelExt1

onStep()

DatamodelRoot

Figure 5.4: All progress call-backs are procedural. The life-cycle of the other progress call-
backs are shown here, exemplified by the Step call-back. The other progress call-backs
are similar.

onEnd automatically. Figure 5.4 shows the life-cycle of progress call-backs exemplified
by the Step call-back.

In such call-back-handling methods, you may invoke the skip method on the container-
runner. Doing so will effectively ignore the call-back in question. Hence, to get rid of
progress indication in a give situation, you can implement the above mentioned methods
and merely invoke skip.

You may also change the progress-properties; either the description or the progress
indicator.

If you merely want to change the properties of a given call-back, you should ensure
that you invoke next rather than making a new similar call-back: doing so will keep
the current call-back “alive,” and it will continue once your explicit call-back has been
carried out. For onEnd there is really nothing you can do except let the call-back through
or skip it. For this reason, next is not available in this case. For onStart, it is only
possible to modify the message, not the total number of steps; if you need to do this,
you will need to either invoke a completely new start call-back (and skip the current
one), or you need to use advanced progress management during onStep.

Listing 5.5 shows a short example where the progress behavior is being modified in this
way depending on certain parameters.

Listing 5.5: Reacting on Progress Call-Backs.
2 @Override
3 public void onStart(final MiStart containerRunner ,
4 final MiText description) throws Exception {
5 final MiParameters parameters = containerRunner.getParameters

();
6 // I f t h e S k i pP ro g r e s s parameter i s s e t , don ’ t show p r o g r e s s
7 if (parameters.getBoolOrElse("SkipProgress", false)) {

Version 1.4.021, software version 2.5.0 (21.0.sp100) 168 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

8 containerRunner.skip();
9 }

10

11 // Use t h e message communicated in Prog r e s sTex t parameter
12 // i f s p e c i f i e d .
13 if (! parameters.getStrOrElse("ProgressText", "").isEmpty ()) {
14 containerRunner.next(text(parameters.getStr("ProgressText"))

);
15 }
16 }
17

18 @Override
19 public void onStep(final MiStep containerRunner ,
20 final MiProperties properties) throws

Exception {
21 final MiParameters parameters = containerRunner.getParameters

();
22 // I f t h e S k i pP ro g r e s s parameter i s s e t , don ’ t show p r o g r e s s
23 if (parameters.getBoolOrElse("SkipProgress", false)) {
24 containerRunner.skip();
25 }
26

27 // I f t h e parameter UpdateEvery10 i s s e t t hen on l y
28 // p ropaga t e p r o g r e s s s t e p s f o r e v e r y 10 t h
29 // p r o g r e s s p o s i t i o n .
30 if (parameters.getBoolOrElse("UpdateEvery10", false)) {
31 if (properties.getPos () % 10 == 0) {
32 containerRunner.next(properties.getMessage (),
33 properties.getPos (),
34 properties.getTotalSteps ());
35 } else {
36 containerRunner.skip();
37 }
38 }
39 }
40

41 @Override
42 public void onEnd(final MiEnd containerRunner) throws Exception

{
43 final MiParameters parameters = containerRunner.getParameters

();
44 // I f t h e S k i pP ro g r e s s parameter i s s e t , don ’ t show p r o g r e s s
45 if (parameters.getBoolOrElse("SkipProgress", false)) {
46 containerRunner.skip();
47 }

c©Deltek Inc. 2013–2019, All Rights Reserved 169 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.4. DOCUMENT CALL-BACKS

5.4 Document Call-Backs
Document call-backs allow you to communicate files with the user/client machine. There
are three different call-backs of this type:

Show which allows you to show a document to the end-user. When a document is
uploaded to the client-machine in this way, the operating system on the client
machine is asked to “open” the document using the default application for the kind
of file in question. If there is no known default programs, the OS will likely prompt
the user about which application to use.

This mechanism is used, for example, for showing prints: a PDF document is
generated and using this call-back, the document is opened on the user’s machine.

Save which is similar to Save, except that the client will prompt the user where the
document should be saved. Hence, the document is not opened, only saved.

Load which asks the user to provide a document of some kind. This document could
be needed by the business logic (for example as some kind of import file), or it
could be an image or other document (which should be placed in the Maconomy
document archive.) This call-back can be configured such that the user is able to
provide several documents.

5.4.1 Invoking Document Call-Backs

In order to initiate a document call-back, you must access the method document on the
containerRunner. By doing so, you get access to the following methods:

Method Remarks
show This method takes a McFileResource and an optional pa-

rameters object as arguments. If the parameters are left out,
the call-back will be associated with whatever parameters
are in scope (for the event or the current call-back.) See
below for an overview of McFileResource.
The result is that a Show call-back occurs. When such a
call-back is received in the workspace client, the client will
ask the operating system to open the actual file, just as if
was opened by the end-user. Hence, showing an “.xls”-
document will likely open Excel, whereas showing a “.pdf”
document will open the document using some PDF-reader
such as Acrobat Reader.

save This method is similar to show above, except that it results
in a Save call-back. The workspace client will prompt the
user where the file should be saved.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 170 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

Method Remarks
load This method initiates a Load call-back. This call-back is

slightly different from other call-backs in that it has a re-
turn value. Therefore, this particular call-back—unlike the
procedural call-backs—has a “Pre” and a “Post” handling
mechanism!

In order to create files that can be used with the Show or Save call-backs, you must create
an instance of the class McFileResource . There are numerous constructors available.
Common to all of them is that they represent a name, a content, a content-type and an
a origin-descriptor which has no semantic use, but may be used to clarify the source of
the file resource.

Constructor Arguments Remarks
String Creates a file resource from the file indicated by the

String file name. The content of the file resource will
be the content of that file , the origin-descriptor will be
the absolute file path. The content type is attempted
“guessed” from the extension of the file.

File Similar to the constuctor above, except that you pro-
vide the File directly.

String,
byte[]

Similar to the String variant above, except that the
specified file need not exist. The actual content used is
given in the byte-array.

File,
byte[]

Similar to the File variant above, except that the
specified file need not exist. The actual content used is
given in the byte-array.

String,
byte[]

Similar to the String variant above, except that the
specified file need not exist. The actual content used is
given in the byte-array.

MiKey,
MiKey,
String,
String,
byte[]

Creates a file resource with a specified base-name
(MiKey), an specified extension (MiKey), the MIME
content-type of the file resource (String), and an ori-
gin description (String.) The actual content used is
given in the byte-array.

MiKey,
MiKey,
String,
String,
String

Similar to the constructor above except that the con-
tent is provided as a String rather than a byte-array.

c©Deltek Inc. 2013–2019, All Rights Reserved 171 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.4. DOCUMENT CALL-BACKS

Constructor Arguments Remarks
MiKey,
McFileResource.MeType,
String,
String

Creates a file resource with a specified base-
name (MiKey.) The file type is indicated by the
McFileResource.MeType argument, which is used to
derive a standardized extension and content-type. The
origin description is provided by the first (String.)
The actual content used is given in the last String
argument.

MiKey,
McFileResource.MeType,
String,
byte[]

Similar to the constructor above except that the actual
content used is given in the byte-array.

In addition to the above mentioned constructors, a number of variants exist which use a
McFileDescriptor to provide information about the name, extension and content-type.
The constructors for this class are similar to the ones stated above, except that the
origin-descriptor and content is left out.

Once you have a file-resource of some sort, you can use it with the Show or Save call-backs.
Listing 5.6 shows an example of doing Show and Save callbacks. The code is a snippet
from a data-model introducing some kind of “Equipment” data. There are two events
implemented: the Print-event and an Action event for an action called “Save Print.”
The implementation of the Print event calls a private method which generates some
PDF-document based on the data in the pane (using the iText [iTe08] library.) The
resulting document is then passed to an invocation of the Show call-back using the show
method in line 6.

The action “Save Print” similarly invokes the PDF-generating method, but instead of
showing it, we request that it is being saved by invoking the Save call-back using the
save method. This happens in line 15.

The method generating the PDF is implemented in lines 19–61. Notice how the file-
resource is generated in lines 55–59.

Listing 5.6: Show and Save Call-Backs.
2 @Override
3 public void onPrint(final MiPrintPost containerRunner ,
4 final MiPrint eventData) throws Exception {
5 final McFileResource printOutput = generatePdf(eventData);
6 containerRunner.document ().show(printOutput);
7 }
8

9 @Action("SavePrint")

Version 1.4.021, software version 2.5.0 (21.0.sp100) 172 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

10 private final class SavePrintHandler extends
McAbstractDataModelRootAction {

11 @Override
12 public void onAction(final MiActionPost containerRunner ,
13 final MiAction eventData) throws

Exception {
14 final McFileResource printOutput = generatePdf(eventData);
15 containerRunner.document ().save(printOutput);
16 }
17 }
18

19 private McFileResource generatePdf(final MiTransform eventData)
throws DocumentException {

20 final MiValueInspector originalData = eventData.
getOriginalData ();

21

22 final Document document = new Document(PageSize.A4);
23 final ByteArrayOutputStream bas = new ByteArrayOutputStream ();
24 PdfWriter.getInstance(document , bas);
25 document.open();
26

27

28 final String headlineText =
29 String.format("Equipment %s (%s)",
30 originalData.getStr(FIELD_EQUIPMENT_NO),
31 originalData.getStr(FIELD_DESCRIPTION));
32 final Paragraph headline =
33 new Paragraph(headlineText ,
34 new Font(Font.HELVETICA , 14, Font.BOLD));
35

36 document.add(headline);
37 document.add(new LineSeparator (2.0f, 100.0f, Color.BLACK , 0,

-4.0f));
38 final StringBuilder printContent = new StringBuilder ();
39 final McDateDataValue purchaseDate = originalData.getDateVal(

FIELD_PURCHASE_DATE);
40 final String prettyPurchaseDate =
41 String.format("%02d-%02d-%04d",
42 purchaseDate.getDay (),
43 purchaseDate.getMonth (),
44 purchaseDate.getYear ());
45 printContent
46 .append("Purchase Date: ")
47 .append(prettyPurchaseDate)
48 .append(’\n’)
49 .append("Belongs to Company No. ")
50 .append(originalData.getStr(FIELD_COMPANY_NUMBER));
51

52 final Font fontNormal = new Font(Font.HELVETICA , 10, Font.

c©Deltek Inc. 2013–2019, All Rights Reserved 173 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.4. DOCUMENT CALL-BACKS

NORMAL);
53 document.add(new Paragraph(printContent.toString (), fontNormal

));
54 document.close ();
55 final McFileResource printOutput =
56 new McFileResource(key("Equipment"),
57 McFileResource.MeType.PDF ,
58 "Generated by " + this.getClass ().getName

(),
59 bas.toByteArray ());
60 return printOutput;
61 }

The Load call-back is slightly different from the other document call-backs in that it is
associated with a return value: the result of this call-back is a list of documents. The
call-back is configured using a MiFileSelector type. This type allows configuration
of a default file name and/or extension as well as an option specifying whether the
user is allowed to provide a multiple documents or not. The user may choose to
cancel the selection of a file, in which case the result is an empty list. In order to
create an instance of a MiFileSelector, you can use the factory methods provided by
McFileSelector :

Method Remarks
create This factory method returns a new file-descriptor. Several flavours

exist:
• A zero-argument variant which creates a file-selector with
no specifics regarding which kind of document to load, and
which provides the capability for selecting only one document
(i.e., not multiple documents.)
• A variant which takes a name. The name represents a sug-
gested file name. If the name contains a wild-card such as
*.txt, the file-selector will attempt to show only files with
this extension. It can be overruled by the end-user, though!
• A variant which takes an existing file-selector and a boolean
argument indicating whether or not multiple files may be
selected. The resulting file-selector is identical to the one
provided, except that the ability of allowing multiple files is
as specified in this factory.

Listing 5.7 shows an example of using the Load call-back. Imagine an action that allows
the user to select a number of documents, and upload these to some file server. In lines
8–10 a file selector is created. This file selector accepts multiple documents, and by
default suggests that .png-documents are being selected by the user. The call-back is

Version 1.4.021, software version 2.5.0 (21.0.sp100) 174 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

invoked in lines 12–13 by invoking the load method. If the resulting list is empty, the
user is notified that no files were provided (and therefore nothing is uploaded.) The code
iterates over all the provided files and calls a method that is meant to upload the file to
some file-server.

Listing 5.7: Obtaining Documents From the User.
2 @Action("Upload")
3 private final class UploadHandler extends

McAbstractDataModelRootAction {
4 @Override
5 public void onAction(final MiActionPost containerRunner ,
6 final MiAction eventData) throws

Exception {
7

8 final MiFileSelector fileSelector =
9 McFileSelector.create(McFileSelector.create("*.png"),

10 true);
11

12 final MiList <McFileResource > files =
13 containerRunner.document ().load(fileSelector);
14

15 containerRunner.check(files.size() > 0)
16 .notification("No files selected");
17

18 for (final McFileResource file : files) {
19 uploadFileToFileServer(file);
20 }
21 }

5.4.2 Reacting on Document Call-Backs

Just like you can react on message and progress call-backs, you can react on document
call-backs. As for the other kinds of call-backs, only contributions between the one
invoking the call-back and the end-user will be notified. The framework will invoke
the onShow and onSave methods automatically. These two are procedural call-backs.
Figure 5.5 shows the life-cycle of the Show and Save call-backs exemplified by the Show
call-back.

The Load call-back is not procedural—it is functional since it provides a return value.
This means that the life-cycle is different from the others: there are onLoadPre and
onLoadPost methods that will be invoked prior to prompting the user for files, and
after receiving the list of files from the user. Figure 5.6 illustrates the life-cycle of the
Load call-back. Roughly the following takes place:

1. The contribution in front of the one invoking the Load call-back is notified that a
Load call-back occurs. This implies that the onLoadPre is called. The container
will delegate to the relevant data-model’s onLoadPre method. This method has

c©Deltek Inc. 2013–2019, All Rights Reserved 175 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.4. DOCUMENT CALL-BACKS

Container

Ext1

onShow()
Root
show()

Show

DatamodelExt1

onShow()

DatamodelRoot

Figure 5.5: The Show and Save call-backs are procedural. The life-cycle of these two
call-backs are shown here, exemplified by the Show call-back.

Container

Ext1

onLoadPost()

onLoadPre()

Root
load()

〈result〉

Load

Result

DatamodelExt1

onLoadPre()

onLoadPost()

DatamodelRoot

Figure 5.6: The Load call-back is functional and consquently has both a “Pre” and a
“Post” call-back handling method. The life-cycle of the call-back is shown here.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 176 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 5. CONTAINER CALL-BACKS

two parameters: containerRunner and fileSelector. The file-selector is used to
specify the kind of file(s) are requested by the code. For example, it may state that
the user should look for “*.txt” files, and whether or not multiple file-selection
is enabled or not. The method returns the resulting file selector. The default
implementation of this method (i.e., if you don’t implement anything) is to return
whatever file-selector is given in the argument. You have the possibility of returning
a McOpt.none() object, which corresponds to a file-selector with single-file selection
an no specific file-selection properties.

In the onLoadPre -script, you may also choose to invoke the skip method on
the containerRunner. Doing so will abort further processing of the load-event!
This means that the end-user will not be presented with a file prompt. Likewise,
contributions further to the top will also not be notified that a Load event is taking
place. The framework will then invoke the onLoadPost for your contribution and
the following ones until the place where load was invoked. In this way, your
contribution can take control of Load call-backs and provide files on behalf of the
end-user!

2. When the onLoadPre event has been processed for all relevant container contribu-
tions, a file-chooser dialog is presented to the end-user. The end-user can then either
“Cancel” the operation (corresponding to selecting no files) or choose a number of
files. It is only possible to choose more than one file if the final file-selector enables
this. There is, however, nothing that prevents the user from choosing a file of some
“unexpected” type!

3. After the user has selected 0 or more files, the onLoadPost call-back event method
will be called in the first contribution. This method again has two arguments:
a containerRunner and a fileResource argument, which is really a list of file
resources. The onLoadPost method should in turn return a list of selected files.
The default implementation will just return whatever list of files was given in the
fileResource argument. You may choose to create an entirely new list of files,
remove some files, add files etc. The list you return will be considered the list
delivered by the end-user in the following contributions.

4. In this way, the onLoadPost methods will be invoked in the container contributions
until the place where load was invoked. The resulting list will be returned by the
load method and the code continues as usual.

Listing 5.8 shows an example of reacting on a Show event. This is done by implement-
ing onShow . The code checks whether the container event1 in scope is the action
PrintInvoice. If so, the invoice document is grabbed and passed on to a method that
is supposed to somehow modify the invoice doucument/replacing it. And the resulting
document is being passed on instead of the original invoice document.

1Not call-back!

c©Deltek Inc. 2013–2019, All Rights Reserved 177 Version 1.4.021, software version 2.5.0 (21.0.sp100)

5.4. DOCUMENT CALL-BACKS

Listing 5.8: Reacting on Documents Being Shown.
2 @Override
3 public void onShow(final MiShow containerRunner ,
4 final McFileResource document) throws

Exception {
5 if (containerRunner.getEventInfo ().getActionName ().isLike("

PrintInvoice")) {
6 containerRunner.next(modifyInvoice(document));
7 }
8 }

Listing 5.9 shows an example of reacting on Load events. We want to provide an import
file programmatically rather than asking the user for it. So, in line 7 in the onLoadPre
method we check if the action is the Import action. If so, skip is invoked in line 8. By
skiping we basically shortcut the load event, and the onLoadPost method will be called
by the framework immediately after. Here, we again check whether the action in scope
is Import, and if so, we generate an import file and return that file as the result. This
happens in line 20.

Listing 5.9: Reacting on Documents Being Shown.
2 @Override
3 public MiOpt <MiFileSelector > onLoadPre(
4 final MiLoadPre containerRunner ,
5 final MiFileSelector fileSelector) throws Exception {
6 final MiKey actionName = containerRunner.getEventInfo ().

getActionName ();
7 if (actionName.isLike("Import")) {
8 containerRunner.skip();
9 }

10 return super.onLoadPre(containerRunner , fileSelector);
11 }
12

13 @Override
14 public MiList <McFileResource > onLoadPost(
15 final MiLoadPost containerRunner ,
16 final MiList <McFileResource > fileResource) throws Exception

{
17 final MiKey actionName = containerRunner.getEventInfo ().

getActionName ();
18 if (actionName.isLike("Import")) {
19 final McFileResource importFile = generateImportFile ();
20 return McTypeSafe.createArrayList(importFile);
21 } else {
22 return super.onLoadPost(containerRunner , fileResource);
23 }
24 };

Version 1.4.021, software version 2.5.0 (21.0.sp100) 178 c©Deltek Inc. 2013–2019, All Rights Reserved

Chapter 6

Programmatic Data Interaction

Until now, we have mainly been concerned with implementing container events, relying
on the Extension Framework to make the necessary database updates and container
invocations. While avoiding manually accessing the database and manually controlling
container invocations, it is frequently necessary to do so. For example, it is often necessary
to look up information of “secondary data” (i.e., data which is not directly related to
an event-record) or to programmatically perform container operations (i.e., doing other
container events than the event which is currently running.)

In this chapter we shall have a closer look at such programmatic data-interaction. More
specifically, we shall learn how to read and manipulate data in the database, and how to
programmatically interact with containers.

6.1 Accessing Containers
Sometimes, you may need to programmatically invoke operations on a container during
an operation in another container.

For example, suppose that you need to introduce an action in the maconomy:Employees
container: you wish to make an action that lets you replace the current employee with
some other employee. The implication of executing the action would be that for all
open jobs where the current employee is specified as project manager, that job will be
assigned a new project manager (the replacement employee.) Since the project manager
information is a part of the core Maconomy logic, it is not possible to manipulate the
data directly using database operations. Even if it was, you shouldn’t do that! Instead,
you should leave updating logic to the contribution which owns this field.

In order to do so, we need to emulate that a user does this. This is what is mean by
“programmatically accessing a container.” The Extension Framework contains an API
for doing such things. Through this API you can do everything that can be done by an
end-user.

179

6.1. ACCESSING CONTAINERS

6.1.1 Obtaining access to a container

The Extension Framework gives the possibility of interacting programmatically with
containers. This is done by using an object called a container executor. A container
executor represents a container. In addition, a container executor is tied to a specific pane
of the container. Hence, any events (like Update) that is being invoked on a container
executor will be performed on that particular pane.

In order to get access to a container executor, you must invoke the executor method.
This method is available in two situations:

• For any containerRunner, i.e., from event methods. In this case, the executor
method comes in two flavours: a zero-argument version, and a version that takes a
container name as an argument. The zero-argument version indicates, that “this”
container (i.e., the same container as the current event) should be accessed.

• From the data-model resources object obtained from the data model’s getResources
method. In this case, you must specify an explicit container name.

The executor doesn’t give a container executor directly, instead, it provides the access
point of doing so. It contains the following methods of interest:

Method Remarks
construct This method constructs a new container executor. The method

comes in a number of flavours
• A zero-argument version. This means that the container

executor will be targeted at the same pane as the current
event. Obviously, this variant is only available in contexts
where this makes sense.
• A one-argument version that takes the name of the pane
(or the type of the pane) as an argument. Hence, in this
way, you can specify whether to target the filter, the
card or the table pane.

When the container executor is accessed from a container-
Runner of data-model event,

initiate This container results in a container-executor provider which is
an instance of the type:

MiContainerExecutor . MiProvider .
This class lets you open and close the container ex-
ecutor provider. opening will return an object of type
MiContainerExecutor . This corresponds to what you get
from the construct method above. In this case you must
remember to explicitly close the provider again! Usually you
should prefer using the construct method mentioned above
instead if possible (see below.)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 180 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
specify Returns the specification of the container referenced by the

executor method.

Let us have a closer look at the MiContainerExecutor . MiProvider , i.e., the type
that results from the initiate method. This type has the following methods of
interest:

Method Remarks
specify Returns the specification of the container in question. No-

tice that since a container is being invoked, the result is tak-
ing all contributions into account. This method returns a
MiContainerSpec . Using this, you can inspect the prop-
erties of the container by examining the container method.
Please refer to Section 8.2 for more information.

open This method “opens” a container, and returns a
MiContainerExecutor which you really use to make
operations on the container. By doing so, you must specify the
name or the type of a pane in the container. The operations
you are performing will be made on that pane! So, if you
specify the type of a card pane (i.e., MePaneType.CARD), any
operations made on that container executor will be made
on the card. If you specify the table pane type instead (i.e.,
MePaneType.TABLE), the operation will be made on the table.
You can specify any pane type or name known by the container
in question.
As an optional argument, you may specify whether close should
automatically be invoked if an exception occurs during an oper-
ation. If you don’t specify this argument, closing will automati-
cally take place during exceptions. Thereby you don’t have to
wrap your code inside a try-finally structure1.

close Closes the container. It is important that you always close a con-
tainer that has been opened! A given container implementation
may allocate scarce resources upon opening. If the container
isn’t closed, these resources may never be released!

Once you have opened the container executor, you can start operating it. However, you
may need to notify the framework about which record instance you are working with.

1The automatic close-upon-exceptions are only done in operations on the contianer executor. So if
your code does other things as well, you must wrap your code in a try-finally structure.

c©Deltek Inc. 2013–2019, All Rights Reserved 181 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

That is: you need to specify which container key you relate to. A container key dictates
which record instance is in scope. For example, just performing a SubmitTimeSheet
makes little sense unless you first specify which time sheet is being submitted. On the
other hand, if you want to initialize and create a new record in a card-pane, you don’t
need container key—none may exist.

A container executor can be used to invoke consecutive operations. Each operation will
work on the result of the previous operation. So, for example, you can submit and then
approve a time sheet using a container executor by:

1. Specifying the container key in scope (the key fields of the time sheet in question)

2. Submitting the time sheet. The framework will automatically do a read first, if
this has not explicitly been done.

3. Approving the time sheet. The framework will automatically use the result of the
previous operation (i.e., the result occurring from submitting the time sheet) as a
foundation for the ApproveAction operation.

6.1.2 Obtaining Access to a Container with Automatic Management
of Open/Close

The Extension Framework provides a way of managing the opening and closeing of
container-executor providers. This is possible for any container, and is especially easy
for the current container. This is done by letting the framework automatically open a
container-executor provider, thus directly returning a container-executor ready to be used.
In addition, the framework will automatically close the underlying provider. Usually,
you will let the framework mange this automatically. This behavior is available by
invoking the method construct in one of its forms (instead of the initiate method.)
The method is invoked on the result of the executor method. Most frequently, this is
done by “chaining” the method calls like:

containerRunner.executor("TimeSheets").construct(MePaneType.CARD);

Often you wish to access whatever container is currently in scope for some container
operation. For example, suppose you wish to implement an action that submits and
approves a job budget. You could do this by adding an action SubmitAndApprove to the
maconomy:JobBudgets container. Whenever the SubmitAndApprove action is invoked,
you need to do the following:

1. Create an instance of the maconomy:JobBudgets container (executor provider).

2. Open that instance, focusing on the card pane.

3. Set the container key to whatever key relates to the current SumitAndApprove-
action.

4. Invoke the SubmitJobBudget action.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 182 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

5. Invoke the ApproveJobBudget action.

6. Close the container (executor provider) instance.

By making use of the construct method, you can avoid most of these steps. Since you
want access to the current container you don’t specify the name of a container when
invoking the executor method. From there you can invoke the construct method in a
way that means “this pane” (i.e., the pane in which the current event occurs) or a specific
pane. The result of doing that is, thus, an object of type MiContainerExecutor.

There are several ways of invoking executor-construct:

1. No arguments provided for the executor (meaning a container executor for this
container) followed by the construct with no arguments (meaning the pane of the
current event). Initially, such a container executor will be instantiated to work
on the same key as the current event. This is the case when the executor() is
invoked.

2. No arguments provided for the executor (meaning a container executor for this
container) followed by a one-argument version of the construct method which
takes either a pane name or a pane type as argument. This leads to a container
executor which will work on the specified pane. For example, if the current event is
related to the card pane, you can open an executor which is targeted on the table
pane. Initially, such container executors will be instantiated to work on the same
key as the current event (since the executor was invoked with no arguments.)

3. One argument provided for the executor method (either a MiContainerName or a
String.) Following that, you can invoke the one-argument version of construct,
specifying the pane of that container (either as a name or as a pane type.) Since
this container-executor is related to another container, it will not initially have any
key-restriction associated.

In the above example, a SubmitAndApprove action would be associated the card pane.
Therefore containerRunner.executor().construct() would yield a container executor
for the card pane in maconomy:JobBudgets container, and by default associated with
the same key as the SubmitAndApprove event works on.

Another way of invoking the construct method is to pass the name of a pane, which
will be the pane of choice rather than the “current pane.” For example, if you want
to introduce an action that automatically updates the prices of several records in a
table pane, then that action would typically be associated with the card pane, but
updating records in the table would happen using a container executor. In such a
case, you can still benefit from the construct method, only you would explicitly
obtain it with respect to the table rather than the card. Meaning that performed
operations would be made on the table rather than the card. Hence container-
Runner.executor().construct(MePaneType.TABLE).

c©Deltek Inc. 2013–2019, All Rights Reserved 183 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

And finally, you could invoke the executormethod so that the container executor returned
by a subsequent construct refers to a pane in an entirely different container.

Apart from the fact that you don’t have to open/close and that the container may be
associated with a default container key2, there is no difference between working with
container executors instantiated using

executor(...).construct(...)

and

executor(...).initiate()

6.1.3 Controlling the Scope of Container Operations

As mentioned above, you may need to specify the container key, i.e., determining the
scope of an operation. This corresponds to determining what data is being read by the
container executor when a read is invoked. And similarly, what the scope of some other
operation is.

You may change the key at any time. Doing so will automatically make the container
executor forget about the data it may currently have. The next operations will concern
the key just specified.

In order to change the key, or the restriction of the container executor, you must invoke
the control method. The control method contains a number of methods that can be
used to set the restriction. Notice that a restriction used for filter panes are somewhat
different compared to card and table panes. Filters are less rigorous in that the exact
columns being read is not necessarily all possible columns. And the rows read are not
necessarily all rows: it may be based on some expression-based query, and it may read only
a sub-set of all potentially available rows (e.g., a “page” such as records 51–100.) Finally,
filters may be subject to a specified ordering. This is not the case for card and table panes:
here a specific key value (a value for each key field of the container) must be provided.
The object returned by the control is of type MiContainerExecutor . MiControl
and lets you change all of these aspects. Only some aspects relate to filter panes only,
other aspects relate to non-filter panes. The list of methods offered by the control object
is:

2When the opened container is implicitly the same as the current container

Version 1.4.021, software version 2.5.0 (21.0.sp100) 184 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
restrictBySome This method applies a restriction corresponding to a top-

level pane in a workspace, or a pane that is bound
using a <Mount>-binding. Usually, there is no guar-
antee what this exactly means. For some containers,
however, only one key value exists. Some contain-
ers, e.g., maconomy:BatchJobReallocation and macono-
my:CalculateWorkHours, don’t even allow a specific key.
For such containers, you should use this method to set the
restriction. This method applies to card and table panes
only.

restrictBy This method is used to restrict a container key by a specific set
of values (for card or tables) or by a specific filter-expression
(for filters.) For non-filter panes, you can restrict by using a
MiKeyValues argument which is basically a specific typed
flavour of MiDataValues. Alternatively, you may in-line the
field names an corresponding values in the method call.
For filters, you may specify the restriction as an
MiExpression or a MiQuery which—in addition to an
expression—may contain information about sort-order and
paging. Alternatively, you may specify such properties sepa-
rately, see below.

select This method applies to filter panes only. It is used to specify
the columns to be read when a read is next time invoked on
the container executor. You may either provide an Iterable
of names (e.g., a list or a set) or you may provided a comma-
separated list of field names.
When this method is invoked, the restriction, paging and
ordering information is cleared!

allRows This method applies to filter panes only. It resets any paging
information previously given. Any filtering-expressions or
sort-order already given will be maintained.

rowRange This method applies to filter panes only. It can be used to
specify the range of rows (i.e., the “page”) to be read when
a read is next time invoked on the container executor.

orderBy This method applies to filter panes only. It can be used
to specify a specific ordering of one or more fields. This
ordering will be applied when a read is next performed by
the container executor.

c©Deltek Inc. 2013–2019, All Rights Reserved 185 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

Method Remarks
executor This method is used to “go back” to the container executor

associated with this control object. Hence, after having spec-
ified the container restriction (and possible other properties
for filter panes) you can invoke the executor method and
from there start querying the data in the container executor
and/or perform data events on it. An example is:
MiContainerExecutor ce = ...;
ce.control() // brings you into the control object
.restrictBy(someKey)
.executor() // brings you back into the executor
.getRowCount()

All the methods of the control object returns the control object itself, allowing you to
chain the methods.

6.1.4 Invoking Operations using the Container Executor

So, once the container executor has been obtained and once you have specified its scope,
you can start invoking operations on the container executor. You may change the scope
via the control object at any time. When you do so, the internal data of the container
runner is cleared, and a re-read will automatically be performed the next time you invoke
an action that requires present data.

The operations that you perform do not return any data directly. If you need the resulting
data, you can query the container executor for that, see below. Instead the container-
executor operations returns the container executor itself, thereby allowing you to chain
multiple operations, for example:

MiContainerExecutor timeSheets = ...;
timeSheets.control().restrictBy(...);
timeSheets.action("SubmitTimeSheet").action("ApproveTimeSheet");

The list of operations on a MiContainerExecutor is:

Method Remarks
add This method invokes a Initialize event on the container.

For table-panes, this event will be instantiated such that it
corresponds to appending the line to the end of the table.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 186 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
insert This method invokes a Initialize event on the container.

For table-panes, this event will be instantiated such that
it corresponds to inserting the line above whatever line is
considered the “current line.” See below how to determine
and control the current line.

create This method invokes a Create event on the container. As an
argument you must provide a MiDataValues object which
corresponds to the fields that might have been changed by
a user compared to the template record returned from the
add or insert methods. Since you may chain the operation-
methods, you can easily do a full creation process by

myContainer.insert().create(...);

reread This method invokes a Read event on the container. As the
name suggests, this is intended for re-reads of a container
executor and the name signals that a (re-)read is enforced
thereby affecting performance3. You should be careful not
to have any calls to reread that are not strictly necessary.
This may be the case if you perform operations (possibly in
other containers) and you know a refresh of this container
is needed due to side-effects of the event carried out by the
other container executor.

update This method invokes a Update event on the container. If
the current pane is a table pane, the update will happen
of whatever record is the “current line.” See below how to
determine and control the current line. As an argument,
you must provide a MiDataValues object corresponding to
values that are being changed by a user.

delete This method invokes a Delete event on the container. If the
current pane is a table pane, the deleted row will be whatever
record is the “current line.” See below how to determine and
control the current line.

action This method invokes a Action event for an action with a
specific name on the container. If the current pane is a table
pane, the action event will relate the whatever record is the
“current line.” See below how to determine and control the
current line. You must provide the name of the action to
execute.

3In versions earlier than 2.5 this method was called read. However, to signal that an explicit read
does a forced (re-)read of the container, and since all data-related queries will perform an initial read if
necessary, the name reread has not been chosen.

c©Deltek Inc. 2013–2019, All Rights Reserved 187 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

Method Remarks
print This method invokes a Print event on the container. If

the current pane is a table pane, the print event will relate
the whatever record is the “current line.” See below how to
determine and control the current line. You must provide
the name of the action to execute.

move This method invokes a Move event on the container. The
move event is relevant for table panes only. The moved
row will be whatever record is the “current line.” See below
how to determine and control the current line. You must
provide the name of the action to execute. You must provide
a move operation as well as the row relative to which the
move operation must be interpreted. See Section 4.10 for
more information on move operations.

inspect This method returns a MiPaneSpecInspector representing
the specification of the pane of this container executor. Using
this, you can inspect the properties of the container by ex-
amining the container method. Please refer to Section 8.2
for more information.

All the above methods are found in two variants: either with or without parameters.
If no parameter-object is specified, the parameter-object associated with the event in
question will be the empty parameter set. In this way, you can programmatically associate
parameters with any container event.

Listing 6.1 shows an example of an action implemented in some container containing
the fields ID and NAME. The action creates an employee with EmployeeNumber = ID and
Name1 = NAME. This is done by creating a provider of the Employees container. This
happens in line 11. In line 13 the container is then opened, focusing on the card pane. In
order to create a new employee, it is necessary to obtain a template record by invoking
an Initialize event, followed by a Create event specifying changes compared to the
template record. This all happens in line 23. Finally, the container is closed in line
24.

Listing 6.1: Operating on a New Container.
2 @Action("CreateAsEmployee")
3 private static final class CreateAsEmployeeHandler extends

McAbstractDataModelRootAction {
4 private static final McPopupDataValue US = McPopup.val("

CountryType", "United_States", 0, "United States");
5 @Override
6 public void onAction(final MiActionPost containerRunner ,
7 final MiAction eventData) throws

Exception {

Version 1.4.021, software version 2.5.0 (21.0.sp100) 188 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

8 final MiValueInspector origData = eventData.getOriginalData
();

9 final MiContainerName employeeContainerName =
McContainerName.create("Employees");

10 final MiProvider employeesContainer =
11 containerRunner.executor(employeeContainerName).initiate ()

;
12 final MiContainerExecutor employeeCard =
13 employeesContainer.open(MePaneType.CARD);
14

15 // c r e a t e a new employee by u s i n g
16 // t h e ID f i e l d as employee number
17 // t h e NAME f i e l d as Name1 and a lways use
18 // Uni ted S t a t e s (d e f i n e d in c on s t an t US) as Country .
19 final MiDataValues creationValues =
20 dataValues ().setVal("EmployeeNumber", origData.getVal("ID"

))
21 .setVal("Name1", origData.getVal("NAME"))
22 .setPopup("Country", US);
23 employeeCard.insert ().create(creationValues);
24 employeesContainer.close ();
25 containerRunner.call().notification("Employee has been

created");
26 }

Using the executor-construct method instead of the executor-initiate implies that
opening and closing is managed by the framework. In this case, the example from Listing
6.1 can be expressed slightly easier, as shown in Listing 6.2. The main difference is found
in line 4 where a container executor is directly obtained from a named container and a
pane on that container.

Listing 6.2: Operating on a New Container Without Explicit Open/Close.
2 final MiValueInspector origData = eventData.getOriginalData

();
3 final MiContainerExecutor employeeCard =
4 containerRunner.executor("Employees").construct(MePaneType

.CARD);
5

6 // c r e a t e a new employee by u s i n g
7 // t h e ID f i e l d as employee number
8 // t h e NAME f i e l d as Name1 and a lways use
9 // Uni ted S t a t e s (d e f i n e d in c on s t an t US) as Country .

10 final MiDataValues creationValues =
11 dataValues ().setVal("EmployeeNumber", origData.getVal("ID"

))
12 .setVal("Name1", origData.getVal("NAME"))
13 .setPopup("Country", US);
14 employeeCard.insert ().create(creationValues);

c©Deltek Inc. 2013–2019, All Rights Reserved 189 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

15 containerRunner.call().notification("Employee has been
created");

Listing 6.3 shows an example of an action implemented as an extension to the Jobs
container. The action is supposed to mark all “blocked” fields for the current job. The
implementation creates a container executor for the Jobs container by invoking the
executor-construct method. This automatically focuses on the same pane which is by
default targeted for the same job as the action event—which is exactly what we want.
In lines 9–13 the four “blocked” fields are updated by given an data-values structure
associating all these fields with the value true to the update method.

Listing 6.3: Operating on the Current Container.
2 @Action("BlockAll")
3 private static final class BlockAll extends

McAbstractDataModelRootAction {
4 @Override
5 public void onAction(final MiActionPost containerRunner ,
6 final MiAction eventData) throws

Exception {
7 // Se t a l l " b l o c k "− l i k e f i e l d s on Job t o t r u e
8 final MiContainerExecutor job = containerRunner.executor ().

construct ();
9 job.update(dataValues ()

10 .setBool("BlockedForTimeRegistrations", true)
11 .setBool("BlockedForInvoicing", true)
12 .setBool("BlockedForBudgeting", true)
13 .setBool("BlockedForAmountRegistrations", true));
14 }

6.1.5 Inspecting Data of a Container Executor

As mentioned in Section 6.1.4, the event-invocation methods of the container executor
don’t return the data resulting from the given event. Instead, the container executor
itself is returned. This allows the programmer to conveniently invoke a series of events
against a container in a “one-liner.”

Of course, it must be possible to inspect the data resulting from events. This is possible
because the container executor maintains a relevant set of values of a container. For
example, after performing an Update or an Action on a pane, you can retrieve the
resulting data resulting from that particular event. In case you merely want to inspect
the existing data of some container, you can merely ask for the data: if a Read hasn’t
already been performed, a read will automatically be performed4 by the container
executor. Therefore, there is no explicit read method. In case you are working with
several container executors and where performing an operation in one container will,
as a side-effect, impact the data of the other, you must do a re-read of the affected

4In versions earlier than 2.5, an explicit read had to be carried out.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 190 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

container executor to access the updated data. For this reason, a reread method exists.
This method will enforce a re-read and should only be carried out in such a case since
re-reading without need will harm performance!

The pane which is in scope (the pane used when constructing the container executor)
has a “current row pointer” which indicates which of the result rows is considered the
current. Any operation will be made with respect to that current row. For cards, there
is generally one row (or zero rows) and the “current row pointer” is therefor not of much
interest in this case. For table panes, however, the current row is highly relevant.

In general, you can obtain the current row index, the current row, the current pane value
and the current container value (i.e., a value comprising potentially several panes, e.g.,
a card and a table pane.) The methods used to obtain information about the current
values of a container executor are:

Method Remarks
getRowCount Returns the number of rows contained in the current pane.
getRecord Returns a MiValueInspector representing the current record

value in the current pane. NB! If there are no records
in this pane, this method will throw an exception. See
getRecordOpt below. This operation will perform an auto-
matic read unless data has already been populated into this
pane. In general any operation related to data will ensure
this.

getRecordOpt This method corresponds to getRecord (see above) except
that the result is wrapped in a MiOpt value. If there is no
current record, a McOpt.none object will be returned. If there
is a possibility that there is no current record, you should
use this method and check whether the result isDefined()
or isNone()! This operation will perform an automatic read
unless data has already been populated into this pane. In
general any operation related to data will ensure this.

getPaneValue Returns a MiPaneInspector which gives read-only access to
various pane-value properties. Apart from allowing access to
any record value in the pane, it also gives paging information,
action-enabledness state etc. NB! If no pane value has been
obtained for the current pane, this method will throw an
exception. See getPaneValueOpt below. This operation
will perform an automatic read unless data has already been
populated into this pane. In general any operation related
to data will ensure this.

c©Deltek Inc. 2013–2019, All Rights Reserved 191 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

Method Remarks
getPaneValueOpt This method corresponds to getPaneValue (see above) ex-

cept that the result is wrapped in a MiOpt value. If the
current pane value is undefined, this method will return a
McOpt.none object. If there is a possibility that the pane
value is undefined, you should use this method and check
whether the result isDefined() or isNone(). This opera-
tion will perform an automatic read unless data has already
been populated into this pane. In general any operation
related to data will ensure this.

getContainerValue This method returns a container value object for the current
container value, i.e., a structure giving information about
all pane values that have received data. This operation will
perform an automatic read unless data has already been
populated into this pane. In general any operation related
to data will ensure this.

getRowIndex This method returns the row index of the current row. Notice
that indexes are 0-based. NB! If there is not a well-defined
current row (e.g., in case there is no data), this method will
throw an exception! See getRowIndexOpt below. This oper-
ation will perform an automatic read unless data has already
been populated into this pane. In general any operation
related to data will ensure this.

getRowIndexOpt This method corresponds to getRowIndex (see above) ex-
cept that the result is wrapped in a MiOpt value. If there
is no current row, a McOpt.none object will be returned. If
there is a possibility that there is no current row, you should
use this method and check whether the result isDefined()
or isNone()! This operation will perform an automatic read
unless data has already been populated into this pane. In
general any operation related to data will ensure this.

getKeyValues This method returns the formal key values of the current
record. Hence, it is not the container key that is returned,
but the key values used to identify the record having focus.
This operation will perform an automatic read unless data
has already been populated into this pane. In general any
operation related to data will ensure this.

Listing 6.4 shows how to look up data in the container executor. The code snippet
illustrates a case where a job is created (in the example for a hard-coded customer.) The
creation takes pace in line 6. In line 14 we check the value of the Status field of the

Version 1.4.021, software version 2.5.0 (21.0.sp100) 192 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

current record (which is the record resulting from creating the job.) If the status is not
Quote, we execute the action ConvertToQuote (line 15.) Finally, in line 19 we generate a
message to the end-user displaying the job number that was created, this time by looking
up the value of the field JobNumber in the current record.

Listing 6.4: Inspect Data of a Container Executor.
2 final MiContainerExecutor job = containerRunner.executor("Jobs

").construct(MePaneType.CARD);
3

4 // Crea te a j o b f o r some (hard−coded)
5 // cus tomer number
6 job.insert ().create(dataValues ().setStr("CustomerNumber", "

2888 -3883"));
7 // s e t t h e key t o t h e newly c r e a t e d j o b number
8 final MiKeyValues newJob = job.getRecord ().asKeyValuesCopy("

JobNumber");
9 job.control ().restrictBy(newJob);

10

11

12 // check i f t h e j o b s t a t u s i s Quote . I f not
13 // c on v e r t i t i n t o Quote s t a t u s .
14 if (!job.getRecord ().getPopupLiteralName("Status").isLike("

Quote")) {
15 job.action("ConvertToQuote");
16 }
17 final String message =
18 String.format("Job No. %s has been created",
19 job.getRecord ().getStr("JobNumber"));
20 containerRunner.call().notification(message);

6.1.6 Navigating and Iterating through Records

As pointed out in Section 6.1.5, a container executor has a concept of a “current record.”
When you invoke some operation, it is related to the current record.

Just as you can ask what the current row index is, you can change the current row index.
Doing so corresponds to a user bringing focus to a particular line: in itself it has no effect
on the container data, but the next event will be relative to that row.

For this reason it is possible to move the value of the current row using the following
methods:

c©Deltek Inc. 2013–2019, All Rights Reserved 193 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

Method Remarks
setRowIndex This method is used to set the row index to some arbitrary

0-indexed value. If this row index does not exist, false
will be returned. Otherwise true is returned. If false is
returned, the current row will not be affected. This operation
will perform an automatic read unless data has already been
populated into this pane. In general any operation related
to data will ensure this.

incRowIndex This method increases the row index by one. If it is not
possible to increase the current row index, false is returned.
Otherwise true is returned. If false is returned, the current
row index will not be affected. This operation will perform
an automatic read unless data has already been populated
into this pane. In general any operation related to data will
ensure this.

decRowIndex This method decreases the row index by one. If it is not
possible to decrease the current row index, false is returned.
Otherwise true is returned. If false is returned, the current
row index will not be affected. This operation will perform
an automatic read unless data has already been populated
into this pane. In general any operation related to data will
ensure this.

Using the above methods it is possible to iterate over the rows or to put focus into a
specific row.

Hence, by using these methods, you can navigate to specific rows of a container executor.
Listing 6.5 shows an example where a given expense sheet is opened. If it contains 2 lines
or more, the last line is moved to the top. This example exemplifies how to put focus on
a specific row in a container executor: in line 5 we query the number or records in the
table. At this point, an implicit read will be performed by the framework in order to
ensure that the number of rows are correctly reflected. If there are more than 1 records
in the resulting table, the focus is put onto the last row. This is done in line 7 by using
the setRowIndex method. This implies that further actions will relate to that record. In
line 9 a Move operation is made, moving the current row before row index 0 (i.e., to the
top.)

Listing 6.5: Navigating to a Specific Record.
2 final MiContainerExecutor expenseSheetsTable = containerRunner

.executor("ExpenseSheets").construct(MePaneType.TABLE);
3 expenseSheetsTable.control ().restrictBy(key("

ExpenseSheetNumber"), McInt.val(expSheetNumber));
4

Version 1.4.021, software version 2.5.0 (21.0.sp100) 194 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

5 if (expenseSheetsTable.getRowCount () > 1) {
6 // n a v i g a t e t o l a s t l i n e
7 expenseSheetsTable.setRowIndex(expenseSheetsTable.

getRowCount () - 1);
8 // move t h a t l i n e above t h e f i r s t l i n e (l i n e 0)
9 expenseSheetsTable.move(MeMoveOperation.MOVE_BEFORE , 0);

10 }

In addition, you can alter the focus row to the next (incRowIndex) or the previous
(decRowIndex). All of the focus-positioning methods return a boolean indicating if the
row index is out of bounds (false) or not. Using these methods and the return value,
you can iterate over the records in a pane. Listing 6.6 shows an example where we iterate
through all records in the table of the maconomy:TimeSheets container. Initially we just
read some hard-coded time sheet, just as an example. Then in line 17 we put focus on
the first row. If there are no rows, this method will return false. The result is stored in
the local variable hasMoreRows. In lines 18–21 we iterate over the all the table rows. The
point is that we in line 20 increase the row number and update the variable hasMoreRows:
once we reach the last line, the while-loop will terminate.

Listing 6.6: Iterating Over All Rows in a Table.
2 final MiContainerExecutor timeSheetTable = containerRunner.

executor("TimeSheets").construct(MePaneType.TABLE);
3 final MiKeyValues tsKey = McKeyValues.create ()
4 .setStr("EmployeeNumber", "Emp001")
5 .setDate("PeriodStart", 2013, 7, 22);
6 timeSheetTable.control ().restrictBy(tsKey);
7

8 final MiRecordValue zeroAllDays = dataValues ()
9 .setReal("NumberOfDay1", BigDecimal.ZERO)

10 .setReal("NumberOfDay2", BigDecimal.ZERO)
11 .setReal("NumberOfDay3", BigDecimal.ZERO)
12 .setReal("NumberOfDay4", BigDecimal.ZERO)
13 .setReal("NumberOfDay5", BigDecimal.ZERO)
14 .setReal("NumberOfDay6", BigDecimal.ZERO)
15 .setReal("NumberOfDay7", BigDecimal.ZERO);
16

17 boolean hasMoreRows = timeSheetTable.setRowIndex (0);
18 while(hasMoreRows) {
19 timeSheetTable.update(zeroAllDays);
20 hasMoreRows = timeSheetTable.incRowIndex ();
21 }

Depending on your needs, iterating over a number of records can typically be done
more easily and elegantly by using the concept of record executors, as explained in
Section 6.1.7.

c©Deltek Inc. 2013–2019, All Rights Reserved 195 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

6.1.7 Record Executors

A record executor is obtained from a container executor. It offers the possibility to
execute events, although the events are locked to a specific record. From a container
executor, you can obtain a record executor for the current record (i.e., the record of
the focus row specified by getRowIndex() of the container executor). As long as that
record exists in the container executor, you can do operations on that record, regardless
of whether the focus row index of the container executor is changed and regardless of
whether the record has moved to a new index position (i.e., as a side-effect of doing
operations on the container executor.) A container executor and any record executor
obtained from it, will remain in sync. Hence, updating data in one can immediately be
seen in the other.

The MiContainerExecutor interface gives access to a couple of methods that gives you
access to a record executor:

Method Remarks
getRecordExecutor This method returns a record executor which is locked to

the row currently having focus in the container executor,
i.e., the row having the index returned by getRowIndex().
This record executor will forever be locked to that par-
ticular semantic row. Essentially the row having that
particular unique key. So, even if the row is moved to
some other row position in the underlying container ex-
ecutor, the record executor will still be locked to the
same record. If there’s no current row (i.e., if the pane is
empty) an error is issued. This operation will perform an
automatic read unless data has already been populated
into this pane. In general any operation related to data
will ensure this.

getRecordExecutorOpt This method is similar to getRecordExecutor except
that the result is returned as an MiOpt . Hence, if there is
no current record, a none value is returned. This operation
will perform an automatic read unless data has already
been populated into this pane. In general any operation
related to data will ensure this.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 196 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
matchBy This method is used to iterate over a number of rows

in the container executor: it returns an Iterable of
MiRecordExectuor s that are tied to the records that ful-
fill the condition specified as an argument to the matchBy
method. The iteration order will go from lower indexes
towards higher indexes. This can, however, be changed
by invoking the method reverse() on the iterable: this
will return an iterable with the same elements, only the
iteration order is reversed compared to the original. This
method is found in a number of flavours:
• A variant that takes an expression as input argu-
ment. Only records for which the expression evalu-
ates to true will be part of the iterable.
• A variant that takes a value inspector. Only records

for which the specified fields have the corresponding
values will be part of the iterable. This corresponds
to transforming the value inspector into an expres-
sion by use of the asExpression() method.
• A variant that takes a Predicate as argument. This
variant lets you make use of Java 8’s lambda expres-
sion notation. In short, you provide a function
that—given a record—decides whether or not to
include the record in the returned Iterable.

This operation will perform an automatic read unless data
has already been populated into this pane. In general any
operation related to data will ensure this.

matchAll This method is similar to matchBy above, except that
it matches all records. This is useful for iterating over
all records in a table. This operation will perform an
automatic read unless data has already been populated
into this pane. In general any operation related to data
will ensure this.

Listing 6.7 shows how to iterate over all time sheet lines in a time sheet, updating each of
them. The program does the same thing as the one shown in Listing 6.6. The difference
is how to loop over the various lines. In this case, we make use of the matchAll
method. This happens in line 16. The result of that method is an Iterable of all
rows, each represented as a record executor. Since each record executor is locked to a
specific record, we don’t need to explicitly change the focus row of the container executor
using setRowIndex . Instead, we directly invoke the update method on the record
executor. After the loop is done, the current row index of the container executor is left
unchanged.

c©Deltek Inc. 2013–2019, All Rights Reserved 197 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

Listing 6.7: Iterating Over All Rows in a Table Using Record Executors.
1 final MiContainerExecutor timeSheetTable = containerRunner.

executor("TimeSheets").construct(MePaneType.TABLE);
2 final MiKeyValues tsKey = McKeyValues.create ()
3 .setStr("EmployeeNumber", "Emp001")
4 .setDate("PeriodStart", 2013, 7, 22);
5 timeSheetTable.control ().restrictBy(tsKey);
6

7 final MiRecordValue zeroAllDays = dataValues ()
8 .setReal("NumberOfDay1", BigDecimal.ZERO)
9 .setReal("NumberOfDay2", BigDecimal.ZERO)

10 .setReal("NumberOfDay3", BigDecimal.ZERO)
11 .setReal("NumberOfDay4", BigDecimal.ZERO)
12 .setReal("NumberOfDay5", BigDecimal.ZERO)
13 .setReal("NumberOfDay6", BigDecimal.ZERO)
14 .setReal("NumberOfDay7", BigDecimal.ZERO);
15

16 for (final MiRecordExecutor timeSheetLine : timeSheetTable.
matchAll ()) {

17 timeSheetLine.update(zeroAllDays);
18 }

Suppose that we want to apply a small optimization: instead of updating all rows with
zero values, we want to ignore rows that already have zero values. This can be easily
achieved by making use of the matchBy method, as shown in Listing 6.8. In line 18, we
simply state that we only want to iterate over rows where the rows do not contain all
zero values.

Listing 6.8: Iterating Over All Rows in a Table Using Record Executors.
17 // Only upda te l i n e s t h a t are not a l r e a d y zero− l i n e s
18 for (final MiRecordExecutor timeSheetLine : timeSheetTable.

matchBy(not(zeroAllDays.asExpression ()))) {
19 timeSheetLine.update(zeroAllDays);
20 }

A record executor pretty much corresponds to a container executor, but it’s locked to a
particular record. The following methods are available on a record executor:

Method Remarks
add This method executes an Initialize event, adding (ap-

pending) a new row at the end of a table pane. This
is step one of the two step creation process. The result
is a different record executor which is now tied to the
template record obtained as an effect of the Initialize
event. Thus chaining the create method will in fact invoke
creation of that template record.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 198 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
insert Like the add method, this method executes an

Initialize event, but inserts the template record above
the record represented by the current record executor.
The result is a a different record executor which is now
tied to the template record obtained as an effect of the
Initialize event. Thus chaining the create method will
in fact invoke creation of that template record.

create This method executes a Create event on the current
record executor. The change values that should be applied
are passed as an argument. The result is the record
executor corresponding to the created record.

update This method executes an Update event on the current
record executor. The change values that should be applied
are passed as an argument. The result is this record
executor, allowing for method chaining, e.g., first update,
then run an action.

delete This method executes a Delete event on the current
record executor. Since this leads to that the corresponding
record is deleted, you can no longer work with this record
executor. Any attempt to do so, will result in a run-time
error. For this reason, the return value of this method is
a value inspector reflecting the value of the record that
was deleted, not a record executor.

print This method executes a Print event on the current record
executor. The result is this record executor, allowing for
method chaining, e.g., first print, then update.

action This method executes an Action event of some named
action on the current record executor. The result is this
record executor, allowing for method chaining, e.g., first
run one action, then run another.

move This method executes a Move event on the current record
executor. The result is this record executor, allowing for
method chaining, e.g., first move the record, then update
it.

getContainerName This method returns the name of the container to which
this record executor is tied.

getPaneName This method returns the pane name of the pane to which
this record executor is tied.

getPaneState This method returns the current pane state of the pane
to which this record executor is tied.

c©Deltek Inc. 2013–2019, All Rights Reserved 199 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

Method Remarks
getRowIndex This method returns the row index to which this record

excutor is tied. Note that this might differ over time. For
instance if you have a record executor linked with record
index 1 in a table pane and the record with index 0 is
deleted, then this record executor becomes linked to the
record with index 0, since it is tied to the same semantic
record over time.

getRowIndexOpt This method is similar to getRowIndex execpt that the
result is wrapped in a MiOpt .

inspect This method returns a spec inspector of the corresponding
pane in the corresponding container, allowing program-
matic access to things like field declarations, foreign key
declarations, available actions etc.

isActionEnabled This method can be used to find out whether a given
action is enabled for this record executor.

Value Inspector methods A record executor can be treated simply as a
record containing the values of the corresponding
record. For this reason, all methods available on
the interface MiValueInspector are available on a
record executor. For example, getBool , getStr ,
getVal , fieldCount , containsField , copyValues
etc. Please refer to Section 4.3.1 for more on this.

In Listing 6.7 and Listing 6.8 we saw an example of invoking the update method on
a record executor. Since a record executor is locked to a semantic record (not its row
index), we can iterate over collections of record executors while performing operations
that make changes to the row index. Deleting records is an obvious example: suppose
we want to delete all records in a table. This can be done by iterating over all of the
lines, deleting each of them. Listing 6.9 shows an example of this: here we merely iterate
over all lines, and delete each of them in line 10. A warning should be issued here. If
you do a forward iteration over the lines, as in Listing 6.9, all the remaining lines will
be re-numbered (depending on the underlying application logic) every time you delete.
Although the functionality will work, this may lead to poor performance for no reason at
all.

Listing 6.9: Deleting Lines Using Record Executors.
1 final MiContainerExecutor timeSheetTable = containerRunner.

executor("TimeSheets").construct(MePaneType.TABLE);
2 final MiKeyValues tsKey = McKeyValues.create ()
3 .setStr("EmployeeNumber", "Emp001")

Version 1.4.021, software version 2.5.0 (21.0.sp100) 200 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

4 .setDate("PeriodStart", 2013, 7, 22);
5 timeSheetTable.control ().restrictBy(tsKey);
6

7 // ! Warning : f o rward i t e r a t i o n may l e a d to poor per formance
8 // ! s i n c e l i n e s need t o be renumbered f o r e v e r y d e l e t i o n .
9 for (final MiRecordExecutor timeSheetLine : timeSheetTable.

matchAll ()) {
10 timeSheetLine.delete ();
11 }

An alternative to doing a forward iteration, is a reverse iteration. Such a reversed
iteration order can be obtained by invoking the reverse on the record executor iterable
returned by matchAll and matchBy methods. An example can be seen in Listing 6.10.
Here the iteration order is reversed in line 9. Thereby avoiding the need for re-numbering
of any other time sheet line.

Listing 6.10: Deleting Lines Using Record Executors and Reverse Iteration.
7 // By r e v e r s i n g t h e i t e r a t i o n order , per formance i s
8 // improved s i n c e re−numbering i s not needed .
9 for (final MiRecordExecutor timeSheetLine : timeSheetTable.

matchAll ().reverse ()) {
10 timeSheetLine.delete ();
11 }

The fact that record executors are locked to a semantic record (not its index) means that
container executors and record executors can be used jointly: performing an operation
on a record executor will (if possible) preserve the focus row index of the container
executor. To illustrate this, suppose we have some time sheet containing the following
three lines:

Row index Remark NumberDay1
0 On-sight Assessment 4.5
1 Final Report 3.0
2 Pre-analysis 1.5

Consider Listing 6.11 which shows how container executors and record executors can be
operated one after the other. First the row focus of the container executor is set to 1
(i.e, the 2nd line). This happens in line 3. This information, and the Remark field of the
related line is printed to the console. Next, in line 12, we iterate over all the lines in the
table using record executors. For each iteration, we print the focus index of the container
executor to the console (along with the currently associated Remark value of that line).
The Remark of that line is updated appending a ‘C’ at the end. This happens in lines
13–21. Next, we print the row index currently associated with the record executor in
scope, as well as its Remark value. And the Remark of that record is updated, appending
an ‘R’ at the end. This takes place in lines 23–31. After the loop we again investigate

c©Deltek Inc. 2013–2019, All Rights Reserved 201 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

the row focus index of the container executor and the corresponding value of the Remark
field (lines 36–39.) And we loop over all of the lines, printing the row index and the
Remark field value for all the lines (lines 42–45.) The resulting output is:

BEFORE LOOP
Container executor focus index:1
Remark of focus line :Final Report

LOOP WITH UPDATES
Container executor focus index:1
Remark of focus line :Final Report
Record executor focus index :0
Remark of record executor :On-sight Assessment

Container executor focus index:1
Remark of focus line :Final ReportC
Record executor focus index :1
Remark of record executor :Final ReportCC

Container executor focus index:1
Remark of focus line :Final ReportCCR
Record executor focus index :2
Remark of record executor :Pre-analysis

AFTER LOOP
Container executor focus index:1
Remark of focus line :Final ReportCCRC
Remarks of all lines:
Row index :0
Remark has value :On-sight AssessmentR
Row index :1
Remark has value :Final ReportCCRC
Row index :2
Remark has value :Pre-analysisR

Notice that the row focus index for the container executor remains unchanged throughout
the process, also while the record executors of various row indexes are being operated on.
Also notice that the effect of doing an update in a container executor is immediately seen
in the record executor and vice versa. Specifically, we notice that the row with index
1 (the row that the container executor has its focus on) is updated four times: first by
the container executor (when the record executor is tied to index 0). Then again by
the container executor (when the record executor is tied to index 1), and immediately

Version 1.4.021, software version 2.5.0 (21.0.sp100) 202 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

after by the record executor. And finally, it is once again updated by the container
executor while the record executor is tied to index 2. Hence, yielding a Remark value of
ReportCCRC.

Listing 6.11: Mixing Container Executors and Record Executors.
1 final MiContainerExecutor tsTable = containerRunner.executor

("TimeSheets").construct(MePaneType.TABLE);
2 tsTable.control ().restrictBy(timeSheetKey);
3 tsTable.setRowIndex (1);
4 print("BEFORE LOOP");
5 print("Container executor focus index",
6 tsTable.getRowIndex ());
7 print("Remark of focus line",
8 tsTable.getRecord ().getStr(REMARK));
9 print("-------------------------------");

10 print("LOOP WITH UPDATES");
11

12 for(final MiRecordExecutor tsLine : tsTable.matchAll ()) {
13 print("Container executor focus index",
14 tsTable.getRowIndex ());
15 final String remarkContainerFocus = tsTable.getRecord ().

getStr(REMARK);
16 print("Remark of focus line",
17 remarkContainerFocus);
18 // Update t h e c on t a i n e r f o c u s l i n e append ing a ’C ’ a t t h e

end o f t h e remark
19 tsTable.update(dataValues ()
20 .setStr(REMARK ,
21 remarkContainerFocus + "C"));
22

23 print("Record executor focus index",
24 tsLine.getRowIndex ());
25 final String remarkRecordFocus = tsLine.getStr(REMARK);
26 print("Remark of record executor",
27 remarkRecordFocus);
28 // Update t h e c on t a i n e r f o c u s l i n e append ing a ’R ’ a t t h e

end o f t h e remark
29 tsLine.update(dataValues ()
30 .setStr(REMARK ,
31 remarkRecordFocus + "R"));
32 print("");
33 }
34 print("-------------------------------");
35 print("AFTER LOOP");
36 print("Container executor focus index",
37 tsTable.getRowIndex ());
38 print("Remark of focus line",
39 tsTable.getRecord ().getStr(REMARK));
40 print("Remarks of all lines:");

c©Deltek Inc. 2013–2019, All Rights Reserved 203 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.1. ACCESSING CONTAINERS

41 for (final MiRecordExecutor tsLine : tsTable.matchAll ()) {
42 print("Row index",
43 tsLine.getRowIndex ());
44 print("Remark has value",
45 tsLine.getStr(REMARK));
46 }

6.1.8 Working with Multiple Container Panes

Sometimes, you may wish to access information and/or operate several panes of some
container programmatically. For example, assume that you wish to programmatically
create a time sheet and create a number of time sheet lines. Doing so would require you
to work with the card pane (in order to create the time sheet) and work with the table
pane (in order to create time sheet lines.) However, a container executor is always locked
to a specific pane in order to avoid confusion.

Obviously, you could create two different container executors (one focusing on the card,
and one focusing on the table.) But this is overkill and gives unnecessary overhead, when
they are meant to relate to the same time sheet.

The Extension Framework has a solution to this: from a container executor, you can
derive other container executors for other panes of the same container. The original
container executor is the master : this instance controls how the container is restricted
(e.g., what key is being referred to.) The derived container executors are slaves: they
automatically follow the key defined by the master, and it is not possible to derive further
container executors from these. They do, however, allow access to other panes in the
container.

Method Remarks
derive This method derives a container executor with focus on some

other pane, which is provided as an argument. The derived
container executor lets you invoke operations on records in
that other pane. Its content will always be derived from
whatever key/restriction is specified for the master container
executor. The data in the derived executor and the one
from where it’s derived will be synchronized. For example,
imagine that you have a container executor for the macono-
my:TimeSheets card pane and from there derive an executor
for the table pane. Then changing data in the table pane
which affects the card pane (or vice versa) will be immediately
visible in related executor.

Listing 6.12 shows an example using this mechanism. In the example, the card pane of

Version 1.4.021, software version 2.5.0 (21.0.sp100) 204 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

the maconomy:TimeSheets is used as the master. The table pane is derived from it in
line 4. In line 6 the card pane is used as usually to create a new time sheet. Then a time
sheet line is created using the table-part container executor in line 18. Since the table
pane is derived from the card, the created lines will automatically be made in the time
sheet just created using the card pane. Notice the use of the add method which is used
to ensure that the new line is appended to the end, no matter the number of lines that
may have been created as a side-effect of creating the time sheet. The creation of the
time sheet line specifies a number of hours for Monday. This will be reflected in the card
pane. We can directly see this effect by looking up data using the card pane. This is
so because the table was derived from the card—in this way the two panes are linked
together.

Listing 6.12: Working With Multiple Panes.

2 final MiContainerExecutor timeSheetCard = containerRunner.
executor("TimeSheets").construct(MePaneType.CARD);

3 final MiContainerExecutor.MiDerived timeSheetTable =
4 timeSheetCard.derive(MePaneType.TABLE);
5

6 timeSheetCard.insert ().create(
7 dataValues ().setStr("EmployeeNumber", "Emp001")
8 .setInt("WeekNumber", 30));
9

10 // s e t t h e key t o t h e t ime s h e e t j u s t c r e a t e d
11 final MiKeyValues currentTS = timeSheetCard.getRecord ().

asKeyValuesCopy("EmployeeNumber", "PeriodStart");
12 timeSheetCard.control ().restrictBy(currentTS);
13

14 // now t h e t ime s h e e t has been c r e a t e d .
15 // Add a l i n e a t t h e end o f t h e t a b l e .
16 // Hence i f l i n e s a l r e a d y have been c r ea t ed ,
17 // i t ’ s added a t t h e bot tom .
18 timeSheetTable.add().create(dataValues ().setReal("NumberDay1",

8));
19

20 // a f t e r add ing t h e l i n e , t h e c on t en t o f t h e card i s
21 // a u t oma t i c a l l y upda ted s i n c e t h e two c on t a i n e r
22 // e x e c u t o r s are l i n k e d s i n c e one i s d e r i v e d from
23 // t h e o t h e r !
24 final BigDecimal totalDay1 = timeSheetCard.getRecord ().getReal

("TotalNumberDay1Var");
25 containerRunner.call().notification("Number of hours on Monday

: " + totalDay1);

c©Deltek Inc. 2013–2019, All Rights Reserved 205 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

6.2 Accessing System and Database Information
Although the Extension Framework in many cases takes care of fetching and persisting
custom data, it is still frequently needed to look up stuff in the Maconomy database.
And sometimes, you need access to other user or server related parts of the Maconomy
system. The Extension Framework has an API for that.

In general, access to the database is obtained from a resources object that is given as
an argument to the factory/constructor methods of data-models and containers. The
resources object should not be used directly from the constructor. Instead, the abstract
data-model implementation provides a method for obtaining access to the resources:
getResources This method should only be used outside of the constructor!

This getResources returns an object of type MiDataModel . MiResources . This type
offers the following interesting methods:

Method Remarks
executor This provides the ability to create a container executor as

explained above. Like above, you invoke this method using
a container name. By subsequently invoking initiate ,
you get a container-executor provider which you can then
open. This may be used, for example, to implement a
MiPersistenceStrategy which persists using a specific
container rather than directly using the database.

getEnvironmentInfo This method returns a MiEnvironmentInfo object. Using
this, it is possible to get information about the current user
session, for example the current user name.

getApiProvider This method returns a type which can give access to a “(Ma-
conomy) server API” and a “(Maconomy) database API.”
Of these two, the database API is the one that is most fre-
quently used. The database API of type MiDatabaseApi

is obtained through the method getDatabaseApi .
getCallbacks This method returns an object which provides access to

certain out-of-context callbacks. Currently, only one such
call-back is supported: a call-back which will enforce the
workspace client to render itself in test-mode. This call-back
may be useful to invoke if you make “temporary hacks” that
are not supposed to ever work in a production system!

The abstract data-model implementations offers convenience methods for obtaining the
general API-provider and the database API. These are obtained through the data-model
methods getApiProvider and getDatabaseApi respectively.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 206 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

6.2.1 Accessing Environment Information

The environment information is obtained from the resources object by invoking the
method getEnvironmentInfo . The returned type, MiEnvironmentInfo provides the
following methods:

Method Remarks
getDatabaseShortName This method returns the database short name to which the

user is connected.
getLanguage This method returns a MiKey representing a language code.

This language code is the language used by the client-side.
getUserName Returns the Maconomy user-name of the current user as a

String.
getUserNameVal Returns the Maconomy user-name of the current user as a

McStringDataValue.
getUserLoginName Returns the Maconomy log-in name of the current user as a

String.
getUserLoginNameVal Returns the Maconomy log-in name of the current user as a

McStringDataValue.
getRoleInstanceKey Returns the instance key of the Maconomy user-role of the

current log-in’s user-role as a String.
getRoleInstanceKeyVal Returns the instance key of the Maconomy user-role of the

current log-in’s user-role as a McStringDataValue.
getRoleName Returns the name of the Maconomy user-role of the current

log-in’s user-role as a String.
getRoleNameVal Returns the name of the Maconomy user-role of the current

log-in’s user-role as a McStringDataValue.
getConfigurationInfo Returns an object through which you can get information re-

lated to the current configuration of the Maconomy coupling
service. See Section 7.6.

Listing 6.13 shows an example of an extension that adds an Approve action to some
container. In addition, three fields are added. These fields indicate whether or not an
approval has taken place, who did the approval and what date the approval was made. In
order to do this, we need access to the current user name. This is done by accessing the
current user name from the environment information which is made available through
the container runner in line 36: the field ApprovedBy is assigned the value of the current
user in the handler of the Approve action.

Listing 6.13: Accessing the Curernt User Name.
2 private static final MiKey APPROVED = NS("Approved");
3 private static final MiKey APPROVED_BY = NS("ApprovedBy");

c©Deltek Inc. 2013–2019, All Rights Reserved 207 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

4 private static final MiKey APPROVAL_DATE = NS("ApprovalDate");
5 public EnvironmentInfoExample(final MiResources resources) {
6 super(resources);
7 }
8

9 @Override
10 public MiPersistenceStrategy definePersistenceStrategy(final

MiContainerRunner.MiDefine containerRunner) {
11 return McMolPersistenceStrategy.create(key("TRI_MyTable"),

getApiProvider ());
12 }
13

14 @Override
15 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
16 return McPaneSpec.McExtended.pane()
17 .addBooleanField(APPROVED , "Approved").then()
18 .addStringField(APPROVED_BY , "Approved By").then()
19 .addDateField(APPROVAL_DATE , "Date Approved").then()
20

21 .addAction("Approve", "Approve")
22 .end();
23 }
24

25

26 @Action("Trifolium:Approve")
27 final class ApproveHandler extends McAbstractDataModelRootAction

{
28 @Override
29 public void onAction(final MiActionPost containerRunner ,
30 final MiAction eventData) throws

Exception {
31 final MiDataValues resultData = eventData.getResultData ();
32

33 resultData
34 .setBool(APPROVED , true)
35 .setStr(APPROVED_BY ,
36 containerRunner.getEnvironmentInfo ().getUserName ()

)
37 .setDate(APPROVAL_DATE , McDate.today ());
38 }
39 }

6.2.2 Accessing the Maconomy Database

Using the method getApiProvider on the resources object, you can invoke another
method called getDatabaseApi . Or you may obtain the database API directly by
invoking the data-model method getDatabaseApi . Finally, the containerRunner

Version 1.4.021, software version 2.5.0 (21.0.sp100) 208 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

parameter has a method, getDatabaseApi , that returns the database API. This method
returns an object of type MiDatabaseApi , and it represents an interface to the Maconomy
database. This type offers access to a number of methods:

Method Remarks
mselect This method offers the possibility of fetching data from the

Maconomy database using either normal database tables or
Maconomy universes using MQL [MQL]. mselect should be
preferred over select and sql if at all possible. By doing so,
all data fields are returned with the correct Maconomy types.
When mselect is not used, popups are returned as integers,
and amounts are returned as reals on SQL-Server. Also,
in the where-clause, Maconomy types can be used, rather
than having to use the type used internally in the database!
However, if your table (e.g., a custom MOL table) contains
String fields longer than 255 characters, mselect cannot be
used!
The mselect method is available in a number of variants,
including variants that make it possible to write syntax more
or less resembling SQL syntax. We encourage making use of
these variants since they are easier to read and write, and
since the compiler can help ensuring that your expressions
are well-formatted. See below for examples.

mcount This method is used to count the number of entries of
database tables and/or universes. Like mselect should
be preferred over select, mcount should be preferred over
count.

mexists This method is used to check whether records with certain
properties exist. Like mselect should be preferred over
select, mexists should be preferred over exists.

count This method is similar to mcount except that it uses the
native database types rather than Maconomy types.

exists This method is similar to mexists except that it uses the
native database types rather than Maconomy types.

c©Deltek Inc. 2013–2019, All Rights Reserved 209 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Method Remarks
insert This method is used to do an insert into operation in the

database. While it is not possible to modify the standard
application database tables, you can use this method to add
records to custom MOL tables. Remember that you should
not manually insert/update/delete tables used as primary
data-keepers when implementing data-models!
The insert method is available in a number of variants,
including variants that make it possible to write syntax more
or less resembling SQL syntax. We encourage making use of
these variants since they are easier to read and write.

update This method is used to do an update operation in the
database. While it is not possible to modify the standard
application database tables, you can use this method to add
records to custom MOL tables. Remember that you should
not manually insert/update/delete tables used as primary
data-keepers when implementing data-models!
The update method is available in a number of variants,
including variants that make it possible to write syntax more
or less resembling SQL syntax. We encourage making use of
these variants since they are easier to read and write, and
since the compiler can help ensuring that your expressions
are well-formatted.

delete This method is used to do a delete from operation in the
database. While it is not possible to modify the standard
application database tables, you can use this method to add
records to custom MOL tables. Remember that you should
not manually insert/update/delete tables used as primary
data-keepers when implementing data-models!
The delete method is available in a number of variants,
including variants that make it possible to write syntax more
or less resembling SQL syntax. We encourage making use of
these variants since they are easier to read and write, and
since the compiler can help ensuring that your expressions
are well-formatted.

getDatabaseType This method returns en enum indicating the type of database
you are connected to. At present ORACLE or SQL_SERVER.
Sometimes such information may be needed, especially when
doing “raw” sql.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 210 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
select This method is similar to mselect except that it does not

take Maconomy data-types into account. Some types in the
result are represented as Maconomy types rather than the
type used internally. This goes for String, Integer, Real,
Bool, Date, Time. However, Popup fields are returned as
integers representing the ordinal value and Amount fields may
be returned as reals on some databases.
The select method is available in a number of variants,
including variants that make it possible to write syntax more
or less resembling SQL syntax. We encourage making use of
these variants since they are easier to read and write, and
since the compiler can help ensuring that your expressions
are well-formatted. See below for examples.

sqlBuilder This method is used to construct SQL based on a textual
value. The SQL builder allows the programmer to build
SQL which is safe with respect to SQL injection. This
method returns a builder object which lets you declare values
using placeholders. Such values will be properly formatted
and escaped according to the actual type of each value. In
addition, the SQL builder contains a wide variety of methods
that can make it much easier to build value lists such as
in-expressions, field lists, like-patterns etc.

sql This method takes an McSql object as argument. Such
objects are constructed by using the sqlBuilder method
(see above.)

getPopupValues This method returns a list of all popup values of a given
Maconomy popup type.

commit
rollback
getAutoCommit

setAutoCommit

These methods must not be used by extension programmers!

In earlier version of the Extension Framework writing MQL [MQL] was somewhat
cumbersome, because you had to provide all information needed to execute a query as
arguments to the mselect method. While you can still do that (see Listing 6.15 below),
it is possible to specify the database queries in a way that is easier to both read and write.
And which lets the compiler help ensuring that where-clauses are meaningful.

This is done by having the mselect method return a “builder-style” object. That is, an
object that you can operate on to declare your query. Once you are done, all you need to

c©Deltek Inc. 2013–2019, All Rights Reserved 211 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

do is to invoke the getResult method to execute the query and obtain the result.

Listing 6.14 shows an examples that uses this “builder-style” mselect query. The
examples illustrates the implementation of a custom action associated with the maco-
nomy:CompanyInfo container: upon invoking the action ShowEmployeeStatistics, a
small “report” (text document) will be generated. This report will show the number of
male and female employees currently working in the specific company. Also, a list of zip
codes will be presented, and for each zip code, it will show how many of the company’s
active employees are associated with that zip code. In order to do that, we want to query
the database to extract employees that:

• Are associated with this company

• Are not blocked

• Are having an employment date that is at most today’s date. Hence, employees
that are scheduled to be employed “in the future” will not be considered.

• Are still working for this company, i.e., where the employment ending date is either
not specified, or is later than today’s date.

In the code, such employees are obtained by the “mselect statement” in lines 15–22.
Notice that the syntax is pretty close to that of “obvious SQL.” Obviously, the exact same
syntax cannot be achieved because we must adhere to general Java syntax as well. Also,
notice that methods must be used for relational operators such as <= (le) and > (gt).
Please see the method list below. Also notice that it is possible to create quite complex
embedded expression structures (e.g., or) embedded into the expressions. In line 15
the field list and the table from where data is fetched is being declared. In line 16 the
where-clause is started by the method where . Subsequent additions to the where clause
are declared using the and method, first time in line 17. It is possible to optionally
declare order by declarations after the last part of the where clause. This is done by the
orderBy method, including a method (asc) declaring the ordering direction. Finally,
the query is declared as “done,” and executed by invoking the getResult method. The
result of an mselect is a type called MiQueryInspector . Such an inspector provides
a number of methods to query the result. The type itself makes it possible to iterate
through the records (each represented as a MiValueInspector). This is particularly nice
when using Javas for-each construct. This is shown in line 29. The remaining part of
the code shown is just plain Java producing the report and presenting a document to the
end-user.

Listing 6.14: Accessing the Database Using MQL “Builder”
2 @Action("ShowEmployeeStatistics")
3 private final class ShowContactInfoHandler extends

McAbstractDataModelRootAction {
4 private static final String NL = "\r\n";
5

6 /∗∗ { @inher i tDoc } ∗/

Version 1.4.021, software version 2.5.0 (21.0.sp100) 212 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

7 @Override
8 public void onAction(final MiActionPost containerRunner ,
9 final MiAction eventData) throws

Exception {
10

11 final MiValueInspector originalData = eventData.
getOriginalData ();

12

13 final McDateDataValue today = McDate.today ();
14 final MiQueryInspector currentEmployees = getDatabaseApi ()
15 .mselect("Gender", "ZipCode").from("Employee")
16 .where(originalData.copyValues("CompanyNumber"))
17 .and().not("Blocked")
18 .and().le("DateEmployed").date(today)
19 .and(or(gt("DateEndEmployment").date(today),
20 eq("DateEndEmployment").nullDate ()))
21 .orderBy("ZipCode").asc()
22 .getResult ();
23

24 // Now p r o c e s s t h e r e s u l t o f t h e query
25 final MiMap <String , Integer > zipCodeCounts = McTypeSafe.

createLinkedHashMap ();
26 int females = 0;
27 // F i r s t i t e r a t e ove r a l l employees , t h e r e b y o b t a i n i n g a

count
28 // f o r each ZipCode and a count o f f ema l e s
29 for (final MiValueInspector currentEmpl : currentEmployees)
30 {
31 final String zipCode = currentEmpl.getStr("ZipCode");
32 zipCodeCounts.putTS(zipCode ,
33 1 + zipCodeCounts.getElseTS(zipCode ,

0));
34 // o r d i n a l 1 i s Female
35 if (currentEmpl.getPopupOrdinal("Gender") == 1) {
36 ++ females;
37 }
38 }
39 // The males are assumed to be t h e t o t a l number minus
40 // t h e number o f f ema l e s
41 final int males = currentEmployees.getRowCount () - females;
42

43 // produce a r e p o r t document
44 final StringBuilder output = new StringBuilder ()
45 .append("Statistics for Employees of Company ")
46 .append(originalData.getStr("CompanyNumber"))
47 .append(NL).append(NL)
48 .append("No. of male employees: ").append(males)
49 .append(NL)
50 .append("No. of females: ").append(females)

c©Deltek Inc. 2013–2019, All Rights Reserved 213 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

51 .append(NL).append(NL)
52 .append("No. of Employees in Zip Codes")
53 .append(NL);
54 // i t e r a t e ove r a l l t h e ZipCodes found and add a
55 // l i n e t o t h e r e p o r t
56 for (final Map.Entry <String , Integer > entry : zipCodeCounts.

entrySetTS ()) {
57 final String zipCode = entry.getKey ();
58 final int count = entry.getValue ();
59 output.append(zipCode)
60 .append(": ")
61 .append(count)
62 .append(NL);
63 }
64

65 // g en e r a t e a f i l e r e s o u r c e and show t h e c on t e n t s
66 final McFileResource outputFile =
67 new McFileResource(key("Stats"),
68 McFileResource.MeType.TEXT ,
69 "Generated by " + this.getClass (),
70 output.toString ());
71 containerRunner.document ().show(outputFile);
72 }
73 }

Constructing select statements (i.e., non-MQL queries) is done using an interface
identical to that of mselect . The mselect/select methods takes a list of fields
that should be comprised by the query result. These can be provided in a number of
ways:

• As a comma-separated list of MiKey arguments

• As a comma-separated list of String arguments. This is a convenient way if the
field names are inlined (i.e., not defined as constants).

• As an Iterable of MiKeys, such as a list, a set or any other Collection structure.

• As a MiValueInspector, meaning all fields comprised by that value inspector
should be selected.

Basic Query-Builder Methods

The result-type of invoking the mselect/select provides access to the following meth-
ods:

Version 1.4.021, software version 2.5.0 (21.0.sp100) 214 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
mselect Using this method, you can specify additional fields to be selected. You

can invoke this method as many times as you like. This may be useful
in cases where the fields are not found in one collection, or in cases
where some fields are defined as MiKeys and others are simply inlined as
Strings. For example: mselect(F, G).mselect("xyz") which selects
the fields represented by the constants F and G as well as the field xyz.

from This method specifies the table/universe on which the query is based.
You can provide the name as a MiKey or as a String. Once this method
has been invoked, you can no longer specify field-selections. Instead, you
must specify the where-part.

where After having specified the from table, you may optionally specify a
where-clause. If you need to specify an ordering or a pageing interval,
you must specify a where-clause (possibly a constantly true expression).
You can also directly invoke the getResult to execute the query and
obtain the result. In that case, the where-clause will be considered true.
The where method is found in a number of variants:
• A version that takes an MiExpression as argument. This expres-

sion will then be considered the where-clause.
• A version that takes an MiValueInspector . In this case, the
where-clause will be considered an expression comprising a number
of “field-equals-value” sub-expressions. For example, if the provided
MiValueInspector comprises three fields a, b and c with values
va, vb and vc respectively, then the where-clause will be considered
to be

a = va ∧ b = vb ∧ c = vc

• A version that takes a (boolean) field name as an argument, either
as an MiKey or as a String. This will be considered a where-clause
stating that the value of the specified field is true.
• A zero-argument version that gives access to building a simple

expression (see below.)
After the where method is invoked, you can either refine the where-clause
further by invoking the method and, or you can execute the query and
obtain the result by invoking the getResult method. You also have the
option to specify an order-by clause or to restrict the range of records
returned (see below).

and This method is similar to where except that it is used to further refine a
where-clause by adding additional constraints (that are and’ed together).
You can invoke the and method as many times as you like. Listing 6.14
shows an example of the use of the and method in line 17.

c©Deltek Inc. 2013–2019, All Rights Reserved 215 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Method Remarks
orderBy This method can be optionally invoked after the where/and methods.

You can invoke the orderBy method as many times as you want. The
methods comes in a number of variants:
• A variant that takes the field name on which sorting should be per-

formed as an argument, either as an MiKey or a String argument.
With this variant, you must immediately after invoke one of the
methods asc or desc to indicate whether you want sorting to
be ascending or descending.
• A variant that takes the field name on which sorting should be
performed and an argument that specified the sort-order as an
argument of type McSortOrder . MeSortType .
• A variant that takes one or more arguments of type McSortOrder .

allRows This method specifies that you want all rows matching the query’s where-
clause. Since this is also the default, you don’t need to specify this.
Sometimes, however, it can be nice for code clarity.

firstRow This method specifies that you want at most one row back: the first. If
no rows match the query, no rows will be returned. This is equivalent to
specifying rows(0,1).

row This method specifies that you want at most one row back: the one
having the specified index (0 denotes the first row.) If the number of
rows matching the query is less than or equal to the specified index, no
rows will be returned. Invoking row(index) is equivalent to specifying
rows(index, 1).

rowsTo This method specifies that you want the first index−1 rows that matches
the query. Invoking rowsTo(index) is equivalent to specifying rows(0,
index - 1).

rowsFrom This method specifies that you want the rows from (and including) the
row with a specified index, hence skipping the first index − 1 rows.
Invoking rowsTo(index) is equivalent to specifying rows(index, 0).

rows This method specifies that you want a number of specified rows starting
at a specified index. If the number of specified rows is 0, it is interpreted
as “all rows.” the rows from (and including) the row with a specified
index, hence skipping the first index− 1 rows. For example, if a given
query is matched by 32 rows then rows(30, 10) will return the two
rows with index 30 and 31.

Building where-Clause Expressions

A very important part of queries is obviously the where-clause. For this reason, the
methods where and and mentioned above have variants that makes it easy to build
simple expressions which are then and’ed together. The no-argument versions of where

Version 1.4.021, software version 2.5.0 (21.0.sp100) 216 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

and and returns objects that are used to construct such expressions. Once the expression
has been specified, the return type is again the main query-builder type, allowing the
programmer to continue building the query. The expression methods are:

Method Remarks
not This method is found in a number of variants

• A variant that takes an MiExpression as argument.
The resulting expression is the negation of that expres-
sion.
• A variant that takes a (boolean) field name as an

argument. The resulting expression corresponds to an
expression stating that the value of the field is false.

c©Deltek Inc. 2013–2019, All Rights Reserved 217 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Method Remarks
eq This method is used to specify a simple equality expression

like
fieldName = value

The eq methods takes the fieldName as an argument (either
as an MiKey or as a String). The returned value gives the
possibility to specify the value using one of the following
methods:
• val specifies the value as a generic McDataValue
• str specifies a string value
• integer specifies an integer value
• real specifies a real value
• amount specifies an amount value
• date specifies a date value, including a variant that
specifies the year, month and date as integer values.
• time specifies a time value, including a variant that

specifies the hour, minute and second as integer values.
• bool specifies a boolean value
• popup specifies a popup value, including a variant

that specifies the type name, literal name and ordinal
value as separate arguments
• nullDate specifies the empty date (nullDate.)
• nullTime specifies the empty time (nullTime.)
• nil specifies the empty popup value (nil) of a popup
type with a given type name
• field specifies the name of another field that must
equal the first field, i.e., used for expressions of the
form

fieldName1 = fieldName2

An example of using the eq method is:
// ProjectManagerNumber = ’1205’
eq("ProjectManagerNumber").str("1205")

Version 1.4.021, software version 2.5.0 (21.0.sp100) 218 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
neq This method is similar to eq above except that it is used to

specify a simple non-equality expression like

fieldName 6= value

An example of using the neq method is:
// CostPrice <> 0.00
neq("CostPrice").amount(BigDecimal.ZERO)

ge This method is similar to eq above except that it is used
to specify a simple inequality expression (“greater than or
equals to”) like

fieldName ≥ value

An example of using the ge method is:
// ProjectManagerNumber >= today
ge("EmploymentDate").dage(McDate.today())

le This method is similar to eq above except that it is used to
specify a simple inequality expression (“less than or equals
to”) like

fieldName ≤ value

An example of using the le method is:
// PeriodStart <= today
eq("PeriodStart").date(McDate.today())

gt This method is similar to eq above except that it is used to
specify a simple inequality expression (“greater than”) like

fieldName > value

An example of using the gt method is:
// Difference > trivialityLimit
gt("Difference").real(trivialityLimit)

c©Deltek Inc. 2013–2019, All Rights Reserved 219 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Method Remarks
lt This method is similar to eq above except that it is used to

specify a simple inequality expression (“less than”) like

fieldName < value

An example of using the gt method is:
// RevisionNumber < lastesApprovedRevNo
lt("RevisionNumber").integer(latestApprovedRevNo)

rel This method is similar to eq above except that you must
specify which relational operator to use. The relational
operator can be specified using either en enum value or a
String. The recognized Strings are as follows:
• = use for equality
• != or <> used for non-equality
• >= used for greater-than-or-equals
• <= used for less-than-or-equals
• > used for greater-than
• < used for less-than

Examples are:
// ProjectManagerNumber = ’1205’
rel("ProjectManagerNumber", "=").str("1205")
// PeriodStart <= today
rel("PeriodStart", "<=").date(McDate.today())

Version 1.4.021, software version 2.5.0 (21.0.sp100) 220 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
inrange This method is used to specify that the value of a field is

within a certain range. The range may be unbounded. The
argument to the inrange method is a field name. In addition,
lower and upper bound values must be specified by invoking
a method on the result object. If the inrange expression is
associated with the field fieldName and two values vl (lower
bound) and vu (upper bound.) The corresponding expression
is then:

fieldName ≤ vu if vl = empty ∧ vu 6= empty
fieldName ≥ vl if vl 6= empty ∧ vu = empty

vl ≤ fieldName ≤ vu if vl 6= empty ∧ vu 6= empty
true if vl = empty ∧ vu = empty

The “empty” value is different from type to type. For integer,
reals and amounts, the “empty” value is defined as 0. For
booleans, an empty value does not exit. A number of methods
are available for specifying the lower and upper bound range:
• val specifies the lower and upper bounds as generic
McDataValues
• str specifies the lower and upper bounds as strings
• integer specifies the lower and upper bounds as
integers
• real specifies the lower and upper bounds as reals
• amount specifies the lower and upper bounds as

amounts
• date specifies the lower and upper bounds as dates
• time specifies the lower and upper bounds as time
values

Using the inrange method on popup values may give some-
what surprising results since the ordinal values are used when
determining the bounds.

In addition to making simple expressions that are and’ed together, sometimes you
might want to build more complex expressions, for example expressions containing
disjunctions (or-expressions.) This is not directly possible using the simple query builder
methods. The Extension Framework does, however, provide support for doing this.
All data-models and action-handler abstract classes have a super-type implementation
called McAbstractSimpleExpressionBuilder . This type provides methods for building
simple expressions (as shown above) as well as simple or-expressions. By combining the
available methods, you can build complex expressions in a reasonably easy-to-read and

c©Deltek Inc. 2013–2019, All Rights Reserved 221 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

understand syntax. For example, if you want a complex expression like

¬a ∨ b = v1 ∧ (d ≤ v2 ∨ e > v3)

you can easily obtain this by the following piece of code:
or(not("a"),

and(eq("b").val(v1),
or(le("d").val(v2),

gt("e").val(v3))))

Notice, that such expression builder-methods can be used for any need for expressions;
it is not restricted to database queries. Sometimes, you may want to implement utility
classes that are not necessarily defined in a data-model or action handler class. In
this case, obtaining access to these expression builder utilities can be achieved in two
ways:

1. Let your class extend McAbstractSimpleExpressionBuilder . Doing so, will en-
able a wide range of methods that are capable of creating simple boolean expressions.
By combining these, arbitrarily complex boolean expression can be build.

2. If your class cannot extend that class, you may locally obtain an object of type
McSimpleExpressionBuilder . You can obtain such an object by invoking the
factory method expr on McSimpleExpressionBuilder. The returned object gives
access to all the expression builder-methods mentioned above.

Examining a Query Result

As indicated above, a query is executed, and the result obtained by invoking the method
getResult. The result of doing that for mselect/select methods is an object of
type MiQueryInspector . This type implements the interface allowing you to use it
with Java’s for-each construct: Iterable < MiValueInspector >. This makes it very
convenient to loop loop through all rows in the result, providing access to each row as a
MiValueInspector, obviously skipping the loop if there are no rows in the result. An
example is given in Listing 6.14 line 29. Apart from this, the return type provides the
following methods

Method Remarks
getRowCount This method returns the number of rows returned by the

query.
containsRow This method returns a boolean indicating whether a row

with a given index is comprised by the result.
isEmpty This method returns true if there are no records in the

result.
getRecordOpt This method returns an optional record. If no row with the

specified index exists, a none-value is returned. Otherwise
the record value is returned.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 222 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
getRecord This method is like getRecordOpt except that it is asserted

that the record is defined. If the records is not defined, an
exception is thrown. The result records are always treated
as being 0-indexed. So, even if the result is specified as rows
from index i, the first record in the result will have index 0.

allRecords This method returns a Collection of all records represented
by the result.

stream This method returns a Stream of all records represented by
the result.

getProjector This returns a an object of type MiQueryInspec-
tor.MiProjector which is tied to this query inspector. It
can be used to make projections of the current query inspec-
tor, i.e., considering only one or more fields in the return
result. By doing so, it is possible to extract, for example, the
unique values occuring for a specified field in the result.

asPaneValue This method represents the result data as a MiPaneValue,
similar to the older versions of the mselect/select methods.
Usually, it should not be necessary or desirable to obtain
the value as this type. Also notice, that the value returned
by this mehtod may have a record-index offset which is not
0. Since a query inspector is essentially communicating a
collection of records, this method (which reveals a lot of
irrelevant details) is now deprecated. Instead use the method
on the query inspector to examine the data.

The MiQueryInspector.MiProjector type that is returned by the getProjectormethod
has the following methods:

Method Remarks
getUniqueVals This method returns a collection of unique values occurring

in the query result for some specified field. For example, if
you select a number of time sheet lines, you can obtain the
unique set of job numbers referenced by those time sheet
lines.

getVals This method returns a collection of values occurring in the
query result for some specified field. In case a specific value
occurs multiple times, the returned collection will include
that value several times.

c©Deltek Inc. 2013–2019, All Rights Reserved 223 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Method Remarks
getUniqueValues This method returns a collection of unique combinations

of values (i.e., of multiple fields) occurring in the query
result for some specified fields. For example, if you select a
number of time sheet lines, you can obtain the unique set
of combinations of job number and task name referenced by
those time sheet lines.

getValues This method returns a collection of combinations of values
(i.e., of multiple fields) occurring in the query result for some
specified fields. In case a specific combination of values occurs
multiple times, the returned collection will include that value
combination several times.

Using the Old-Fashioned Query Interface

In previous version of the Extension Framework, doing database queries were done in a
slightly different way. This way is still available, and in some specific cases, it may still
be preferable. Likely, if you build very generic code for which the behavior is based on
some kind of configuration or specification, you may benefit from using this interface. In
most sitautions, however, the code is likely going to be much easier to read and write
using the builder-style methods above.

Listing 6.15 shows an example where data is read from the database using MQL [MQL]
using the mselect method using the non-builder-style interface. In order to do that, we
need three things:

1. The name of the table/universe to read from.

2. A collection of fields to select (e.g., a list of field names.)

3. An McQuery which is basically an expression, and may additionally contain sort
order and row range (paging information.)

In the example, an action handler implements some functionality that shows a message
containing the project manager’s e-mail address as well as his phone number. This
information needs to be looked up from the Employee database table. First, in line 14,
we make an expression5 that is going to be used as the where clause, and then wraps this
expression into a McQuery. In line 18 we invoke mselect on the database API which is
obtained from the method getDatabaseApi made available in the data model classes
as well as from the containerRunner of the event method. The result of this (and most

5In the example we use a McExpressionParser which parses an expression from a String. The syntax
of such a String is identical to that of expressions in MDML and MWSL. See [EL]. There are several
other ways to build expressions, e.g., from sub-sets of record values.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 224 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

other database operations) is a “pane value”, i.e., a structure similar to that used to
present data to panes in the client. Such structures can be queried for the number of
records, and it’s possible to iterate over all records or to obtain the value of specific
records etc. In lines 20–28 we investigate the number of rows; there will be either 0 or 1
in this case. If there is one row, we obtain that row in line 21 and use it to obtain the
desired information.

Listing 6.15: Accessing the Database Using MQL.
2 public DatabaseExampleDataModel(final MiResources resources) {
3 super(resources);
4 }
5

6 @Action("ShowContactInfo")
7 private final class ShowContactInfoHandler extends

McAbstractDataModelRootAction {
8 @Override
9 public void onAction(final MiActionPost containerRunner ,

10 final MiAction eventData) throws
Exception {

11 final MiValueInspector originalData = eventData.
getOriginalData ();

12

13 final MiExpression <McBooleanDataValue > pmEmployeeExpr =
14 McExpressionParser.parser("EmployeeNumber = ’" + escapeStr

(originalData.getStr("ProjectManagerNumber")) + "’").
parse ();

15 final MiList <MiKey > selectFields =
16 McTypeSafe.createArrayList(key("ElectronicMailAddress"),
17 key("Telephone"));
18 final MiQueryInspector mselectResult = getDatabaseApi ().

mselect(selectFields).from(key("Employee")).where(
pmEmployeeExpr).getResult ();

19

20 if (mselectResult.getRowCount () == 1) {
21 final MiValueInspector pm = mselectResult.getRecord (0);
22 final String message =
23 String.format("You can reach the PM at %s or phone: %s",
24 pm.getStr("ElectronicMailAddress"),
25 pm.getStr("Telephone"));
26

27 containerRunner.call().notification(message);
28 }
29 }
30 }
31

32 private String escapeStr(final String s) {
33 return s.replaceAll("’", "\\’");

c©Deltek Inc. 2013–2019, All Rights Reserved 225 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Listing 6.17 shows an example where data is obtained from the database by using SQL
directly. In this example, a Variable is added to the Listing 6.17 shows an example where
data is obtained from the database by using SQL directly. In this example, a variable is
added to the Just to compare, Listing 6.16 shows the exact same code, this time using
the builder-style methods. Which version do you prefer?

Listing 6.16: Accessing the Database Using SQL “Builder.”
2 @Action("ShowContactInfo")
3 private final class ShowContactInfoHandler extends

McAbstractDataModelRootAction {
4 @Override
5 public void onAction(final MiActionPost containerRunner ,
6 final MiAction eventData) throws

Exception {
7 final MiValueInspector originalData = eventData.

getOriginalData ();
8

9 final String pmNumber =
10 originalData.getStr("ProjectManagerNumber");
11 final MiQueryInspector mselectResult =
12 getDatabaseApi ()
13 .mselect("ElectronicMailAddress", "Telephone")
14 .from("Employee")
15 .where ().eq("EmployeeNumber").str(pmNumber)
16 .getResult ();
17

18 if (mselectResult.containsRow (0)) {
19 final MiValueInspector pm = mselectResult.getRecord (0);
20 final String message =
21 String.format("You can reach the PM at %s or phone: %s",
22 pm.getStr("ElectronicMailAddress"),
23 pm.getStr("Telephone"));
24

25 containerRunner.call().notification(message);
26 }
27 }

Listing 6.17 shows an example where data is obtained from the database by using SQL
directly. In this example, a variable is added to the TimeSheets container. This variable
shows the number of hours registered for this employee from the beginning of the year
until (but not including) the current time sheet. This is done by selecting the sum of
the fields ExternalTimeWeekTotal and InternalTimeWeekTotal on time sheets of this
employee, having the same year as this time sheet and a week number which is lower
than that of this time sheet. When using SQL directly, we need to build an SQL query.
This is done using the McSqlBuilder class. The best way to obtain such an object
is by invoking the sqlBuilder on the MiDatabaseApi . The builder is generally a
textual interface to writing SQL statements. However, because it is generally difficult

Version 1.4.021, software version 2.5.0 (21.0.sp100) 226 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

not to have your code being vulnerable to SQL injection, this textual interface insists
on having control over variable content and String-values included in the SQL. Instead
of letting the programmer have to remember to quote and escape String-values, format
dates etc., this SQL builder api will do it for you. In order to reference a value, you put
a placeholder in your SQL-string. By declaring the value of that placeholder (also on
the builder object), once you invoke the build method, the framework will substitute
the placeholders by the declared values, and it will ensure that each type is adequately
formatted and escaped. This makes it very difficult to make your code vulnerable to
SQL injection. It is, however, important to stress that when doing textual SQL, you
must always take care. Deltek cannot be held liable for any vulnerability in that occurs
from your code.

In the example, building an SQL query is done in lines 18–25. Line 24 is where values
are assigned to placeholders. You can do that either by declaring the placeholder values
individually, or you can do it (as in this example) by invoking the setAll method
which assigns all the values in the provided record structure to placeholders of that name.
Notice that you don’t need to actually use all placeholders in your query. Adding multiple
placeholder values in this way, simply mean that you are able to refer to all these names
as placeholders in your SQL String. Placeholders have the form

^{Placeholder_Name}

When the builder object is built using the build method, the result is an object of type
McSql . This SQL content is now locked in this object, and cannot be changed. By
invoking the getResult method, the SQL is executed and the result is brought back as
a MiQueryInspector . In the example, the SQL statement is run in line 26. Optionally,
you may provide a range (page indication) as an argument to the getResult method.
In lines 28–33 we check the number of records in the output (there will be 0 or 1.) In
case the result is non-empty (i.e., there is one), the resulting data is fetched from the
row with index 0 in line 29. Notice that when using this API, properly guarding against
SQL-injection is handled for you, just as formatting dates and other types is handled for
you.

Listing 6.17: Accessing the Database Using SQL.
2 private static final MiKey REG_YEAR_TO_WEEK_VAR =
3 NS("RegYearToWeekVar");
4

5 @Override
6 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
7 return McPaneSpec.McExtended.pane()
8 .addRealVariable(REG_YEAR_TO_WEEK_VAR , "Reg. Year -to-Now").

then()
9 .end();

10 }
11

c©Deltek Inc. 2013–2019, All Rights Reserved 227 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

12 @Override
13 public void refreshVariables(final MiContainerRunner.MiDataPost

containerRunner ,
14 final MiResult eventData) throws

Exception {
15 final MiDataValues resultData = eventData.getResultData ();
16 final MiDatabaseApi db = containerRunner.getDatabaseApi ();
17 final McSql query = db
18 .sqlBuilder("select sum(ExternalTimeWeekTotal) as ExtTime ,")
19 .append("sum(InternalTimeWeekTotal) as IntTime").nl()
20 .append("from TimeSheetHeader").nl()
21 .append("where EmployeeNumber = ^{ EmployeeNumber}").nl()
22 .append(" and WeekNumber < ^{ WeekNumber}").nl()
23 .append(" and TheYear = ^{ TheYear}")
24 .setAll(resultData)
25 .build ();
26 final MiQueryInspector sqlResult = query.getResult ();
27

28 if (! sqlResult.isEmpty ()) {
29 final MiRecordInspector addedTimeSheets = sqlResult.

getRecord (0);
30 resultData.setReal(REG_YEAR_TO_WEEK_VAR ,
31 addedTimeSheets.getReal("ExtTime")
32 .add(addedTimeSheets.getReal("IntTime")))

;
33 } else {
34 resultData.setReal(REG_YEAR_TO_WEEK_VAR , BigDecimal.ZERO);
35 }

The SQL builder used in the example, contains a number of methods that eases the task
of wring SQL, generated programmatically from some data structures, or as more or less
explicit SQL. These include:

Version 1.4.021, software version 2.5.0 (21.0.sp100) 228 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
append This method appends a String of “raw SQL” to the content

already contained by the builder. The SQL builder will
ensure that there’s always space between the content of
subsequent build methods. Hence, you can only append
new content at places where a space is required or does
not matter. Therefore, you cannot split keywords such as
append("sel").append("ect"). It also means, that you
don’t have to worry about silly mistakes pertaining from
missing white-space separation.
The content in the “raw SQL” may contain placeholders of
the form ^{PlaceholderName}. When the build method
is invoked, the placeholders will be replaced by content ob-
tained from the declared placeholder values. Placeholders of
different kinds can be declared: values, identifiers, patterns
and expressions. See below for more information. It is not
allowed to specify the following characters in the raw SQL:
single quote (’), semicolon (;), double-dash (comment) (--),
hat (^) and curly braces ({ and }). In case you need a literal
hat or curly brace, you can obtain that by writing it twice.
Single-quotes must be left to the framework.

nl This method appends a newline (platform dependent) to the
SQL content. It has not semantic meaning to the generated
SQL, but it may be used to conveniently produce readable
logging or debugging content.

setVal This method declares the value of a placeholder. You specify
the placeholder name as well as its value. Such a placeholder
is a value placeholder, and the corresponding placeholder
will be substituted by the formatted and escaped value. For
example, if the value is a date, the date will be properly
formatted. A boolean will be formatted to match the encod-
ing of booleans in the database, and Strings are quoted and
quotes inside the string contents is escaped.

setBool This method is like setVal except that the argument type
must be a boolean.

setStr This method is like setVal except that the argument type
must be a String. The length of the string may be truncated.

setString This method is like setVal except that the argument type
must be a String. The string contents will not be truncated.

setPopup This method is like setVal except that the argument type
must be a popup.

setNil This method is like setPopup except that assigns a popup
nil-value to the specified placeholder.

c©Deltek Inc. 2013–2019, All Rights Reserved 229 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Method Remarks
setInt This method is like setVal except that the argument type

must be an integer.
setDate This method is like setVal except that the argument type

must be a date.
setNullDate This method is like setDate except that assigns the

nullDate value to the specified placeholder.
setTime This method is like setVal except that the argument type

must be a time value.
setNullTime This method is like setTime except that assigns the

nullTime value to the specified placeholder.
setReal This method is like setVal except that the argument type

must be a real.
setAmount This method is like setVal except that the argument type

must be an amount.
setAll This method takes a record value/value inspector as argu-

ment. The effect is that all fields of that record will be
declared as placeholders with that name and the correspond-
ing value will be the one found in the record.
An additional variant of this method exists, that also lets you
declare a context. Doing so will imply that all placeholder
names are prefixed by the context name and a “dot”. E.g., if
the the record contains two fields FieldA and FieldB and the
context is empl then the placeholders are: empl.FieldA and
empl.FieldB. This is useful in cases where you want to add
placeholders from different records with similar names (e.g.,
a customer and an employee both contain the fields Name1
and CompanyNumber.) By using the context, you can easily
separate the values from the two contexts. The framework
will issue an error if a placeholder with a given name is
declared twice.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 230 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
setPattern This method declares a kind of placeholder useful for pat-

terns (in like expressions.) In addition to the usual escaping
mechanisms, content that contains the characters percent (%)
and underscore (_) might need to be escaped. For example,
if you want to match the string “30%” the percent should
not be treated as a wild-card character. The setPattern
methods are capable of handling this and, optionally, adding
a wild-card character at the beginning and/or at the end of
the escaped pattern. You may also choose to leave the pat-
tern content as is, and you may optionally declare characters
in the patterns that should be converted into the standard
SQL wild-cards. Please refer to the JavaDoc documentation
for more information.

like This method is similar to the setPattern in that it is used
to handle patterns for like expressions. Only, this method
doesn’t explicitly declare a value for a placeholder. Instead,
it inserts a complete like expression in your SQL content.
Please refer to the JavaDoc documentation for more infor-
mation.

placeholder This method inserts a reference to a placeholder with the
specified name. This is particularly useful in cases where
your SQL query isn’t completely known at compile time.

idList This method can be used to insert a number of ids (such as
a list of field names) into your SQL content. You can specify
an any sequence that should be used as separator between
the elements, as well as any content written before and after.
This method is found in a number of flavours. The most
simple basically just takes a list of ids, and formats those as
a comma-separated list. This may be useful for building a
selection-field list where the exact fileds are not known at
compile time.

c©Deltek Inc. 2013–2019, All Rights Reserved 231 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Method Remarks
valList This method can be used to list a number of values. You can

choose a character sequence to be used as separator and you
can specify a sequence to be inserted before and after the
listed elements. Each value will be formatted and escaped
according the the value type.
The method exists in various flavours, the most simple
basically just takes a list of values, and formats those in
a way that is particular useful in combination with in-
expressions. Hence, if you have a liste of employee num-
bers in a variable, employees, you can easily generate SQL
that matches any of these: append("where EmployeeNumber
in").valList(employees).

val This method appends a value, formatted and escaped
according to it’s type. This is similar to referencing
a placeholder and declaring it’s value at once. Hence:
.append("where JobNumber =").val(jobNumber) in con-
text where jobNumber has the value 10250001, this will give
the SQL: where JobNumber = ’10250001’.

str This method is similar to the val method, except that the
argument value is a String.

amount This method is similar to the val method, except that the
argument value is an amount.

real This method is similar to the val method, except that the
argument value is a real.

integer This method is similar to the val method, except that the
argument value is an integer.

date This method is similar to the val method, except that the
argument value is a Date. There are several flavours of this
method that lets you declare the date in various ways.

nullDate This method is similar to the val method, except that the
value is the nullDate.

time This method is similar to the val method, except that the
argument value is a time value. There are several flavours of
this method that lets you declare the time value in various
ways.

nullTime This method is similar to the val method, except that the
value is the nullTime.

bool This method is similar to the val method, except that the
argument value is a boolean.

popup This method is similar to the val method, except that the
argument value is a popup value.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 232 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
nil This method is similar to the val method, except that the

value is the nil value.
setExpr This method sets the value of a placeholder of kind expression.

When the build method is invoked, SQL corresponding to the
expression will be inserted. Note that only simplistic expres-
sions can be converted to SQL. You cannot use most of the
expression functions. If you do, an exception will be thrown
at run time. This method is particularly useful in case you
wish to construct, e.g., a where-clause that corresponds to the
constraints of a given record. Then this method can declare
a placeholder value that will be substituted accordingly. For
example, if you have an expression of the form: CostPrice =
100.00 and CompanyNumber = ’1’ then using this method,
that expression is being translated into the corresponding
SQL format.

expr This method is like the setExpr method, except that it
appends the SQL-variant of the expression at the specified
position, i.e., without specifying a placeholder.

build This method “builds” an object of type McSql from the
content found in the builder. If it is not possible to generate
SQL at this point, a run-time error will occur. Once you
have the built McSql this will never change again, even if you
make additional changes to the builder. The McSql object
can be used to pass to the method sql on a MiDatabaseApi
or you can directly invoke the SQL by using the getResult
method.

6.2.3 Modifying Data in the Database

Occasionally you may need to manually update certain entries in the database. As
stated before, when you add fields to a pane you should not manually insert, update
or delete the corresponding records in the database! The Extension Framework will
manage this for you. Still, suppose you want to maintain some aggregated table. For
example, you might want to aggregate all time sheet registration for each project. Then
every time a time sheet line is updated or changed, you should update a record in this
table, possibly creating it if it doesn’t already exist.

You can do this sort of thing by invoking the insert , update (and in some cases
the delete) methods from the MiDatabaseApi. Like for the query methods (select,
count and exists), the modification methods are also available in a builder-style as well

c©Deltek Inc. 2013–2019, All Rights Reserved 233 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

as the old “everything-in-one-go” style. For the old-style methods, you are referred to the
Java-doc. Here, we shall only consider the builder-style methods. Generally, the update
and delete methods may have a where-clause. The way to build the where-clause is
identical to how it is done for queries (see above.)

Listing 6.18 shows an example where an aggregate table is updated every time a time sheet
line is created, updated or deleted. For each job, an aggregated total-number-of-hours
value is maintained. The interesting part—accessing the database—takes place in the
method updateJobBy in lines 40–62. In line 49 we determine if the record should be
created (“inserted”) or updated in the database. This is done by checking whether a
corresponding record already exists. The insert-operation takes place in line 50. In case
the record already exists, we use the value already looked up, obtain the current value
and add the amount to increase it. Then the record is updated in line 56. Notice that in
both cases, nothing happens until the execute method is invoked!

Listing 6.18: Modifying Database Records.
2 @Override
3 public void onChangePost(final MiChangePost containerRunner ,
4 final MiUserChange eventData) throws

Exception {
5 final MiDataValues resultData = eventData.getResultData ();
6 final MiUserData userData = eventData.getUserData ();
7 final MiValueInspector originalData = eventData.

getOriginalData ();
8

9 final String jobNumberCurrent = resultData.getStr("JobNumber")
;

10 final String jobNumberOriginal = originalData.getStr("
JobNumber");

11 BigDecimal updateCurrent = BigDecimal.ZERO;
12 BigDecimal updateOriginal = BigDecimal.ZERO;
13

14 if (userData.changed("JobNumber")) {
15 updateOriginal = originalData.getReal("WeekTotal").negate ();
16 updateCurrent = resultData.getReal("WeekTotal");
17 } else {
18 updateCurrent = resultData.getReal("WeekTotal").subtract(

originalData.getReal("WeekTotal"));
19 }
20

21 if (updateOriginal.compareTo(BigDecimal.ZERO) != 0) {
22 updateJobBy(jobNumberOriginal , updateOriginal);
23 }
24 if (updateCurrent.compareTo(BigDecimal.ZERO) != 0) {
25 updateJobBy(jobNumberCurrent , updateCurrent);
26 }
27 }
28

Version 1.4.021, software version 2.5.0 (21.0.sp100) 234 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

29 @Override
30 public void onDeletePost(final MiDeletePost containerRunner ,
31 final MiDelete eventData) throws

Exception {
32 final MiValueInspector originalData = eventData.

getOriginalData ();
33 final BigDecimal weekTotal = originalData.getReal("WeekTotal")

;
34 if (weekTotal.compareTo(BigDecimal.ZERO) != 0) {
35 updateJobBy(originalData.getStr("JobNumber"),
36 weekTotal.negate ());
37 }
38 }
39

40 private void updateJobBy(final String jobNumber ,
41 final BigDecimal updateNumber) throws

Exception {
42 if (! jobNumber.isEmpty ()) {
43 final MiKey aggregateTable = key("TRI_JobTSRegistrations");
44 final MiDatabaseApi databaseApi = getDatabaseApi ();
45 final MiQueryInspector aggregateValues =
46 databaseApi.mselect("TotalRegs").from(aggregateTable)
47 .where ().eq("JobNumber").str(jobNumber)
48 .getResult ();
49 if (aggregateValues.isEmpty ()) {
50 databaseApi.insert(aggregateTable)
51 .setReal("TotalRegs", updateNumber)
52 .setStr("JobNumber", jobNumber)
53 .execute ();
54 } else {
55 final BigDecimal currentTotalRegs = aggregateValues.

getRecord (0).getReal("TotalRegs");
56 databaseApi.update(aggregateTable)
57 .setReal("TotalRegs", currentTotalRegs.add(

updateNumber))
58 .where ().eq("JobNumber").str(jobNumber)
59 .execute ();
60 }
61 }
62 }

The above example showed how to do this by using the database API directly. There
is another way of doing this. The differences between the two are subtle, and mainly a
matter of taste: you may use a MiPersistenceStrategy. However, using a persistence
strategy, you can potentially update sources not directly related. Using the exact
same code, except how the persistence strategy is obtained of course. In this way,
persistence strategies are slightly more flexible. If your persistence strategy is targeted
directly towards the Maconomy database, the difference is minor. In Listing 6.19 an

c©Deltek Inc. 2013–2019, All Rights Reserved 235 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

implementation corresponding to the method updateJobBy is shown using persistence
strategies. Since persistence strategies do not offer a builder-style pattern, it may be
somewhat more cumbersome to use persistence strategies.

Listing 6.19: Modifying Database Records using a Persistence Strategy.
2 private void updateJobByPS(final String jobNumber ,
3 final BigDecimal updateNumber) throws

Exception {
4 if (! jobNumber.isEmpty ()) {
5 final MiPersistenceStrategy aggregateTable =

McMolPersistenceStrategy.create(key("
TRI_JobTSRegistrations"), getApiProvider ());

6 final MiRecordValue jobNumberRestriction = dataValues ().
setStr("JobNumber", jobNumber);

7 if (aggregateTable.exists(jobNumberRestriction)) {
8 final MiList <MiKey > fieldList = McTypeSafe.createArrayList

(key("TotalRegs"));
9 final MiQueryInspector currentContent = aggregateTable.

select(fieldList , jobNumberRestriction);
10 final BigDecimal currentTotalRegs = currentContent.

getRecord (0).getReal("TotalRegs");
11 aggregateTable.update(dataValues ().setReal("TotalRegs",

currentTotalRegs.add(updateNumber)),
jobNumberRestriction);

12 } else {
13 aggregateTable.insert(dataValues ().setReal("TotalRegs",

updateNumber));
14 }
15 }

6.2.4 Database Access with Name-Spaced Fields

Since fields in panes can have name-spaces, and since such fields often have a direct link
to a database field, the Maconomy database API has been made “transparent” to using
of name-spaces on fields.

For example, suppose that you have a data-model where you have defined constants
representing named fields. And that these constants contain name-spaces. Also suppose
that you for some reason need to make a query for these fields directly in the database.
It is highly convenient, if you can just ask for whatever names you have defined, even
if the field names in the database does not contain the name spaces. Also, it is highly
practical if the database result contains the name-spaced names rather than the internal
database-names.

As an example, suppose we have a table defined in the database in the following way:

CREATE TABLE TRI_EMPLOYEE(
EMPLOYEENUMBER VARCHAR(255) NOT NULL,

Version 1.4.021, software version 2.5.0 (21.0.sp100) 236 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

PREFERREDCUST VARCHAR(255) NOT NULL
);

Also, suppose that you have added the field PreferredCust to a pane in an extension
data-model. And suppose that you have specified the name-space Trifolium in that data-
model. Then, the field that is added to the pane will be called Trifolium:PreferredCust.
Suppose that whenever we do an update, we want to check whether some other employee
has the same preferred customer. We can do so by looking up data from the table
TRI_EMPLOYEE. Now, suppose you have the following piece of code:

1 private static final MiKey PREF_CUST =
2 key("Trifolium:PreferredCust");
3 private static final MiKey TABLE = key("TRI_EMPLOYEE");
4

5 public void onChangePre(final MiChangePre containerRunner ,
6 final MiUserChange eventData) throws

Exception {
7 /∗ . . . some code goe s here . . . ∗/
8 MiQueryInspector result =
9 getDatabaseApi ().mselect(PREF_CUST).from(TABLE)

10 .where ().eq("EmployeeNumber").str(emplNo)
11 .getResult ();
12

13 if (! result.isEmpty ()) {
14 String prefCust = result.getRow (0).getStr(PREF_CUST);
15 /∗ hand l e p r e f e r r e d cus tomer . . . ∗/
16 }
17 /∗ . . . more code goe s here ∗/
18 }

This will indeed work as expected: the field PreferredCust will be selected from the
underlying database table (i.e., the name-space is ignored). But the result will contain
the name-spaced field names, which is why it works to look up the value of that field
using the name Trifolium:PreferredCust. The API can handle only queries with one
name-space for a given record. If two different name-spaces are explicitly used in the
same record, a run-time error will occur.

6.2.5 Obtaining Popup Values from the Maconomy Database

In the Maconomy type system, there is a concept of “popup types.” A popup type is
really just an enum. Each entry in the enum has an associated literal value which is case
insensitive, an ordinal value which is an integer used as a “key” to distinguish this value
from others, a title value which is a text eventually shown to the end-user and which
may be localized to various languages and finally a popup type. For a given popup type,
all values have different ordinal and literal values.

Sometimes you may wish to set the value of some field to a certain popup value. In
this case, you need to know the ordinal value and the literal value. A way to obtain the

c©Deltek Inc. 2013–2019, All Rights Reserved 237 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

correct values, you can choose to access the database API. The method getPopupValues
returns a list of McPopupDataValues that currently exist for a specific popup type. This
may be especially relevant for dynamic popup types, i.e., popup types where the entries
are user-defined. Notice that using this method, you can only obtain information about
popup types that are defined in the core Maconomy application—custom built popup
types cannot be obtained in this way.

Listing 6.20 shows an example where this mechanism is used to fetch all popups of type
CountryType. A list of defined values of this type is obtained in line 2. Then we iterate
over the elements in this list until we find one with the literal name “France.”

Listing 6.20: Obtaining Maconomy Popup Values.
2 final MiList <McPopupDataValue > countries = getDatabaseApi ().

getPopupValues(key("CountryType"));
3

4 // Find t h e popup v a l u e f o r " France "
5 MiOpt <McPopupDataValue > france = McOpt.none();
6 for (final McPopupDataValue country : countries) {
7 if (country.getLiteralName ().isLike("France")) {
8 france = opt(country);
9 break;

10 }
11 }
12 if (france.isDefined ()) {
13 // a match f o r France was found . . .
14 } else {
15 // France was not found . . .
16 }

6.2.6 Data Caches

As briefly explained in Section 4.11.2 the Extension Framework comes with a handy
utility class called McDataCaches . This class is frequently used when looking up values
presented in variables, but it may be generally used to fetch data.

The purpose of this class is to offer a buffer between the application program code and
the database (or some other data source) with a built-in caching of data. It is often the
case that:

• Several fields from the same database record is needed in different places in the
code.

• The same record may be needed several times, especially in loops.

• You need to be prepared for a situation where the record you may need does not
exist, in which case you want to use some default value instead.

The McDataCaches (and the related MiDataCache interface) address these issues. In fact
the McDataCaches is just a common container of a number of specific data caches.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 238 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

McDataCaches

MiDataCache

"JobHeader"

MiDataCache

"TimeSheetHeader"

MiDataCache

"Customer"

MiDataCache

"EmployeeSkill"

Figure 6.1: The McDataCaches acts as a container of concrete MiDataCache instances
which can be obtained by name. In this example, four named data caches are found with
names “EmployeeSkill”, “Customer”, “JobHeader” and “TimeSheetHeader.”

Figure 6.1 shows an example instance of a McDataCaches that contains a number of
specific data caches, each with a unique name. Each of these can be obtained, and
queried.

Defining data caches

In order to work with a data cache, it needs to be defined. All the data cache instances
contained by a McDataCaches object are defined together as part of the overall definition
of the McDataCaches object. The definition is done by following a builder-style approach.
This process is started by invoking McDataCaches . create . The result of this is a
builder object that can be used to define one or more concrete data caches.

Method Remarks
defineCache This method defines a cache with a specified name. You can

define as many data caches as you want, but the name of
each one must be unique. By default the data source will
be assumed to be a Maconomy database or universe with
exactly this name. If that assumption is wrong, you must
provide a fetch strategy which defines the data source to use.
Once you have defined all the properties of a cache, you can
define the next one by invoking this method again.

c©Deltek Inc. 2013–2019, All Rights Reserved 239 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Method Remarks
end When the end method is invoked, it signals that all the data

caches have been defined, and the result is an object of type
McDataCaches . Once ended, the data-cache definitions are
fixed and cannot be altered, but the caches can now be used
to query data.

Following the definition of the cache, you can do the following:

Method Remarks
fetchStrategy This optional method is used to define which fetch strategy

should be used to fetch data from the underlying data source.
If this method is not invoked, the assumption is that data
should be fetched from a Maconomy database table or uni-
verse that has exactly the same name as the data cache being
defined. By using this method, you can redirect the fetching
to occur from another Maconomy database or table (e.g., by
providing an instance of McMolPersistenceStrategy) or
you can provide a fetch strategy that fetches data from a
completely different source such as a web service.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 240 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
key This method can be invoked one or more times. It is used

to specify the key fields of the underlying data source. You
can specify the name of the key field either as a MiKey or
a String. This method comes in a number of flavours; the
value arguments can be in a number of different formats:
• The name of the key field as the only argument: us-
ing this method means that the specified field is a
key field, and that any key value where this field has
the “zero value” of the corresponding type (i.e., empty
string, NullDate, NullTime, nil popup, 0, 0.0, 0.00
or false) will be “ignored” (i.e., the data cache will as-
sume that no record exists for that key and will always
return a default record.)
• The name of the key field and an additional argument
of type MeIgnore . This enum can have two values:
IGNORE_NOTHING which means that no particular val-
ues should be ignored (or more precisely, the “zero
values” are not assumed ignore values). The other
value IGNORE_ZERO_VALUES will ignore any key where
this field has a “zero value”.
• The name of the key field and an additional data value.
This means that any key value where this key field has
the specified value will be ignored (i.e., the data cache
will assume that the key does not exist and will always
just return a default value.)

You can declare the same key field several times, thereby
declaring multiple “ignore” values for a key field.

After having specified one or more key fields, you must define one or more data fields.
To do that you must use the following methods.

c©Deltek Inc. 2013–2019, All Rights Reserved 241 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

MiDataCache

internal
cache

Appli-
cation

program
Data source

Figure 6.2: A MiDataCache acts as a buffer between the application program and an
underlying data source (such as the database.) It also implements a cache, so querying
the data cache many times will often only result in fewer queries against the database.

Method Remarks
str You can provide one or more field names as the argument(s)

to this method. Doing so means that all of those field names
are data fields that you may wish to query against the cache,
and that they are of type String. They will all have the
same default value. Unless you specify something else, the
default value of these fields will be the empty string. The
default values are returned when you query the data cache
using a key that does not exist in the underlying data source.
If you wish to specify another default value, you can do
that by immediately invoking the withDefault method. If
you do not explicitly define a default value, you can either
specify more data fields, define a new data cache by invoking
the defineCache method or finish the cache definitions by
invoking the end method.

bool This method is similar to the str method, except that the
specified field names are of type Boolean. Unless otherwise
specified, the default value of these fields will be false.

integer This method is similar to the str method, except that the
specified field names are of type Integer. Unless otherwise
specified, the default value of these fields will be 0.

real This method is similar to the str method, except that
the specified field names are of type Real. Unless otherwise
specified, the default value of these fields will be 0.0.

amount This method is similar to the str method, except that the
specified field names are of type Amount. Unless otherwise
specified, the default value of these fields will be 0.00.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 242 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
date This method is similar to the str method, except that

the specified field names are of type Date. Unless otherwise
specified, the default value of these fields will be NullDate
(the empty date.)

time This method is similar to the str method, except that
the specified field names are of type Time. Unless otherwise
specified, the default value of these fields will be NullTime
(the empty time.)

popup This method is similar to the str method, except that the
specified field names are of type Popup. Unless otherwise
specified, the default value of these fields will be the nil
popup value.
As a difference to the other data-field methods, you can
only specify exactly one field at a time. The reason is that
you must immediately after invoke the method ofType
specifying the concrete popup type. After that method, you
may optionally invoke withDefault to specify the desired
default value. If not, the default value will be the nil popup
value (the empty popup value.)

ofType This method must be invoked immediately after the popup
method. Its purpose is to declare the concrete popup type
of the specified data field. Following this method, you may
optionally invoke withDefault to specify a default value
(which must be a value of this particular concrete popup
type,) continue defining data fields or continue or end the
data cache collection definition.

withDefault This method may be used to specify default values of the
preceding data field declaration. Depending on the type
of the data field, this method will accept arguments of the
appropriate type.
Following this method, you can either specify more data
fields using the above methods, define a new data cache
by invoking the defineCache method or finish the cache
definitions by invoking the end method.

Listing 6.21 shows an example definition of a McDataCaches which contains two specific
data caches. In line 3 we define a cache with the name Employee. Since we do not
invoke the fetchStrategy method, the underlying data source will be the Employee
table in the Maconomy database. The (single) key field for this data cache is defined
in line 4. Since nothing further is specified, the cache will ignore any employee look-up

c©Deltek Inc. 2013–2019, All Rights Reserved 243 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

where the employee number is the empty string (and will in that case always just return
a record with default values.) The remaining lines in the cache definition are used to
declare data fields of different types: Line 5 declares two fields of type String. Since the
withDefault method is not invoked, the default values of these two string fields will
be the empty string. Lines 6 and Line 7 declares a couple of data fields of type amount
and boolean with the implicit default values 0.00 and false respectively. Finally in
line 8 a data field of type popup is defined. It is furthermore declared that the concrete
popup type of that field is CountryType. Also, this field is declared without invoking
withDefault which means that the default value of this field is the nil country (the
empty country.)

In line 9 another cache definition is initiated (and the previous one is therefore done.)
This time the name of the cache is TimeSheetHeader, and—like above—the data source
is the Maconomy database table of the same name. This cache has two key fields which
are specified in lines 10–11. No specific ignore values are provided, which means that any
key where either the EmployeeNumber field is blank or where the PeriodStart field is
the empty date will be ignored. In line 12 two data fields of type boolean are declared,
with no specific default value (which in this case means a default value of false.) In
line 13 two more data fields of type string are declared with the implicit default value of
empty string. The definition of the entire set of data caches is ended in line 14, and the
data caches are ready for use.

Listing 6.21: Defining Two All-Default Data Caches
1 final McDataCaches dataCaches =
2 McDataCaches.create(getApiProvider ())
3 .defineCache("Employee")
4 .key("EmployeeNumber")
5 .str("Name1", "SuperiorEmployee")
6 .amount("CostPrice")
7 .bool("Blocked")
8 .popup("Country").ofType("CountryType")
9 .defineCache("TimeSheetHeader")

10 .key("EmployeeNumber")
11 .key("PeriodStart")
12 .bool("Submitted", "Approved")
13 .str("SubmittedBy", "ApprovedBy")
14 .end();

Sometimes we want to deviate slightly from the defaults. An example of this can be seen
in Listing 6.22. Here we define a data cache that accesses the JobActivity database table.
This table has three key fields: JobNumber, ActivityNumber and InvoiceAllocation.
These three key fields are declared in lines 4–7. For the ActivityNumber field, in this
instance, we want to ignore any key value where the value is either empty or the specific
value 103. This is done by making two declarations for this key field: in line 5 it is
specified that we want to ignore the empty string, and in line 6 it is declared that we also
want to ignore the value 103. For the InvoiceAllocation field, we want to acknowledge

Version 1.4.021, software version 2.5.0 (21.0.sp100) 244 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

all values of that key, which is declared in line 7.

As for the data fields, we want to retrieve the field NumberRegistered (of type real) and
the field CostPriceReg of type amount. Both of which should assume a zero value as
default value. The last data field, ActivityText of type string should have a default
value of a dash (-) rather than the empty string.

Listing 6.22: Defining a Data Cache with Non-Default Behavior.
1 final McDataCaches dataCaches =
2 McDataCaches.create(getApiProvider ())
3 .defineCache("JobActivity")
4 .key("JobNumber")
5 .key("ActivityNumber")
6 .key("ActivityNumber", McStr.val("133"))
7 .key("InvoiceAllocation", MeIgnore.IGNORE_NOTHING)
8 .real("NumberRegistered")
9 .amount("CostPriceReg")

10 .str("ActivityText").withDefault("-")
11 .end();

Sometimes you may need to associate a data cache with a data source that is not the
Maconomy database, or where the name of the cache is different from the underlying
table. Listing 6.23 is an example that illustrates this: we define three caches, two of which
are associated with the same Maconomy database table, and one which is associated
with a 3rd-party web service. The reason we have two different caches against the same
Maconomy database table is that the two have different default values for the same data
field.

Line 1 declares a fetch strategy that accesses the Employee table in the Maconomy
database, and line 2 declares a fetch strategy that accesses a 3rd-party salary system.
Then three data caches are defined. The first, defined in line 5, defines an all-standard
cache against the Employee table. In line 9 we define another cache with the name
EmployeeWithDefault. Since we need that one to also access the Employee database
table, we must specify the fetch strategy to use, which is done in line 10 by invoking the
fetchStrategy method. In line 12 the default of the Name1 field is set to something
specific. The last data cache is defined in line 14. Since this cache is intended to use
some web service as its back-end, we must specify which fetch strategy to use, which is
done in line 15.

Listing 6.23: Defining a Data Cache with Custom Data Sources
1 final MiFetchStrategy fetchEmployee = McMolPersistenceStrategy

.create(key("Employee"), getApiProvider ());
2 final MiFetchStrategy fetchWebServiceSalary =

getSalarySystemFetchStrategy ();
3 final McDataCaches dataCaches =
4 McDataCaches.create(getApiProvider ())
5 .defineCache("Employee")

c©Deltek Inc. 2013–2019, All Rights Reserved 245 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

6 .key("EmployeeNumber")
7 .str("Name1")
8

9 .defineCache("EmployeeWithDefault")
10 .fetchStrategy(fetchEmployee)
11 .key("EmployeeNumber")
12 .str("Name1").withDefault("John Doe")
13

14 .defineCache("SalarySystem")
15 .fetchStrategy(fetchWebServiceSalary)
16 .key("EmployeeID")
17 .amount("SalaryYearToDate")
18 .end();

Using data caches

Once defined, we can use the data caches to query the underlying data source without
worrying about whether we query data that was previously fetched, and without worrying
about whether the data we are looking for exists or not. To access a data cache with
a specified name, you can invoke the following method on the built McDataCaches
instance.

Method Remarks
getCache This method returns the data cache with the specified name.

This method exists in two variants: one that takes the name
as the only arguments. In this case, the cache will be returned
through an interface MiDataCache . The other variant takes
an additional argument which must be the (single) enum
constant MeSingleKey .SINGLE_KEY. This other version will
return the data cache through an extended interface called
MiSingleKeyDataCache . This interface offers additional
methods for looking up data through a simple value (rather
than using a MiKeyValues key). If the data cache has more
than one key field, a run-time error will occur if you attempt
to obtain it as a single-key data cache!

getCacheNames This method returns a collection of all the cache names that
are contained by this object.

Once you have an instance of MiDataCache you can use the following methods to query
the underlying data.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 246 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
getRecord This method returns a record that relates to a specified

key value. If the key value is either declared as “ignored”
or no such record exists, a record having the (implicitly
or explicitly) declared default values for the data fields is
returned. The argument to this method is a record-like
structure defining the key value. The provided input record
may contain other fields than the record fields. Only the
formally declared key fields of this cache will be considered,
and each of those must have a value. This may be convenient
as you may sometimes pass on a record that you have in
scope and which contains (among other things) the key field
names. Then you may just provided that record as argument
to get a record from the data cache with corresponding key
values.

exists This method returns a boolean indicating whether or not
the underlying data source contains the provided key value.
If the key is an “ignored key,” this method will return false.

existsOrIgnoredKey This method is similar to exists except that it returns
true in case the provided key is an “ignored key.”

isIgnoredKey This method returns true if the key is considered an “ignored
key,” and false otherwise. As with the getRecord , this
method exists in two variants.

populate This method exists in two flavours:
• A variant that takes a single MiValueInspector (or
one of the sub classes.) This will ensure that the
(single) record is found in the internal cache. As with
getRecord the provided key record may contain more
fields than the formal key fields.
• A variant that takes an Iterable of MiValue-
Inspectors. This will ensure that all of the referenced
records are found in the internal cache. This will be
done using “a few” queries only—significantly fewer
than populating one key at a time. This may sometimes
be used to gain significant performance improvements.

clear This method wipes all information from the internal cache.
So if you query a given record through the data cache, clear
it and query the data cache for that record once again, the
underlying data source will be queried again the second time.

getName This method returns the name of the data cache.

c©Deltek Inc. 2013–2019, All Rights Reserved 247 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

Listing 6.24 shows an example that makes use of the two data caches defined in Listing 6.21.
First, we make a look-up through the Employee data cache, which is obtained in line 1.
In line 2 we obtain the record that belongs to the employee referenced by the userData
in scope. We use one of the values from the Employee record to derive a key for a time
sheet. This happens in line 5 where we simply obtain a value from the returned employee
and use that to calculate a key to the supervisor’s time sheet from previous week. That
time-sheet key is then used to look up time sheet information for that time sheet in line
9. And field values of the corresponding time sheet are used in lines 10–11.

In case no such time sheet exists in the database, the value of the fields Submitted and
Approved would return false since this is the implicitly declared default value for these
fields in the TimeSheetHeader data cache.

Listing 6.24: Looking Up Data Through Data Caches
1 final MiDataCache employees = dataCaches.getCache("Employee");
2 final MiValueInspector emp = employees.getRecord(userData);
3

4 final MiKeyValues tsKey =
5 getPreviousWeekTimeSheet(emp.getStr("SuperiorEmployee"));
6

7 final MiDataCache timeSheets =
8 dataCaches.getCache("TimeSheetHeader");
9 final MiValueInspector timeSheet = timeSheets.getRecord(tsKey)

;
10 if (timeSheet.getBool("Submitted")
11 && !timeSheet.getBool("Approved")) {
12 // do t h e l o g i c
13 }

Listing 6.25 shows another example of how data caches can be used: for optimizing
performance of refreshVariables . The code snippet shows parts of a data model for
the table pane of the maconomy:TimeRegistration container. The intention is to have
two variables that show the credit and debit amount from the CompanyCustomerBalance
that relates to the company customer being referenced by each time sheet line.

The data cache is obtained through a private method, getDataCaches, that lazily
initializes it, as seen in lines 3–14. The refreshVariables method gets the data cache
in line 27 and calculates a the appropriate key value by invoking another private method,
companyCustomerKey (which is defined in lines 16–22.) Then the relevant record is looked
up in line 30, and the values from that record is used to calculate the variables.

For time sheets with many lines, with many distinct customer references, this could
result in a lot of queries against the underlying database, since many of the look-
ups would lead to a cache miss. In order to optimize the performance, the method
refreshVariablesPrepare is also implemented. This method constructs an Iterable
of distinct keys to all of the different company customers that may come in scope. This
is done in lines 45–55. Finally, that iterable is used in line 61 to populate the cache all at

Version 1.4.021, software version 2.5.0 (21.0.sp100) 248 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

once. This ensures that each of the individual look-ups in refreshVariables will lead
to a cache hit, thus avoiding the database look-up.

Listing 6.25: Using Data Caches to Optimize Variable Refresh
1 // The da ta cache s are l a z i l y i n i t i a l i z e d
2 private MiOpt <McDataCaches > dataCaches = McOpt.none();
3 private McDataCaches getDataCaches () {
4 if (dataCaches.isNone ()) {
5 final McDataCaches dc = McDataCaches.create(getApiProvider ()

)
6 .defineCache("CompanyCustomerBalance")
7 .key("CustomerNumber")
8 .key("SettlingCompany")
9 .amount("DebitBalanceEnterprise", "

CreditBalanceEnterprise")
10 .end();
11 dataCaches = opt(dc);
12 }
13 return dataCaches.get();
14 }
15

16 private MiKeyInspector companyCustomerKey(final MiValueInspector
timeSheetLine) {

17 return keyValues ()
18 .setStr("CustomerNumber",
19 timeSheetLine.getStrVal("CustomerNumberVar"))
20 .setStr("SettlingCompany",
21 timeSheetLine.getStrVal("CompanyNumber"));
22 }
23

24 @Override
25 public void refreshVariables(final MiDataPost containerRunner ,
26 final MiResult eventData) throws

Exception {
27 final MiDataCache ccBalance = getDataCaches ().getCache("

CompanyCustomerBalance");
28 final MiDataValues resultData = eventData.getResultData ();
29 final MiKeyInspector ccKey = companyCustomerKey(resultData);
30 final MiValueInspector balance = ccBalance.getRecord(ccKey);
31 resultData
32 .setAmount("CreditVar",
33 balance.getAmountVal("CreditBalanceEnterprise"))
34 .setAmount("DebitVar",
35 balance.getAmountVal("DebitBalanceEnterprise"));
36 }
37

38 @Override
39 public void refreshVariablesPrepare(
40 final MiDataPost containerRunner ,

c©Deltek Inc. 2013–2019, All Rights Reserved 249 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.2. ACCESSING SYSTEM AND DATABASE INFORMATION

41 final MiCollection <MiRecordInspector > records)
42 throws Exception {
43 // g en e r a t e t h e d i s t i n c t key v a l u e s t o company cus tomers
44 // from a c o l l e c t i o n o f t ime s h e e t l i n e s
45 final Iterable <MiKeyInspector > companyCustomers =
46 new Iterable <MiKeyInspector >() {
47 @Override
48 public Iterator <MiKeyInspector > iterator () {
49 return records.stream ()
50 .map(timeSheetLine ->
51 companyCustomerKey(timeSheetLine))
52 .distinct ()
53 .iterator ();
54 }
55 };
56

57 // ensure t h a t t h e da ta cache c on t a i n s i n f o rma t i on abou t
58 // company cus tomer b a l a n c e s r e l a t e d t o a l l o f t h e t ime
59 // s h e e t l i n e s
60 getDataCaches ().getCache("CompanyCustomerBalance")
61 .populate(companyCustomers);
62 }

Section 4.11.2 contains other examples of using the McDataCaches class to refresh variables.

For data caches that are obtained as a MiSingleKeyDataCache , the following mehtods
are found in addition to those provided by MiDataCache :

Method Remarks
getRecord An additional variant of this method is found. The additional

method takes just a single value of type McDataValue (or
one of its sub classes). This value is considered the value of
the only key field.

exists An additional variant of this method is found. The additional
method takes just a single value of type McDataValue (or
one of its sub classes). This value is considered the value of
the only key field.

existsOrIgnoredKey An additional variant of this method is found. The additional
method takes just a single value of type McDataValue (or
one of its sub classes). This value is considered the value of
the only key field.

isIgnoredKey An additional variant of this method is found. The additional
method takes just a single value of type McDataValue (or
one of its sub classes). This value is considered the value of
the only key field.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 250 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
populateVal This method works just like the populate method except

that it takes a single data value as its argument. That value
is considered the key value for the only key field.

populateVals This method works just like the populate method except
that it takes an Iterable of McDataValue . Each of these
values will be considered key values for the only key field,
and the cache will be populated with these values in “a few”
invocations to the underlying data source: significantly fewer
than populating each value by itself.

Listing 6.26 shows an example where we make use of a data cache that has been declared
as a single-key data cache aginst the Employee database table. In line 3 we obtain the
cache as a single-key data cache. This allows us to get a record merely by providing an
employee number value, which is done in line 6.

Listing 6.26: Working With Single-Key Data Caches
1 final MiDataValues resultData = eventData.getResultData ();
2 final MiSingleKeyDataCache emp =
3 dataCaches.getCache("Employee", MeSingleKey.SINGLE_KEY);
4

5 final MiValueInspector projectManager =
6 emp.getRecord(resultData.getVal("ProjectManagerNumber"));
7

8 final String pmName = projectManager.getStr("Name1");

6.3 Creating Asynchronous Background Tasks
In Maconomy version 19 (2.3) the concept of background tasks was introduced. A
background task represents some container event that will be carried out in a specified
container and a specified record. Hence, a background task is in many ways similar to
some event made with a container executor, only it is scheduled to run asynchronously
and possibly at a later date and time.

A background task is represented as one or more records in the database. Creating a
background task programmatically therefore leads to a number of records being created in
the database. An important property of this is, that if an event that creates background
tasks fails (e.g., showing some error message to the user,) the existence of the created
background tasks will be rolled back, since they are made in the same transaction as any
other synchronously data modifications carried out by the current event handling. It also
means that background tasks created during event handling will not be executed until
the current event has succeeded.

c©Deltek Inc. 2013–2019, All Rights Reserved 251 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

So why would we want to schedule some operation to be carried out asynchronously?
There may be several reasons for that, including:

• The scheduled background task needs to communicate with an external system—but
only if the current event succeeds.

• A number of events need to be carried out, each in their own transaction.

• Performance reasons: the current event leads to a number of operations, but the
user doesn’t need to await the completion of all of these.

• The thing to be carried out should be done at a later data and time, not now.

Background tasks are created by accessing the batch method on a containerRunner.
The result of this method is an object of type MiScheduler . There are two types of
methods on this interface:

Method Remarks
task This method initiates creation of a background (or batch)

task. Such a task represents an event in a pane in a container
as well as an indication of the record6 that needs to be
addressed. This method is found in a couple of flavours:
• A version with no parameters. This means that the

background task relates to the same container and pane
as the current container event.
• A version tasking the name of the container as an
argument.

group This will initiate a group of background tasks. Actual tasks
can then be added to this group. See page 279 for more
details on task groups.

Listing 6.27 shows an example where a simple background task is created: Here the
onCreatePost is implemented for a contribution extending the maconomy:Jobs container.
The extension makes sure that when a job is created, that job is being “sent to People-
Planner”. This functionality is available through the action called SendToPP. However,
this action doesn’t work unless the job number is externally visible. As long as the Create
event is still being handled, the newly created job is not externally visible. This problem
is easily handled by making use of background tasks: the extension logic simply creates
a background task that:

• Concerns the current container and pane, i.e., maconomy:Jobs container and CARD
pane. This happens in line 4.

6In principle a background task can relate to several records, in which case the specified event will be
carried out for each of these, all of them in one transaction.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 252 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

• Will execute the action SendJobToPP, represented by the constant SEND_JOB_TO_PP.
This happens in line 5.

• Does so for the job just created, by invoking the restrictBy method in line 6.

• Annotates the background task with an informational description (line 7.) This
has no semantic effect—it is just there to provide a better overview to whoever
monitors the background tasks.

Finally, the end method in line 8 signals to the Extension Framework that there are no
further attributes for this background task, and the background task will be created. By
default such as task will be considered due “now.”

Listing 6.27: Creating a Simple Background Task.
1 public void onCreatePost(final MiCreatePost containerRunner ,
2 final MiCreate eventData) throws

Exception {
3 final MiDataValues resultData = eventData.getResultData ();
4 containerRunner.batch ().task()
5 .action(SEND_JOB_TO_PP)
6 .restrictBy(resultData.asKeyValuesCopy(JOB_NUMBER))
7 .description("New Job to PeoplePlanner")
8 .end();
9 }

6.3.1 Adding Attributes to a Background Task

Background tasks are made using a “builder” as shown in Listing 6.27. The builder is
started by the task method. From there, various attributes of the background task can
be added. Some of which are mandatory, others are optional. Some are conditionally
mandatory, and others only make sense if other attributes have certain values.

In order to handle this in a smooth way, the background task API makes heavily use of
the compilers type system to offer a path through the various attributes, ensuring that
compilation succeeds only if the background task has the required attributes in a sensible
combination. This may sound more complex that it is. In fact, by making use of the
built-in “content assistance” that many IDEs offer (including the Maconomy Extender,)
the programmer is neatly guided through the various possibilities.

Figure 6.3 shows how the background task API is used to build a background task. A task
begins with the task method. If a container name is specified, the pane can optionally
be specified (the default is Card). If the no-argument version is used, the container and
pane is considered the same as for the current event, in which case it makes no sense to
specify the pane. Next, the action must be specified. If the pane is known to be a card
pane, and the action is the Create action, it makes no sense to specify the container
restriction and the matching properties of the action; otherwise it is mandatory to specify
the container restriction, and optional to provide matching properties. From here, a

c©Deltek Inc. 2013–2019, All Rights Reserved 253 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

task()

task(cName)
Pane

selection
Action
selection Create card?

No

Restriction
selection

Match
selection

Yes

User
selection

Misc.
properties
selection

Timing
selection

Dependency
selection

end()

Figure 6.3: Flow of Background Task API Property Selection. The dashed arrows and
boxes indicate optional sections. The solid arrows and boxes indicate mandatory sections.

number of properties of various categories can be optionally specified. The invocation
of the end method indicates that the task is done and it will be constructed by the
Extension Framework. Let us examine each of the property groups in more detail.

Pane Selection Properties

The pane selection properties are used to specify the pane in which the action of the
background task is found. This property group is optional. If the pane is not specified,
the Card pane will be assumed, since this is the most common use case. The available
methods in this group are:

Method Remarks
card This method is used to indicate that the background task

applies to the Card pane. A number of variants of this
method exits, letting you specify the textual name of the
card pane, in case it doesn’t have the default name for panes
of type Card. Usually the default name is used.

table This method is similar to the card method above, except
that it is used to indicate that the task applies to the pane
of type Table.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 254 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
filter This method is similar to the card method above, except

that it is used to indicate that the task applies to the pane
of type Filter.

pane This method takes the type or name of the pane as an argu-
ment. It is used to indicate that the background task applies
to the pane specified as the argument, making it useful for
highly generic use cases. In addition, a variant of this method
takes a parameter set that will be applied as parameters for
when reading the container when the background task is
eventually executed. As this is considered a rare use case,
this possibility is not supported the above methods, and you
will have to use this method instead.

Action Selection Properties

The action selection properties are used to specify which action/operation should be
performed by the background task in the specified container and pane. The available
methods in this group are:

Method Remarks
create Invoking this method means that the background task will

execute a Create operation in the specified container and
pane. For table panes, the record will be added (i.e., ap-
pended to the end of the table) except if a matchBy condi-
tion is specified: in that case, a new line will be inserted above
the first line matching that condition (if no line matches the
condition, no lines will be created.)
A number of flavours of this method exist, allowing speci-
fication of which user-input values and parameters should
be applied upon creation. Notice that for background tasks,
user-input values may be supplied as expressions that will
be evaluated at run-time. In this way, for example, it is
possible to specify a date that is relative to the date when
the background task is executed. This is done by providing
an argument of type MiExprDataValues . This interface is
explained below.

c©Deltek Inc. 2013–2019, All Rights Reserved 255 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Method Remarks
update This method indicates that the background task should

perform an Update operation in the specified container and
pane. For table panes, if a matchBy condition is specified,
all lines matching that condition will be updated in this way.
If the pane is a card pane, an update only occurs if the data
in the card matches this condition. If no matchBy condition
is specified, all records in the pane will be updated.

delete This method indicates that the background task should
perform a Delete operation in the specified container and
pane. For table panes, if a matchBy method exits, only lines
matching this condition will be deleted, and for card panes,
the record will be deleted only if the data fulfills the matchBy
criterion. If no such criterion is provided, all records in the
pane will be deleted.

print This method indicates that the background task should
perform a Print operation in the specified container and
pane. For table panes, if a matchBy method exists, the
Print operation will be carried out for each matching line.
For card panes, the print operation will only be carried out
if the data in the pane fulfills the criterion. If no matchBy
criterion is specified, the operation will be performed on all
records in the pane.
This method is found in a number of flavours, including
one that accepts user-input as well as event parameter. If
user-input is provided, it means that the background task
will execute an Update event prior to the Print event.

action This method indicates that the background task should
perform a Action operation in the specified container and
pane for the action with a specified name. For table panes,
if a matchBy method exists, the Action operation will be
carried out for each matching line. For card panes, the print
operation will only be carried out if the data in the pane
fulfills the criterion. If no matchBy criterion is specified, the
operation will be performed on all records in the pane.
This method is found in a number of flavours, including
one that accepts user-input as well as event parameter. If
user-input is provided, it means that the background task
will execute an Update event prior to the Action event.

All of the above methods support user-input of type MiExprDataValues . Instances of

Version 1.4.021, software version 2.5.0 (21.0.sp100) 256 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

this interface are constructed by invoking the create method on the McExprDataValues

class. The methods of this class are like those for MiRecordDataValues , with the addi-
tion of the following methods:

Method Remarks
setAmountExpr This method is used to assign an expression of type

Amount to a field name.
setBoolExpr This method is used to assign an expression of type

Boolean to a field name.
setDateExpr This method is used to assign an expression of type

Date to a field name.
setIntExpr This method is used to assign an expression of type

Integer to a field name.
setPopupExpr This method is used to assign an expression of type

Popup to a field name.
setRealExpr This method is used to assign an expression of type

Real to a field name.
setStrExpr This method is used to assign an expression of type

String to a field name.
setTimeExpr This method is used to assign an expression of type

Time to a field name.
setExpr This method is used to assign an expression to a field

name.
getExpr Returns the specified field value as an expression. If the

specified field does not exist, a run-time error occurs.
getExprOpt Returns the specified field value as an optional ex-

pression. If the field does not exist, a none value is
returned.

getExprInfo Returns an object that is used to query information
related to the expression of a field with a specified name.
This value allows the caller to obtain the expression
as a String (preferably preserving the original String-
based expression that might have been assigned to a
field.) In addition, the concrete type of the expression
(if known) can be obtained.

getAmount In addition to the usual variant, an additional variant
of this method exists, where an evaluation context
is provided. In case the field value is stored as an
expression, the return value is obtained by evaluating
the expression in this context.

getBool This method is similar to the getAmount method
above.

c©Deltek Inc. 2013–2019, All Rights Reserved 257 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Method Remarks
getDate This method is similar to the getAmount method

above.
getInt This method is similar to the getAmount method

above.
getPopup This method is similar to the getAmount method

above.
getReal This method is similar to the getAmount method

above.
getStr This method is similar to the getAmount method

above.
getTime This method is similar to the getAmount method

above.
simpleValueFieldNames This method returns a collection of the field names

that are represented by a simple value (i.e., not an
expression that needs to be evaluated.)

complexValueFieldNames This method returns a collection of the field names
that are not simple, i.e., those that are assigned a value
which is an expression that needs to be evaluated.

isSimpleValueField Returns whether a given field name is a simple value
field.

isComplexValueField Returns whether a given field name is a complex value
field, i.e., an expression that needs to be evaluated.

Listing 6.28 shows an example that makes a background task for creating a new Sales
Order, as specified in line 8. Since no pane is explicitly stated, the Card pane is assumed.
The user input is specified as an argument to the create action which is used to
indicate that the background task should perform a create operation. This happens
in line 9. Notice that two of the fields provided as user input are not open for editing
during creation. The background task execution engine will automatically detect this
and will perform an additional Update operation ensuring that the missing field values
are obtained. Hence, you do not have to create two background tasks for this!

Listing 6.28: Setting User Input Fields of Background Task for Creation.
1 final MiRecordValue newSalesOrderData = McRecordValue.create ()
2 .setStr("CustomerNumber", "33117722")
3 //NB! The f o l l o w i n g f i e l d s are c l o s e d in c r e a t e
4 // bu t open dur ing upda te
5 .setStr("Remark", "Created by Background Task")
6 .setStr("Receiver", "Automatic Order System");
7 containerRunner.batch ()
8 .task("SalesOrders")

Version 1.4.021, software version 2.5.0 (21.0.sp100) 258 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

9 .create(newSalesOrderData)
10 .description("Sales Order from Order System")
11 .end();

Listing 6.29 demonstrates how user input can make use of expressions. In lines 4–10
we assign values to the fields NumberDay1–NumberDay7 of a time sheet line. The value
for NumberDay1 is declared as: max(0,−card.OvertimeNumberDay1Var). Using the
setRealExpr method, we can declare that the value of the field is of type Real, but
provided as an expression that will be evaluated at execution time. In this example,
we are creating a line in the table pane of the maconomy:TimeSheets container, and
therefore we can make references to values in the existing card pane, using the ‘card.’
prefix. By using the max function, we express that the number of hours put in will
never be negative. Line 12 is where we declare that the background task is targeted as
the table pane in the maconomy:TimeSheets container. In line 13, it is specified that
the background task should perform a create action (the new line will be appended to
the end of the time sheet lines because no matchBy-constraint is given). Line 14 ties he
operation to a specific time sheet. We shall investigate this further on page 260.

Listing 6.29: Setting User Input Fields of Background Task Using Expressions.
1 final MiExprDataValues missingTimeData = McExprDataValues.create ()
2 .setStr("JobNumber", "STD1000200")
3 .setStr("TaskName", "MISS")
4 .setRealExpr("NumberDay1", "max(0, -card.OvertimeNumberDay1Var)"

)
5 .setRealExpr("NumberDay2", "max(0, -card.OvertimeNumberDay2Var)"

)
6 .setRealExpr("NumberDay3", "max(0, -card.OvertimeNumberDay3Var)"

)
7 .setRealExpr("NumberDay4", "max(0, -card.OvertimeNumberDay4Var)"

)
8 .setRealExpr("NumberDay5", "max(0, -card.OvertimeNumberDay5Var)"

)
9 .setRealExpr("NumberDay6", "max(0, -card.OvertimeNumberDay6Var)"

)
10 .setRealExpr("NumberDay7", "max(0, -card.OvertimeNumberDay7Var)"

);
11 containerRunner.batch ()
12 .task("TimeSheets").table ()
13 .create(missingTimeData)
14 .restrictBy(timeSheetKey)
15 .description("Add missing time to time sheet")
16 .end();

For background tasks, you can specify that an Update event needs to take place prior
to the actual event. This may be useful to ensure that certain fields (or variables) are
properly assigned. Corresponding to what happens when a wizard is sometimes shown in
the Workspace Client when an action is invoked. At other times, it is necessary to fill in

c©Deltek Inc. 2013–2019, All Rights Reserved 259 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

certain selection criteria prior to running an action. Listing 6.30 shows an example of
this. The background task is tied to the card pane of the JobBudgets container, and the
action we want to be run is the RemoveZeroLines, as specified in line 6 which is the first
argument to the action method. In this case, we invoke a variant of that method that
takes three arguments: first the name of the action, second the user input and third the
event parameters. The user input values are provided in line 7. Line 8 merely passes an
empty parameter set to the event. Because the background task is instantiated with user
values, the background-task execution engine will perform the corresponding update (in
this case ensuring that the value of the field ShowBudgetTypeVar is set to the ‘Working
Budget’ type.)

Listing 6.30: Setting User Input Fields of Background Task for Actions.
1 final MiRecordValue switchToWorkingBudget = McRecordValue.create ()
2 .setPopup("ShowBudgetTypeVar", WORKING_BUDGET);
3

4 containerRunner.batch ()
5 .task("JobBudgets")
6 .action("RemoveZeroLines",
7 switchToWorkingBudget ,
8 McParameters.create ())
9 .restrictBy(jobKey)

10 .description("Remove zero lines of Working Budget")
11 .end();

Restriction Selection Properties

The restriction selection properties are used to specify the container key of the container
being operated on. The available methods in this group are:

Version 1.4.021, software version 2.5.0 (21.0.sp100) 260 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
restrictBy This method is used to specify the container key values of

the container being addressed. A number of flavours of this
method exists, letting you provide up to four key fields and
corresponding values.
It should be noted that for background tasks, it is not a
requirement that the formal key fields are used, nor that
exactly one container key is addressed. If the formal key
fields are not fully specified, the background-task execution
engine will automatically perform a search for all keys where
the provided values are as specified, and the described oper-
ation will take place for each of these, but in one common
transaction. This means that either all of the invocations
succeed, or they all fail. It is recommended that you consider
creating a number of specific individual background tasks
(that can be carried out in parallel, and which will run in
their own transaction) rather than specifying a background
task that will loop over a number of records.

singleton This method needs to be used for singleton containers
(i.e., containers that cannot be addressed using a spe-
cific container key.) If you attempt to invoke this ac-
tion for a container that is not a singleton container, a
run-time error will occur! Examples of singleton con-
tainers are: all of the Import-containers, all of the
Print-containers, maconomy:CentralTimeSheetTransfer,
maconomy:ChangePaymentSelection and maconomy:Time-
Registration.

forAll This method can be used to create a background task that
represents an operation that should be carried out for all
available container keys. Even though the actual represen-
tation of such a task is the same as the representation used
by the singleton method, the programmatic API has a
dedicated method for this. The reason is that addressing
all possible container keys is something out of the ordinary,
and should only be done with great care! For this reason, if
the container is a singleton container, a run-time error will
occur, forcing you to use the singleton method instead.

Let us examine these method in more detail. Listing 6.31 shows an example where a
specific job is to be converted to order. In line 4 the container key (in this case the job
number) is specified.

c©Deltek Inc. 2013–2019, All Rights Reserved 261 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Listing 6.31: Restricting a Background Task to a Specific Key.
1 containerRunner.batch ()
2 .task("Jobs")
3 .action("ConvertToOrder")
4 .restrictBy("JobNumber", McStr.val("10250001"))
5 .description("Convert Job to Order")
6 .end();

Listing 6.32 shows a similar example, but this time, the restriction is not based on the
formal container key fields. Instead, it indicates that only any job where the status is
‘Quote’ and which are not closed, should be converted to order. Since this is all specified
by a single background task, it is handled in one transaction. Which means that either
all of the indirectly referenced jobs succeed, or they all fail (the entire transaction will
be rolled back.) The central part of this example is in lines 4–5. Here the restrictBy
method is applied for fields that are not the formal key fields. Thereby potentially having
a number of jobs processed by the same background task.

Listing 6.32: Restricting a Background Task to a Set of Keys.
1 containerRunner.batch ()
2 .task("Jobs")
3 .action("ConvertToOrder")
4 .restrictBy("Closed", McBool.FALSE ,
5 "Status", QUOTE)
6 .description("Convert Open Quote Jobs to Order")
7 .end();

Letting a single background task handle several entities (like jobs) in one transaction
may be convenient, even desirable. There are, however, often many reasons why you
should rather create a number of specific background tasks, each targeting a single job,
instead:

• If just one of the matching jobs cannot be converted, no jobs will be converted,
since the entire transaction is rolled back. If you instead have many individual
background tasks, each individual task will either succeed or fail. If just one out of
many fails, then the others will still be converted.

• Database locks may be held for a longer period of time, potentially slowing the
overall system performance.

• Database roll back space grows, potentially slowing the overall performance.

• By having a number of individual tasks, the background-task execution engine may
run several of these concurrently, increasing the processing wall-clock time. If many
jobs are covered by one task, each job will be handled sequentially.

Listing 6.33 shows how to generate a number of individual background tasks. The behavior
will be equivalent to that of Listing 6.32, but each job is converted independently of
the others, and the processing of the background tasks may be handled concurrently. A

Version 1.4.021, software version 2.5.0 (21.0.sp100) 262 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

container executor is obtained in order to extract the relevant job numbers. The code
then iterates over all of the matching jobs, creating a background task for each of them.
Each background task is targeted at that specific job number (line 9.)

Listing 6.33: Generating Individual Background Tasks in a Loop.
1 final MiContainerExecutor jobsFilter = containerRunner.executor("

Jobs").construct(MePaneType.FILTER);
2 jobsFilter.control ().select("JobNumber")
3 .restrictBy(and(not("Closed"),
4 eq("Status").popup(QUOTE)));
5 for (final MiValueInspector job : jobsFilter.matchAll ()) {
6 containerRunner.batch ()
7 .task("Jobs")
8 .action("ConvertToOrder")
9 .restrictBy(job.asKeyValuesCopy("JobNumber"))

10 .description("Convert Open Quote Job to Order")
11 .end();
12 }

The forAll method may be used for cases where a background task must iterate over all
keys in a container. You should be very careful about using this, since it is far from clear
exactly which keys will be targeted: any will be targeted, with no exception! Considering
that you know, this is what you want, Listing 6.34 shows how to do this.

Listing 6.34: Generating Individual Background Tasks for All Keys.
1 containerRunner.batch ()
2 .task("Jobs")
3 .action("ConvertToOrder")
4 .forAll () // ! Beware − ALL key s w i l l be t a r g e t e d
5 .description("Convert ALL Jobs to Order")
6 .end();

The singleton method must be used to address singleton containers. A singleton
container is a container where only one instance exists (at least seen from a given
user/role) and which cannot be addressed by a key value. Listing 6.35 shows an exam-
ple where the SubmitTimeSheet action is invoked on the singleton container macono-
my:TimeRegistration. Line 9 indicates that the container is a singleton. Notice that a
field is updated prior to the action, due to the additional argument in line 7. In this case
to address the desired time sheet date.

Listing 6.35: Addressing Singleton Containers.
1 final MiValueInspector timeSheetDate =
2 McRecordValue.create ().setDate("TheDateVar",
3 McDate.val (2016, 6, 6));
4 containerRunner.batch ()
5 .task("TimeRegistration")
6 .action("SubmitTimeSheet",

c©Deltek Inc. 2013–2019, All Rights Reserved 263 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

7 timeSheetDate ,
8 McParameters.create ())
9 .singleton ()

10 .description("Submit Time Sheet")
11 .end();

Match Selection Properties

The match selection properties are used to specify preconditions or record-level criteria.
If a matchBy-condition is provided, the background-task execution engine will ignore
any records that do not fulfil the criterion. For card panes, it means that either the
batch execution will perform the specified operation, or it will skip the operation for the
current container key. For table panes, the specified operation will be performed on any
line where the condition is true. Except for the Create event: here a new record will be
inserted above the first line where the condition is true. If no such line exist, no line will
be created.

In this part, the following method exist:

Method Remarks
matchBy This method exists in a number of flavours:

• One variant takes an expression object. If the
expression—when evaluated in the context of the record
in question—is true, the operation will be carried out
for that record, otherwise not.
• One variant takes a String argument as a syntactic
representation of an expression.
• Methods similar to the above, but with an additional
argument, let you specify whether records for which
the specified operation is disabled should be considered
as “not matching” (which is the default.)

As an example where this might be useful, consider a case where a background task
needs to convert a job to status ‘Order.’ If the job already has status ‘Order,’ the
ConvertToOrder action is disabled. Attempting to execute the action anyway, will lead
to an error, and the background task would render as having “failed.” By default, actions
that are rendered as disabled will be treated as if the matchBy-condition has failed. But
actions are not always disabled, even if it is not possible to run them. Sometimes this is
done in order to give explanatory messages to an end user. However, the background-task
execution engine is not a real end user, and will not interpret error messages and do
other operations. In order to keep the number of tasks reported as having “failed” to a
minimum, the matchBy method may come in handy. Listing 6.36 shows an example
of this. Here we create a background task that will attempt to Post a general journal.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 264 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

However, this action will fail unless the Balance has a value of 0. The Post action is,
however, still enabled in this case. As an additional guard, this background task will
only attempt to post the journal if the field ToBePosted is set to true. This condition is
specified in line 9.

Listing 6.36: Guarding Card Action using Match-By.
1 containerRunner.batch ()
2 .task("GeneralJournal")
3 .action("Post")
4 .restrictBy("JournalNumber", McInt.val(journalNumber))
5 .matchBy("ToBePosted and Balance = 0")
6 .description("Post G/L Journal")
7 .end();

The matchBy can also be used to pinpoint one or more specific lines in a table pane. For
example in Listing 6.37, we want to create a background task that creates a favorite from
a specific time sheet line. Now, the restrictBy method is used to point out the time
sheet in question; not the specific line in the time sheet. For this purpose, we can make
use of the matchBy method, as done in line 6. This criterion will match the particular
time sheet line, and only that. No matter if it is moved to another position. Obviously
the time sheet line can be deleted, in which case no lines match.

Listing 6.37: Addressing a Specific Line in a Table Pane.
1 containerRunner.batch ()
2 .task("TimeSheets")
3 .table ()
4 .action("CreateJobFavorite")
5 .restrictBy(timeSheetKey)
6 .matchBy(currentTimeSheetLine.copyValues("InstanceKey").

asExpression ())
7 .description("Create Job Favorite from Time Sheet Line")
8 .end();

Obviously, the matchBy-mechanism can also be used to point out several lines in a table
pane. Listing 6.38 shows a silly example that deletes all even lines of a given time sheet,
simply be creating a matching expression in line 6.

Listing 6.38: Matching Several Lines in a Table Pane.
1 containerRunner.batch ()
2 .task("TimeSheets")
3 .table ()
4 .delete ()
5 .restrictBy(timeSheetKey)
6 .matchBy("LineNumber % 2 = 0")
7 .description("Delete Even Time Sheet Lines")
8 .end();

c©Deltek Inc. 2013–2019, All Rights Reserved 265 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

User Selection Properties

The user selection properties are used to indicate that the background task should be
run as a specific user or user role. This is only a hint, and may be ignored if the current
user does not have sufficient privileges!

A non-administrator user is only allowed to create background tasks that run as that
particular user. If a different user-name is attempted, it will be ignored. In this way,
there is no risk that a non-administrator user can get access to actions or information
that he or she does not already have access to. An administrator user is allowed to create
background tasks that impersonate some other user. 2 For users having multiple roles7,
it is possible to create a background task that runs as a different role of the current user.
This is possible for all users, also non-administrator users. Notice that a given user does
still not get access to anything he/she would not be able to access manually.

If nothing is specified, the current user-role will be assumed for non-administrator users,
for administrator users, the background-task user will be assumed.

In this part, the following method exist:

Method Remarks
runAsRoleInstance This method takes as argument an instance key of the

desired user-role. If the current user is not an administrator
user, the appointed role must be one of this users’ roles.

runAsUser This method takes as argument the desired user name. No-
tice that this will be ignored if the current user is not an
administrator user. If the current user is an administra-
tor user, and the specified user has several user-roles, the
user-role marked as “Default for Background Tasks” will be
assigned.

runAsEmployee This method takes as argument an employee number. If
this employee is associated with a user, that user will be
used (although, as explained above, the user can only be
specified if the current user is an administrator user.) In case
several users are associated with this employee number, an
arbitrary one of these will be chosen, although—if possible—a
non-administrator user will be preferred.
Once a user-name is in this way settled, the user-role marked
as “Default for Background Tasks” will be assigned.

To demonstrate how this works, consider Listing 6.39. The purpose of this snippet is
to generate a number of background tasks: one for each user-role belonging to a given

7The concept of multiple user roles was introduced in Maconomy 19 (2.3)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 266 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

company. If the user has several roles for the same company, only one of these are
used to create a background task. Each created background task will instantiate the
Transfer action in the maconomy:CentralTimeSheetTransfer container, setting the
range of companies to be that of the user-role in question. All this is done by first making
a database query that returns the user-role instance keys of the current user (lines 2–6.)
Then we loop over each of these in line 8. Lines 19–21 declares that the Transfer action
is to be run by the background task, and the the company range should equal that of the
user-role being considered. Finally, in line 23, it is specified that the background task
should be run as the user-role of the current iteration.

Listing 6.39: Run Background Task on Behalf of a User Role.
1 final String currentUserName = containerRunner.getEnvironmentInfo

().getUserName ();
2 final MiQueryInspector currentUserRoles =
3 containerRunner.getDatabaseApi ()
4 .mselect(COMPANY_NUMBER , INSTANCE_KEY).from("

UserRoleInformation")
5 .where ().eq("NameOfUser").str(currentUserName)
6 .getResult ();
7 final MiSet <McStringDataValue > processedCompanies = McTypeSafe.

hashSet ();
8 for (final MiValueInspector currentUserRole : currentUserRoles) {
9 final McStringDataValue userRoleCompany = currentUserRole.

getStrVal(COMPANY_NUMBER);
10 if (! processedCompanies.containsTS(userRoleCompany)) {
11 processedCompanies.add(userRoleCompany);
12 final McStringDataValue roleInstanceKey = currentUserRole.

getStrVal(INSTANCE_KEY);
13 final MiValueInspector companySelection = McRecordValue.create

()
14 .setStr("FromCompanyNumber", userRoleCompany)
15 .setStr("ToCompanyNumber", userRoleCompany);
16

17 containerRunner.batch ()
18 .task("CentralTimeSheetTransfer")
19 .action("Transfer",
20 companySelection ,
21 McParameters.create ())
22 .singleton ()
23 .runAsRoleInstance(roleInstanceKey)
24 .description("Central Time Sheet Transfer , Company " +

userRoleCompany)
25 .end();
26 }
27 }

Listing 6.40 shows another user case. In this snippet, we (somehow—it is not important
for the example) obtain a list of jobs that should be converted to order. For each such

c©Deltek Inc. 2013–2019, All Rights Reserved 267 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

job, a background task is created specifying the action ConvertToOrder. In line 14 it
is specified that the action should be run on behalf of whatever user is associated with
the employee stated in the field ProjectManagerNumber. In case no such employee is
specified, the task will be run as whatever user has been configured as the background
task administrator.

Listing 6.40: Run Background Task on Behalf of an Employee.
1 final String currentUserName = containerRunner.getEnvironmentInfo

().getUserName ();
2 final boolean isAdminUser = containerRunner.getDatabaseApi ()
3 .mexists("UserInformation")
4 .where("IsAdministrator")
5 .and().eq("NameOfUser").str(currentUserName)
6 .getResult ();
7 containerRunner.check(isAdminUser)
8 .error("Only an administrator may do this");
9 for (final MiValueInspector job : convertToOrderJobs(

containerRunner)) {
10 containerRunner.batch ()
11 .task("Jobs")
12 .action("ConvertToOrder")
13 .restrictBy(job.asKeyValuesCopy("JobNumber"))
14 .runAsEmployee(job.getStr("ProjectManagerNumber"))
15 .description("Convert Job to Order")
16 .end();
17 }

Miscellaneous Selection Properties

The miscellaneous selection properties are used for various “ad hoc” properties. Unlike
the other selection groups, you can declare several of these properties for the same
background task.

In this part, the following method exist:

Version 1.4.021, software version 2.5.0 (21.0.sp100) 268 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
executionRequired This method sets whether it should be considered an error,

if the background task does not really execute the specified
action on any record. For example, consider an background
task that is supposed to post a journal, but will only do so if
the balance is 0. This can be expressed using the matchBy
method. In this case, the operation may be skipped in case
the balance of the journal is not 0. By default this will mark
the background task as having “succeeded” (it has done all it
was asked to do.) If you need to consider the case where no
journal was posted as an error, you can specify that execution
is required. In that case, the background task will be marked
as having “failed” if the balance is 0.

autoDelete This method can be used to mark whether a background task
should automatically be deleted from the database as soon
as it finishes (successfully.) By default finalized background
tasks are kept in the database until explicitly deleted (indi-
vidually or in batch.) It is recommended that auto-deletion
is only used for internal background tasks that only exist
as an implementation detail. Notice that if a task marked
as auto-delete fails, or if logging (e.g., information of where
output documents are stored) exists, the task will not be
automatically deleted.

description This method is used to put a descriptive label on a back-
ground task. Such descriptive labels makes it easier for a user
who is monitoring the background task system (or views past
background tasks) to understand what various tasks are all
about. There is no semantic information in this concept, but
it is considered good practice to use it. In the past examples,
this method has been used in every case.

remark1
remark2
remark3

These methods can be used to add up to three remarks to a
background task. There is no semantic information in this.

remarks This method takes a value inspector as argument and copies
the values of the fields Remark1, Remark2 and Remark3 to the
corresponding remark fields of the background task. These
field names need not exist, in which case the relevant re-
mark field will be left unchanged. The value inspector may
container other fields.

accessLevel This method takes an access level name as an argument as
associates the background task with it. Only users having
access to that data access level will be able to see it.

c©Deltek Inc. 2013–2019, All Rights Reserved 269 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Method Remarks
maxDuration This method takes an integer argument specifying the max-

imum expected duration of the background task. If this
method is not invoked, the system-wide default maximum
duration will be assumed. The time is measured in minutes.
If a background task runs longer than this amount of type,
the background-task execution engine may automatically
abort the task (leaving it as failed with status “Aborted”),
assuming that something out-of-the-ordinary has occurred
(such as a broken connection or a server having been forcibly
closed while the background task was executed.)
Another variant of this method takes an optional integer:
if the argument is defined, it corresponds to the above be-
havior. Otherwise, it signifies that the background task has
no maximum duration (and therefore can run for an arbi-
trary amount of time without being cancelled by the runtime
framework.)

fixedLocale This method lets you specify a fixed locale that will be
applied when the background task is executed.

preventRescheduling This method takes a boolean argument. If the provided value
is true, the background task cannot be rescheduled after a
failure.

markErrorsHandled This method indicates that this background task will auto-
matically be marked as “handled” if it fails. This may be
relevant for background tasks that is generated by extension
code, and where error recovery is handled automatically from
other aspects of that extension.

callbackHandling This method is used to declare how document input/output
callbacks should be handled. It is possible to specify that
output document should be stored on a file server, or e-mailed
to a specified recipient. Likewise, it is possible to point out
a file location where input files (for the Load callback) are
found. This is all declared by providing an argument of type
McTaskCallbackHandling . See below for information on
how to obtain such an object.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 270 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
emailOnCompletion This method is used to declare properties related to whether

an e-mail should be sent when the background task is com-
pleted. And whether this should only be done in certain
completion states. The argument to this method is of type
McEmailNotification . See below for information on how
to obtain such an object and what its properties are. If this
method is not invoked, no e-mails will be sent on completion
of the background task. It is recommended that e-mail noti-
fication on background tasks is used judiciously. For other
ways of creating e-mails, see Section 7.5.

Whereas most of the above methods are more or less self explanatory and straight forward.
This is not quite so for the methods emailOnCompletion and callbackHandling
method.

The callbackHandling method takes an argument of type: McTaskCallbackHandling .
Such object are constructed by instantiating a builder by invoking:

McTaskCallbackHandling . builder

Doing so will yield a builder type having the following methods:

Method Remarks
allowUnhandledOutputDocuments This method is found in two variants: one variant

takes no parameters and simply states, that this
background task should be considered successful
(rather than incomplete) in case the task successfully
finishes but yields documents that are not handled
by any of the below output handlers.
Another variant takes a boolean argument stating
whether or not this behavior should apply. If this
method is not invoked, unhandled documents will
put the background task in state Incomplete rather
than Succeeded.

c©Deltek Inc. 2013–2019, All Rights Reserved 271 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Method Remarks
outputFileHandler1

outputFileHandler2

These method can be use to instantiate two different
output file handlers. An output file handler can be
instrumented to match only files of a certain type.
In this way, it is possible to handle, e.g., PDF files
in one way, and JPEG files in another. An output
handler can use wild-cards to match. As a special
case, all files can be matched by a handler. If no
matching pattern is specified, no files match. It is
possible to use the characters ? and * indicating
exactly one character and zero-or-more characters
respectively.
Apart from the matcher, an output file handler
must be given a path to a file-system folder, e.g., to
somewhere on a file server. Any output document
occurring from a background task with this handler,
and which matches the file pattern, will be stored on
this location. The file path may be given by a named
reference to a folder with an optional additional
relative path, or by specifying an absolute path.
By making use fo the named references, it easily
possible to configure slightly different behaviors of,
e.g., production systems and test systems.
If both output file handlers match the same docu-
ment, the document will be stored in both locations.
Output file handlers will be used for Show and Save
document callbacks.

outputEmailHandler1

outputEmailHandler2

These method are similar to the
outputFileHandler1 method except that
they are used to specify a mail recipient. For a
document that matches an e-mail handler, the
document will be sent as a mail to that e-mail
recipient.
In addition to specifying a file-matching pat-
tern, the recipient e-mail address must be spec-
ified, as well as the sender e-mail address (e.g.,
no-reply@trifolium.com.)
Files matching several output e-mail handlers will
be handled by both. Also, if an output document
matches both a file- and an e-mail handler, it will
be handled by both. In this way it is possible to
have output documents stored on a file-server as
well as having them sent by e-mail.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 272 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

Method Remarks
outputDocumentArchiveHandler1

outputDocumentArchiveHandler2

These method are similar to the
outputFileHandler1 method except that
they are used to specify a document archive
where output files should be stored. The specified
document archive is expected to exist on runtime;
if not, the background task might end in the
incomplete state.
Files matching several output e-mail handlers will be
handled by all of them. Also, if an output document
matches both a file-, an e-mail and a document
archive handler, it will be handled by them all. In
this way it is possible to have output documents
stored on a file-server as well as having them stored
in a document archive.

inputFileHandler1 This method is used to specify where input docu-
ments should be picked up from. This situation may
occur if the targeted background action requests
file using the Load callback. An input handler is
given a document pattern match and an input file-
path. The input file path can be specified by a
named reference and an optional additional relative
path, or by specifying an absolute file path. It is
recommended to make use of the named references
since this will make it easy to configure slightly dif-
ferent behaviors for, e.g., production systems and
test systems. If a Load callback occurs during the
background task execution, the specified file-path
directory is scanned for files matching the specified
pattern, and any such file will be provided as the
result of the Load callback.
In addition, it is possible to specify an associated
output file pattern. Doing so means that if an output
file occurs after a Load callback and the document
name matches this output file pattern, that output
file will be placed in the same directory as the input
file was found in. This may be used with Imports
where a result log is typically shown after an import
file has been uploaded.

build This method ends the builder and constructs a
McTaskCallbackHandling object that can be used
as argument to the callbackHandling method of
the background task builder.

c©Deltek Inc. 2013–2019, All Rights Reserved 273 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Method Remarks
inputDocumentArchiveHandler1 This method is used to specify where input docu-

ments should be picked up from. This situation may
occur if the targeted background action requests
file using the Load callback. An input handler spec-
ified by this method is given a document pattern
match and a document archive number. By doing
this, the provided files will be all files in that doc-
ument archive that matches the specified pattern.
If a Load callback occurs during the background
task execution, the specified file-path directory is
scanned for files matching the specified pattern, and
any such file will be provided as the result of the
Load callback.
In addition, it is possible to specify an associated
output file pattern. Doing so means that if an output
file occurs after a Load callback and the document
name matches this output file pattern, that output
file will be placed in the same document archive as
the input file was found in. This may be used with
Imports where a result log is typically shown after
an import file has been uploaded.

build This method ends the builder and constructs a
McTaskCallbackHandling object that can be used
as argument to the callbackHandling method of
the background task builder.

Let us examine the file handling in more detail. Suppose we want to create a background
task that posts whatever journals are marked as “To be posted” in the maconomy:Posting
container. Since no end-user will sit around and wait for the posting journals to appear,
instead we want to send the output to accounting@trifolium.com. Listing 6.41 shows
how to do this. First, a background-task callback handler is created. It specifies
that output documents matching the pattern “*.pdf” (line 2) should be sent to the
e-mail address accounting@trifolium.com (line 3) and that the mail should appear as
having sender no-reply-maconomy@trifolium.com (line 4.) The building of the callback
handler object occurs in line 5. In the background task definition, the callback handler is
associated in line 10.

Listing 6.41: Specifying E-mail Recipients for Output Documents.
1 final McTaskCallbackHandling emailHandler = McTaskCallbackHandling

.builder ()
2 .outputEmailHandler1("*.pdf",

Version 1.4.021, software version 2.5.0 (21.0.sp100) 274 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

3 "accounting@trifolium.com",
4 "no-reply -maconomy@trifolium.com")
5 .build ();
6 containerRunner.batch ()
7 .task("Posting")
8 .action("Post")
9 .singleton ()

10 .callbackHandling(emailHandler)
11 .description("Post Journals Ready for Posting")
12 .end();

In a similar way, you can associate an output file handler to a background task. List-
ing 6.42 shows an example where the PrintInvoice action is run for a specific job. The
corresponding output document (the invoice) is stored on a file server (referenced through
the named path “invoice_storage”,) in a job-specific directory, as specified in line 3–4.
If the specified directory does not exist, it will be created. Obviously, this requires that
the coupling service process has adequate rights to do that. In addition, the invoice will
be mailed to: invoicing@trifolium.com, which is ensured by also assigning an e-mail
handler in line 5. The callback handler is associated with the background task in line
13.

Listing 6.42: Specifying File Destination for Output Documents.
1 final McTaskCallbackHandling outputFileHandler =

McTaskCallbackHandling.builder ()
2 .outputFileHandler1("*",
3 key("invoice_storage"),
4 jobNumber)
5 .outputEmailHandler1("*",
6 "invoicing@trifolium.com",
7 "no-reply -maconomy@trifolium.com")
8 .build ();
9 containerRunner.batch ()

10 .task("InvoiceSelection")
11 .action("PrintInvoice")
12 .restrictBy("JobNumber", McStr.val(jobNumber))
13 .callbackHandling(outputFileHandler)
14 .description("Print job invoice")
15 .end();

Input file handlers are declared similarly. Listing 6.43 shows how. First an input
file handler is declared. Line 2 specifies that the import file must have the pattern:
vi_imp*.txt. In line 3 it is declared where such import files should be found: this is
done by referencing a named file path (“vendor_invoice_integration”.) Line 4 says
that any output file that occurs after the import, should be stored at that location. The
declaration of the background task, tying it to the maconomy:ImportVendorInvoices
container and the action Import is declared as usual. The input file handler is associated
in line 12.

c©Deltek Inc. 2013–2019, All Rights Reserved 275 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Listing 6.43: Specifying an Input File Handler.
1 final McTaskCallbackHandling inputFileHandler =

McTaskCallbackHandling.builder ()
2 .inputFileHandler1("vi_imp *.txt",
3 key("vendor_invoice_integration"),
4 "*")
5 .build ();
6 containerRunner.batch ()
7 .task("ImportVendorInvoices")
8 .action("Import",
9 dataValues ().setBool("UseInternalNamesVar", true),

10 McParameters.create ())
11 .singleton ()
12 .callbackHandling(inputFileHandler)
13 .description("Import Vendor Invocies")
14 .end();

Like the call-back handling, specifying email-on-completion is not as straight-forward
as many of the self explanatory methods. Invoking the method emailOnCompletion

requires you to provide an argument of type McEmailNotification . Such an object is
obtained by invoking: McEmailNotification . builder . This builder method takes
four arguments: a String value indicating the recipient of an email and three boolean
flags that indicates whether you want an email to be sent off in case the background task
ends in the Failed, Incomplete and Succeeded state respectively. From that builder
object, you can optionally describe further attributes related to sending of emails. The
following methods are available:

Method Remarks
from This method specifies the sender of the emails. If this prop-

erty is not defined, the framework will make use of the default
sender if specified on the server.

subject This method specifies an optional subject for a sent email. If
not specified, the framework will supply a subject at runtime.

body This method specifies an optional body for the sent email. If
not specified, the framework will supply a body at runtime.

build This method finalizes the building of email properties and
returns an object of type McEmailNotification .

Timing Selection Properties

The timing selection properties are used to schedule the background task for a certain
date and time. A background task cannot be picked up for execution until after the date
and time specified for it. Notice that there are no guarantees about exactly when the

Version 1.4.021, software version 2.5.0 (21.0.sp100) 276 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

background task will be executed: it just does not happen before the specified date and
time.

In this part, the following method exist:

Method Remarks
due This method sets the due date and time for the background

task. If this method is not invoked, the due date/time will
be “now.”
The method exists in a number of flavours, one specifying
the time relative to now, and a couple of variants that specify
the precise date and time.

As an example, suppose you want to make a background task that will post all journals
due for posting. Only, you want to do that at 10pm, not now. Listing 6.44 shows how
this may be done. The scheduling occurs in line 7 indicating that the due date and time
is today at 10pm (22:00).

Listing 6.44: Absolute Time Schedule of a Background Task.
1 containerRunner.batch ()
2 .task("Posting")
3 .action("Post")
4 .singleton ()
5 .callbackHandling(emailHandler)
6 .description("Post Journals Ready for Posting")
7 .due(McDate.today (), McTime.val(22, 0, 0))
8 .end();

Sometimes you may want to schedule a task and have it run at a time relative to the
current time. Listing 6.45 shows how to make a background task that becomes due in 10
minutes. The action being run synchronizes an employee in scope with information in the
Deltek Talent Management System. The relative time schedule happens in line 6.

Listing 6.45: Relative Time Schedule of a Background Task.
1 containerRunner.batch ()
2 .task("Employees")
3 .action("SyncWithHRSmart")
4 .restrictBy(originalData.asKeyValuesCopy("EmployeeNumber"))
5 .description("Synchronize with Deltek Talent Management")
6 .due (10) // minutes
7 .end();

c©Deltek Inc. 2013–2019, All Rights Reserved 277 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Dependency Selection Properties

Dependency selection properties are used to declare dependencies between background
tasks. Every task is considered part of a “task group” indicated by some group id. A
task group may comprise zero or more tasks.

A background task can be declared as being dependent of a given task group. That means
that as long as there are unfinished tasks in that group, this task cannot be picked up
for execution—no matter its due time. A task is considered “finished” when it has either
succeeded or failed! Hence, as long as it is “pending” or “running,” it is unfinished.

In this part, the following method exist:

Method Remarks
awaiting This method is used to declare which task or task group

the current task is dependent of. This is also a version that
takes an optional MiBatchCommon instance (the common
super type of tasks and task groups.) This variant can be
used to conditionally declare a dependency to a batch task
group/batch task or not.

Listing 6.46 shows how to use this feature. The code generates three background tasks.
The second is depending on the finalization of the first, the third depends on the second.
To do this, the first background task is assigned to a variable, representing the background
task. This happens in line 1. Upon creating the second background task, the dependency
of the first is declared in line 15. And the second background task is assigned to a variable
in line 10, which is in turn used as a dependency for the third task in line 23.

Listing 6.46: Declaring Dependencies of Background Tasks.
1 final MiBatchTask approveBudgetTask = containerRunner.batch()
2 .task("API_JobBudgetsCardByType")
3 .action("ApproveBudget")
4 .restrictBy(JOB_NUMBER , jobNumber ,
5 BUDGET_TYPE , fixedPriceBudgetType)
6 .matchBy("Submitted and not Approved")
7 .description("Approve Fixed Price Budget")
8 .end();
9

10 final MiBatchTask calculateRevenue = containerRunner.batch()
11 .task("JobRevenueRecognitionDetails")
12 .action("CalculateRevenueRecognition")
13 .restrictBy(JOB_NUMBER , jobNumber)
14 .description("Calculate Revenue Recognition")
15 .awaiting(approveBudgetTask)
16 .end();

Version 1.4.021, software version 2.5.0 (21.0.sp100) 278 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

17

18 containerRunner.batch ()
19 .task("JobRevenueRecognitionDetails")
20 .action("ApproveRevenueRecognition")
21 .restrictBy(JOB_NUMBER , jobNumber)
22 .description("Approve Revenue Recognition")
23 .awaiting(calculateRevenue)
24 .end();

Sometimes you may or may not be dependent of some other background task. Listing 6.47
shows a use case of that: a number of background tasks are made, each creating a new
job. In principle, these tasks need to be dependent of each other. However, in order
to get most out of the background task execution engine, in this case, we generate a
long sequence of tasks, each one depending on the previous one. This means that the
background tasks will never be run concurrently: doing so would only mean that each
of the current tasks will await for each other because of database locks obtained upon
drawing a system number from the job number series. Instead of ending up in that
situation, we might as well declare the tasks as a long sequence of tasks, thereby allowing
concurrent processes to do things that can be done concurrently with creating jobs. The
code works by having a notion of the “previous task” (in line 5.) This is an optional
MiBatchTask which is initially undefined. Then we loop over all of the data input that
each will be used for job creation data. Each time we reassign the previous task, and
declare a dependency to the previous task (line 11). And thereby a chain of tasks is
obtained. Since the previous task is an optional, and is initially undefined, it means that
the for the first background task, there is no dependency, for the second one, the first
task is declared as the dependency task etc.

Listing 6.47: Conditionally Declaring Task Dependencies.
1 // Generate a s equence o f t a s k s each awa i t i n g t h e p r e v i o u s
2 // in orde r t o a vo i d unnece s sa ry da t a b a s e l o c k i n g
3 // o f c oncu r r en t t a s k s :
4 // Crea te Job 1 <−− Create Job 2 <−− Create Job 3 <−− e t c .
5 MiOpt <MiBatchTask > previousTask = McOpt.none();
6 for (final MiValueInspector newJobData : newJobsDataSet) {
7 previousTask = opt(containerRunner.batch()
8 .task("Jobs")
9 .create(newJobData)

10 .description("Create Job")
11 .awaiting(previousTask)
12 .end());
13 }

Defining Groups of Multiple BackgroundTasks

Sometimes you need to declare that a task should await the completion of several other
tasks. For this purpose, you can make use of the task group concept. A group is defined

c©Deltek Inc. 2013–2019, All Rights Reserved 279 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

by invoking the group method on the MiScheduler interface.

As an example, suppose you have made a custom action in the maconomy:Employees
container called trifolium:NotifyPMJobs which sends an e-mail to the employee in
question with the list of open jobs for which that employee is the project manager.

Now suppose that we implement some functionality which is capable of replacing the
project manager on all open jobs, and suppose we need to do that as background tasks.
Once the replacement is done for all of those jobs, we want the new project manager to
be notified that he/she is now managing a number of new jobs.

We could do that by chaining the background tasks so that the replacement is first done for
one job, then the next and so on until all jobs have been handled, and finally invoking the
custom action trifolium:NotifyPMJobs. If we do it like this, however, the replacement
of the project manager cannot be executed in parallel. By making use of the group
functionality, we can declare that all the background tasks about replacing the project
manager belong to the same group, and the trifolium:NotifyPMJobs can then await the
completion of the entire group. Meaning that as long as any of the background tasks in
that group are still unfinished, the trifolium:NotifyPMJobs cannot be invoked.

Listing 6.48 shows how this could be implemented. First, the original project manager
and the replacement project manager is derived (it is not important how.) Next, the open
jobs of the original project manager are picked up. In line 12 we prepare a background
task group initiator. On such an initiator, concrete tasks can be assigned. Then the
code loops over each of the jobs for which a replacement is going to happen. For each of
those, a new task (specifying an update with the required change) is declared, simply by
invoking the task method on the initiator (line 16.) From there, the task properties of a
background task can be declared as we have seen above. After the loop, if any tasks were
put into the group, we create the task invoking the trifolium:NotifyPMJobs action of
the new project manager. This task is declared in line 24–30. Of special interest is the
dependency declaration in line 29: here the task group is finally built, and the this task
is declared as being depending on that group. Meaning that it cannot be executed until
every background task of that group has been executed. The tasks in the group may be
executed concurrently.

Listing 6.48: Declaring Task Groups and Dependencies.
1 final McStringDataValue originalProjectManager = getOriginalPM ();
2 final McStringDataValue futureProjectManager = getFuturePM ();
3 final MiQueryInspector replacePMJobs = getDatabaseApi ()
4 .mselect(JOB_NUMBER).from(JOB_HEADER)
5 .where ().eq(PROJECT_MANAGER_NUMBER).str(originalProjectManager)
6 .and().not(CLOSED)
7 .getResult ();
8 final MiValueInspector changePM =
9 dataValues ().setStr(PROJECT_MANAGER_NUMBER ,

10 futureProjectManager);
11

Version 1.4.021, software version 2.5.0 (21.0.sp100) 280 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 6. PROGRAMMATIC DATA INTERACTION

12 MiTaskGroupInitiator groupBuilder = containerRunner.batch().group
();

13 MiOpt <MiTaskGroupMisc > group = McOpt.none();
14 for (final MiValueInspector job : replacePMJobs) {
15 group = opt(groupBuilder
16 .task("Jobs")
17 .update(changePM)
18 .restrictBy(job.asKeyValuesCopy(JOB_NUMBER))
19 .description("Replace Project Manager"));
20 groupBuilder = group.get();
21 }
22

23 if (group.isDefined ()) {
24 containerRunner.batch ()
25 .task("Employees")
26 .action("trifolium:NotifyPMJobs")
27 .restrictBy(EMPLOYEE_NUMBER , futureProjectManager)
28 .description("Notify Project Manager")
29 .awaiting(group.get().end())
30 .end();
31 }

c©Deltek Inc. 2013–2019, All Rights Reserved 281 Version 1.4.021, software version 2.5.0 (21.0.sp100)

6.3. CREATING ASYNCHRONOUS BACKGROUND TASKS

Version 1.4.021, software version 2.5.0 (21.0.sp100) 282 c©Deltek Inc. 2013–2019, All Rights Reserved

Chapter 7

Advanced Topics

In this chapter, we shall have a look at some of the more advanced features of the
Extension Framework. The main functionality behind the topics in this chapter has
already been introduced. The topics in this chapter has been left out from the previous
chapters in order to increase the clarity.

7.1 Determining the Order of Container Contributions

By now, it should be clear that a container may contain several container contributions.
As mentioned in Section 2.3, the Extension Framework will order these contributions in
a specific way. Usually, the programmer writing a container contribution should not care
about the order of these contributions, except that the root contribution is always at the
bottom. Implicating that every contribution can rely on the behavior of the root.

Why do various extension contributions not need to know about each other? The truth
is that sometimes they do need this. Often they don’t! You should strive to make your
extensions indifferent of the ordering. This makes good sense. Suppose that someone
makes an extension that adds some checks to the submission of time sheets. At a different
time, you are asked to make an extension to the time sheets container as well: this time
adding a variable that calculates the utilization %. This is obviously made in a different
extension: the two pieces of functionality have nothing to do with each other. And they
are best left this way in order to increase the maintainability of the code, and to lower
the complexity. In this case, it makes absolutely no difference which extension comes
first.

There are, however, situations where the order does matter. For example, suppose that
someone has made an extension that adds an action to a container. At a later point
you need to extend the functionality of that action. But since it’s not your code, you
shouldn’t change the code. Maybe you don’t even have access to it! Remember what
happens when a new (root) action is introduced in an extension (see Figure 4.12.) In

283

7.1. DETERMINING THE ORDER OF CONTAINER CONTRIBUTIONS

this case, no container contributions between the place where the action is introduced
and the root contribution are even notified about that the action occurs. Consequently,
if you want to extend the behavior of that action, your contribution must come before
the one introducing the action. In such a case, you can specify the required ordering in
the plugin.xml file that defines the presence of your extension.

Remember that you must specify an id for your contributions in the plugin.xml file.
These id’s must be globally unique. For this reason, we encourage to use a naming conven-
tion like the one usually used for Java packages: first, you revert the domain name of your
customer or your organization, e.g., com.trifolium. Next you give an optional string
that indicates the type of container you extend and something more specific relating to the
functionality in question. For example, com.trifolium.TimeSheets.UtilizationPct.
This name is public API, and you should think twice before changing it! Other program-
mers around the world might depend on it!

Listing 7.1 shows an example of a plugin.xml file which contributes two extensions to
the Jobs container. Notice that these two contributions will often be declared in separate
bundles, and consequently, in separate files. In the example one contribution adds an
action to the container. That contribution has its id specified in line 7. The other
contribution extends the functionality of that action. In line 18 the other contribution
declares that the contribution adding the action must be invoked before this contribution.
Hence, that the contribution extending the added action will be above the one adding
the action in the first place. Think of it in this way: the root is positioned at the very
bottom. So “above” means that pre-events are invoked before the root contribution is
invoked.

Listing 7.1: Declaration of Inter-Dependant Contributions.
1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <? eclipse version ="3.2"? >
3 <plugin >
4 <extension name=" Extending standard containers "
5 point="com. maconomy .api. container ">
6 <extend container =" Maconomy :Jobs"
7 id="com. trifolium .Jobs. AddAction ">
8 <factory
9 class="com. trifolium . examples . containers . AddAction$Factory ">

10 </factory >
11 </extend >
12

13 <extend container =" Maconomy :Jobs"
14 id="com. trifolium .Jobs. ExtendAddedAction ">
15 <factory
16 class="com. trifolium . examples . containers .

ExtendAddedAction$Factory ">
17 </factory >
18 <above id="com. trifolium .Jobs. AddAction " />
19 </extend >
20 </extension >
21 </plugin >

Version 1.4.021, software version 2.5.0 (21.0.sp100) 284 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

In a similar way, it is possible to specify that a given contribution must be positioned
below some other contribution (i.e., that it must be positioned closer to the root than some
other specified contribution.) This is done in a similar way, by using a <below>-tag.

Obviously, it is possible to declare cycles in the dependencies. E.g., contribution X must
come before Y, Y must come before A, and A must come before X. If such a cycle is detected
at run-time, an error will be given, and the container will not be able to start!

7.1.1 Grouping of Container Contributions

In addition to declaring specific ordering dependencies between contributions, it is possible
to declare the “grouping” of contributions. There are three different groups:

root The root implicitly is part of this group, and the root will always be positioned
at the very bottom of a chain of container contributions. In addition, extension
contributions can be put into the root group. Such extension contributions will
be positioned closer to the root than other extension contributions. If several
extension contributions of type root exist, these will be ordered in some manner. It
is possible to declare specific ordering constraints for these using the <above/> and
<below/> declarations. References can only be declared for contributions belonging
to the same group.

standard By default, an extension contribution will be considered belonging to the
standard group. I.e., it is optional to specify this group membership. Extension
contributions of this group will appear above all of the contributions belonging to
the root group. Dependencies (<above/> and <below/>) can be declared against
other contributions of this group. Normally, extension contributions should go into
this group.

top The top group contains extensions that appear before any extensions in the groups
root and standard. Dependencies (<above/> and <below/>) can be declared
against other contributions of this group. This group is slightly different compared
to the root and standard groups, since there is only one top group for a container,
also if it is cloned. See Figure 7.1 and Figure 7.4 below for more details.

Figure 7.1 shows how container contributions are organized. The actual root contribution
is always at the bottom. Above that, the extension contributions declared as having the
group root are found. Above those, the extension contributions of the group standard
are found, and at the very top, the extension contributions of the group top are found. As
mentioned earlier, it is possible to declare specific ordering dependencies between extension
contributions. But you may only declare such dependencies between contributions of the
same group. Hence, in Figure 7.1, it is not possible to declare dependencies between, say,
ExtR1 and ExtS1 since these two extension contributions belong to different groups. It is
possible to declare ordering dependencies between ExtS1 and ExtS2 , since both belong
to the same group. This is shown in Figure 7.2. Inside each of the groups, the various
extension contributions are, by default, ordered in the following way:

c©Deltek Inc. 2013–2019, All Rights Reserved 285 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.1. DETERMINING THE ORDER OF CONTAINER CONTRIBUTIONS

group="top" group="standard" group="root"
Container: trifolium:SomeContainer

RootExtR1ExtR2ExtS1 ExtS2 ExtS3ExtT1 ExtT2

Figure 7.1: Extensions for a container are organized within the declared group. Extensions
in the group root are closest to the root of the container, extensions in the group top
are at the opposite end.

group="top" group="standard" group="root"
Container: trifolium:SomeContainer

RootExtR1ExtR2ExtS3 ExtS2 ExtS1ExtT1 ExtT2

<below/><above/>

Figure 7.2: Contributions found in the same group can declare ordering dependencies to
other contributions in that group. In this case, ExtS1 has declared that it must be below
the extension contribution ExtS2 . Similarly, extension ExtS3 has declared that it must be
above the extension contribution ExtS2 .

Version 1.4.021, software version 2.5.0 (21.0.sp100) 286 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

container="trifolium:SomeContainer" namespace="trifolium" any="true"

group="standard" of container trifolium:SomeContainer

ExtA1ExtA2ExtN1 ExtN2ExtC1 ExtC2

Figure 7.3: Referencing between extension contributions originating from different match-
ing levels. Contributions ExtC1 and ExtC2 are declared as extensions for a specific
container name. Contributions ExtN1 and ExtN2 are declared as extensions for all
containers in the name space trifolium, and the contributions ExtA1 and ExtA2 are
declared as extensions for any container. The green arrows indicate where it makes
sense/is allowed to declare ordering dependencies. The red arrows indicate where this is
not so. For example, it makes no sense that a contribution for any container explicitly
states that it must come above or below an extension for a specific container (since that
other extension will only occur for one container.)

• Closest to the “root end”, extension contributions that are made for any container
will be found. This can be specified by <extend any="true"> rather than specifying
a name or a name space.

• Above those, the extension contributions for a specific namespace are found. This
can be specified by <extend namespace="trifolium">.

• Above those, the extension contributions for the specific container name are found.
This can be specified by <extend container="trifolium:SomeContainer">.

It is possible to make ordering dependencies between these. But it is only possible to
refer to other extensions at the same extension declaration level (any, name space or
container name) and by referencing contributions that originate from a declaration level
that, by default, is found closer to the root. This is shown in Figure 7.3: two extensions
that was declared for any container, may have ordering dependencies declared between
them. But an extension specified for any container cannot declare that it must come
above or below some contribution that is not in scope for any container. An extension
specific to a named container, or a specific namespace, can, however, declare that it
must be ordered before or below a contribution that is in scope for any container.

7.1.2 Cloned containers and Ordering of Extension Contributions

The rules explained above always apply. However, when a new container is created
by cloning, the ordering of extension contributions are made relative to the cloning
level.

In short, you can create a container that is “a clone” of another container, where the

c©Deltek Inc. 2013–2019, All Rights Reserved 287 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.2. BUILDING GENERALLY APPLICABLE EXTENSIONS

entire content of the container being cloned is seen as the “root” for the name provided
for the new container.

1 <create container =" Trifolium : SpecialJobs ">
2 <clone container =" Maconomy :Jobs" />
3 </create >

In the snippet above, we create a new container called Trifolium:SpecialJobs. It is
based on a clone of the Maconomy:Jobs container. Meaning that the root as well as any
current and future extensions to Maconomy:Jobs will be seen as the “root behavior” of the
container Trifolium:SpecialJobs. By doing so, it is possible to extend the container
Trifolium:SpecialJobs without modifying the behavior of Maconomy:Jobs any further.
Containers can be cloned as many times as you want, so the Trifolium:SpecialJobs
could again be cloned and exposed through a new name: Trifolium:OddSpecialJobs.
Hence, the contents of Trifolium:OddSpecialJobs will comprise of everything comprised
by Trifolium:SpecialJobs with the extensions specific to Trifolium:OddSpecialJobs
on top of that. Since Trifolium:SpecialJobs itself is a clone, it comprises everything
comprised by Maconomy:Jobs with any extension applicable for Trifolium:SpecialJobs
on top. Hence, the contents of Trifolium:OddSpecialJobs contains:

• The root of Maconomy:Jobs

• Any extension that matches Maconomy:Jobs

• A system-provided “root” of the Trifolium:SpecialJobs that takes care of the
name transitioning.

• Any extension that matches Trifolium:SpecialJobs

• A system-provided “root” of the Trifolium:OddSpecialJobs that takes care of
the name transitioning.

• Any extension that matches Trifolium:OddSpecialJobs

For each of these container names that are in scope in this chain of container names,
extensions with group="root" will be organized close to the “root” node of the name
in scope. Extensions with group="standard" will be placed above those ones. As a
special thing, extensions with group="top" will be put in one common group at the
very top. Figure 7.4 illustrates this: there is just one top group, and for each involved
container name (cloned or not) the applicable extension contributions of the groups root
and standard are organized as usual. In case some extension (not belonging to the top
group) can apply to several of the named scopes, they will go to the earliest place (e.g.,
towards the root.)

7.2 Building Generally Applicable Extensions
Until now, we have considered situations where we either create a specific container with
a specific name, or where we extend a container with a specific name.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 288 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

Maconomy:Jobs

Root
group="root"

group="standard"

Trifolium:SpecialJobs

Cl1
group="root"

group="standard"

Trifolium:OddSpecialJobs

Cl2
group="root"

group="standard"

Common for all

group="top"

Figure 7.4: Grouping of extensions when cloned containers are involved. In this example,
the container in scope is Trifolium:OddSpecialJobs. That container is made from a
clone of Trifolium:SpecialJobs, which in turn is made from a clone of Maconomy:Jobs.
Contributions relating to each of these names are grouped together in the same way as
explained above. The top group, however, is shared between all of the involved container
names. Hence, there is only one “top” group for a given container. The two nodes Cl1
and Cl2 represent the system-provided “root” nodes for a container created by cloning
another container.

Sometimes, you can benefit from making an extension that is generally applicable. You
can do this with the extension framework. This feature has been used in several instances,
including:

ExportDataSet (“Export to Excel.”) This action has been implemented as a generic
extension. Consequently, all panes in all containers, including future containers,
will have this action available, although it is not visible in card panes by default.

EmailOnAction is an action that makes it possible to execute an action specified in a
parameter, and send an e-mail to some e-mail address which is also specified in a
parameter. The content of the e-mail may or may not contain attached documents
resulting from running the action. This action is available for all panes in any
container, including future containers, since the action has been specified as being
generic.

RunReport is an action that makes it possible to generate a Business Objects report
based on settings specified in parameters. Since this action has been specified as
being generic, this action is available for all panes in any container, including future
containers.

ActionSequence is an action that makes it possible to run a number of other actions in
a sequence. The actions to be run in sequence are provided using paramters to the
action. Since this action has been specified as generic, it is available for all panes
in any container, including future containers.

Such generic extensions may save a lot of coding because the contribution will be present
anywhere.

Listing 7.2 shows an example of how to declare an extension as generic. In line 5
the declaration says any="true". This means that this extension is applicable for any
container. In addition, it says group="top". This means that the extension will be

c©Deltek Inc. 2013–2019, All Rights Reserved 289 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.3. DYNAMICALLY CHANGING AN EVENT FLOW

placed in a “top” group, thereby making it something that generically applies on top of
all containers.

Listing 7.2: Declaration of a Generic Extension.
1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <? eclipse version ="3.4"? >
3 <plugin >
4 <extension point="com. maconomy .api. container ">
5 <extend any="true" group="top" id="com. trifolium . extension . generic .

my">
6 <factory class="com. trifolium .my. generic . extension .

MyGenericExtension$Factory " />
7 </extend >
8 </extension >
9 </plugin >

In addition to making an extension for any present or future container, it is possible
to make a generic implementation for an entire class of containers. This can be done
by making a root contribution which is not attributed to any specific container, but is
instead attributed to a namespace. Suppose that you need to build a series of containers
which all communicates with some specific back-end, e.g., a salary system. And suppose
the the way to communicate with the salary system back-end is almost identical; the
only difference being the name of the part of the system which is addressed, represented
as a container. Using this feature, you can implement one generic root container and
associate that implementation with a specific name space. This will allow the Extension
Framework to recognize all container names under a given name space, and to invoke
the common implementation for all. This is how the implementation for the name space
maconomy has been made. The only difference compared to creating a specific root
container is that instead of specifying the name attribute, you specify the namespace
attribute instead!

Usually, an error will be given at run-time, if two different contributions claim that they
are both the root contribution for a given container. This is not the case, however, if one
contribution is a namespace-type and the other is a name-type (i.e., an explicitly named
container.) In this case, the namespace-contribution is disregarded, and the name-type
will take precedence as the sole root contribution!

7.3 Dynamically Changing an Event Flow
In Chapter 4 we have seen how the life-cycle of data-carrying events invokes “Pre” and
“Post” scripts in every contribution of a container, as illustrated in Figure 4.2.

Sometimes it is needed to act slightly differently, by skipping all remaining contributions.
There could be several reasons for that:

1. You have introduced an event which is not supported in following contributions.
This is for example the case when you introduce a root action in an extension

Version 1.4.021, software version 2.5.0 (21.0.sp100) 290 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

contribution.

2. You have changed the data-model so significantly, that a given event may not
make sense in following contributions. This could be the case, for example, if
you “emulate long text” by joining several lines together as one logical line. An
“update” of such a line makes no sense in following contributions, but will have to
be “re-mapped” into other events.

3. If your logic programmatically executes events on the current record in the “Pre”
script, the event will not work for following contributions because it will be believed
that the data has been changed without your knowing. In such cases, you must
short-cut the event-flow.

The containerRunner parameter has a method called skip . This method will ensure
that the following contributions are short-circuited. Instead of continuing the flow by
invoking the “Pre” script of the next contribution, the “Post” script will be invoked on
your contribution right after the “Pre” script terminates. It is not possible to invoke the
skip method in “Post” events, as this makes no sense.

When a root (new) action is introduced in some extension, the framework knows that
it is new and therefore is completely unknown by the following extensions. And the
framework will automatically invoke skip.

Container

Ext1Ext2Ext3Ext4 Root
skip()Event

Result

Figure 7.5: Invoking the skip method in contribution Ext3 will cause the following
contributions to be disregarded for the current event.

Figure 7.5 shows the event flow of some event in a case where the skip method is invoked
in Ext3: this causes the following contributions: Ext2, Ext1 and Root to be “skipped”
in this particular event flow. The result is that the “Post” script of Ext3 is invoked
immediately after the “Pre” script terminates. The skipping is only taking place for
this particular event. Any other event being run, programmatically or not, will work as
usually.

7.4 Enforcing Full Data Refresh
Sometimes an operation makes changes not only to the current record, but to other
records of the same container. For example, an action in a card pane could “delete all
lines” or “recalculate all lines.” In such cases, you need to enforce that the response
eventually going to the client contains all data of the container, not just, e.g., the “current
record.” Or maybe your extension makes changes to this record and this container in

c©Deltek Inc. 2013–2019, All Rights Reserved 291 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.4. ENFORCING FULL DATA REFRESH

the “Post”-script by programmatically running a number of additional operations. For
example, during a Create process, your extension might choose to Update one or more
fields in this container in the “Post”-script. In this case, the data resulting from the
Create operation is no longer the most recent data. If you don’t do something about
this, a “data has been changed” error will likely follow!

The solution to this problem is to enforce a full data refresh. The Extension Framework
gives the possibility of invoking the method fullRefresh . This method basically raises
a flag to notify the framework that a re-read should be made immediately after this event
is done. It makes no difference whether this method is invoked one or 100 times—only
one re-read will be made. And the re-read will happen after this event has been fully
completed in all contributions.

Listing 7.3 shows an example where a specific time sheet line is created whenever a
time sheet is created (a line automatically filling out required information for a weekly
department meeting which takes place every Tuesday.) When doing so, it is necessary
to do a full refresh because the data in another pane has been altered. This takes
place in line 18 where the fullRefresh method is invoked, thereby indicating that the
Extension Framework must perform a re-read of the container immediately after the
Create operation is done.

Listing 7.3: Enforcing a Full Data Refresh

2 private static final MiDataValues WEEKLY_DPT_MEETING =
3 dataValues ().setStr("JobNumber", "210770")
4 .setStr("Task", "200")
5 .setReal("NumberDay2", BigDecimal.ONE);
6 @Override
7 public void onCreatePost(final MiCreatePost containerRunner ,

final MiCreate eventData) throws Exception {
8 // Upon c r e a t i n g a t ime s h e e t l i n e , we a l s o
9 // c r e a t e a s p e c i f i c t ime s h e e t l i n e s

10 // c o v e r i n g Weekly Department Meet ing
11 final MiKeyValues tsKey = eventData.getResultData ().

asKeyValuesCopy("EmployeeNumber", "PeriodStart");
12

13 final MiContainerExecutor timeSheetTable = containerRunner.
executor ().construct(MePaneType.TABLE);

14 timeSheetTable.control ().restrictBy(tsKey);
15

16 timeSheetTable.add().create(WEEKLY_DPT_MEETING);
17

18 containerRunner.fullRefresh ();

Version 1.4.021, software version 2.5.0 (21.0.sp100) 292 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

7.5 Sending Emails
Occasionally, you might want your extension to send a mail as a side-effect of doing some
operation. For example, you could make an extension that sends an invoice directly to a
customer’s e-mail instead of showing the invoice to an end-user.

You can obviously use a standard Java API for creating an sending such emails. However,
doing so is a little cumbersome, and you would have to do a significant amount of
boiler-plate code to make it work, and to make sure that you make use of the mail
server that has already been configured for your system. For this reason, the Extension
Framework comes with built-in support for building simple e-mail messages that will be
sent by the framework. In addition, the framework offers support for sending mails only
in case of success or failure of the entire event: something that would be impossible to
implement yourself.

In order to access this functionality, you need to obtain an e-mail builder. You do this by
invoking the services method on the containerRunner argument provided for each
event. From there you access the e-mail builder using the email method. This method
comes in several flavours:

Method Remarks
create () The no-argument variant creates a simple e-mail builder.

It will use the current settings of mail server, and it will
send the e-mail when the current event is committed (i.e.,
completed successfully.)

c©Deltek Inc. 2013–2019, All Rights Reserved 293 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.5. SENDING EMAILS

Method Remarks
create (s) This variant takes an argument of type MeSendState

indicating when the e-mail will be sent. The MeSendState
enumeration have the following members:
• ON_COMMIT the sending of this e-mail will be deferred
until the current event is successfully completed.
Hence, if an error is eventually issued, the e-mail
will not be sent.
• ON_ROLLBACK the sending of this e-mail will be de-
ferred until the current event fails. Hence, if the
current event is successfully completed, this mail
will not be sent! It will only be sent if an error (e.g.,
an error message to the end user) stops the event
from being completed.
• ALWAYS the sending of this e-mail will be deferred

until the current event is done, no matter if it com-
pletes successfully or not.
• INSTANTLY the sending of this e-mail will occur im-
mediately (i.e., before it is known whether or not
the current event will successfully complete.)

If the mail is sent, it will directed to the mail server
currently configured for the system. So, for example, if
a specific mail recipient has been configured for a test
system, this mail will go to that recipient as well.

create (s,c) This variant takes an argument of type MeSendState
(see above) and an argument specifying a mail-server
configuration.

The builder will ensure that you provide relevant properties needed to send the mail. In
short, the builder will progressively take you through a number of steps:

1. Select the recipients (type MiEmailBuilder .)

2. Optionally select a recipient (type MiEmailSender .)

3. Specify a subject (type MiEmailSubject .)

4. Specify a body message for the mail (type MiEmailMessage)

5. Optionally specify attachments for the mail (type MiEmailAttachment)

6. Finally signal that the email construction is done by invoking the send method.
Notice that the e-mail may not be sent, depending on the send state associated
with the e-mail.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 294 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

In the MiEmailBuilder part you can choose the following methods (you must specify
at least one of these):

Method Remarks
to Specifies the recipient of the e-mail. You invoke this

method multiple times to send the mail to multiple recip-
ients.

toAka This method is similar to the to method above, except
that it takes an additional argument for choosing the
display name (“also known as”) of the recipient. For
example to("jd@trifolium.com", "John Doe") would
use the display name “John Doe” for the recipient of the
e-mail.

cc Specifies the cc-recipient of the e-mail. You invoke this
method multiple times to send the mail to multiple cc-
recipients.

ccAka This method is similar to toAka except that it specifies
a cc-recipient.

bcc Specifies the blind-cc recipient of the e-mail. You invoke
this method multiple times to send the mail to multiple
blind-cc recipients.

The following MiEmailSender part additionally lets you specify the following:

Method Remarks
from Specifies the e-mail address of the sender of the e-mail. If

this property is not provided, the default sender configured
for the coupling service will be assumed.

fromAka This method is similar to the from method
except that it takes an additional argument
for choosing a display name. For example
fromAka("no-reply@trifolium.com", "Maconomy")
will make the sender be shown as “Maconomy” with the
e-mail address of “no-reply@trifolium.com”

The MiEmailSubject is a required part that lets you specify the subject of the e-mail.
The following methods are available

c©Deltek Inc. 2013–2019, All Rights Reserved 295 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.5. SENDING EMAILS

Method Remarks
subject Lets you specify a subject either as a simple (non-localized)

String or as a MiText which may be localized.

Following this, the MiEmailMessage lets you specify the mandatory message body using
the following methods:

Method Remarks
message Lets you specify an arbitrary number of parts of the

message body, either as simple (non-localized) Strings or
as MiText s which may be localized. Each of the message-
body arguments that you provide will be separated by
newlines.

htmlMessage This method is like the message above, except that the
contents is assumed to be html. The provided html will
appear in the email as a Mime part with a content type
of text/html; charset=utf-8. If you specify several
message parts for this method, they will all be separated
by the <p> tag in the resulting html, and the tag will
textually be surrounded by newlines. Hence,
.htmlMessage("<h1>Hello</h1>This is html",

"And so is this")

will be treated as the following literal html input
<h1>Hello</h1>This is html
<p>
And so is this

Following the message body, you may specify a number of attachments to the e-mail.
The following methods exist for this purpose:

Method Remarks
attachment Lets you specify an attachment. The attachment is either

a McFileResource or a File object. If you need to
attach several documents to the mail, you can invoke the
attachment method multiple times.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 296 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

When all the desired mail properties have been specified, you signal the completion of
the e-mail by invoking one of the methods on the MiEmailSend interface:

Method Remarks
send This method comes in a couple of flavours:

• A zero-argument version that either sends the mail
immediately (if the e-mail was instantiated with the
INSTANTLY option) or when the event completes (de-
pending on whether the event terminates succesfully
or not.)
• An argument taking an optional predicate. The
mail will only be sent if the provided predicate is
true and if the termination state complies with how
the e-mail was instantiated.

Exceptions will not be thrown by this method, for example
in case of an ill-formatted recipient.

sendException This method is like the send method except that excep-
tions will be propagated to the caller.

Once the e-mail has been completed, it is possible to query the result using the methods
on the interface MiEmailResult :

Method Remarks
wasSent Returns true if the e-mail was sent, false otherwise.
hasError Returns true if construction of the e-mail led to excep-

tions (e.g., due to an ill-formatted e-mail recipient.)
getException Returns the exception that might have been thrown during

construction. If no exceptions were thrown, invoking this
method will itself throw an exception.

getExceptionOpt This method is like getException except that it returns
an optional exception: if no exception was thrown while
constructing the e-mail, a none value will be returned.

postponed Returns true if the sending of the e-mail is postponed.

To make all of this more clear, let us consider an example. Suppose we want to extend
the SubmitTimeSheet action in the maconomy:TimeSheets container. Suppose that we
want to send a mail to the supervisor of the owner of the time sheet, stating that the
time sheet has been submitted and is now able to be approved. Obviously, if some kind
of validation check fails, thereby preventing the time sheet from actually being submitted,
the e-mail should not be sent.

c©Deltek Inc. 2013–2019, All Rights Reserved 297 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.5. SENDING EMAILS

Listing 7.4: Sending an Email
2 @Action("SubmitTimeSheet")
3 public final class SubmitTSHandler extends

McAbstractDataModelExtendedAction {
4 /∗∗ { @inher i tDoc } ∗/
5 @Override
6 public void onActionPost(final MiActionPost containerRunner ,
7 final MiAction eventData) throws

Exception {
8 final MiValueInspector originalData = eventData.

getOriginalData ();
9 // Send a mai l t o t h e s u p e r v i s o r upon s u bm i t t i n g

10 final String supervisorEmail = getSupervisorEmailAddress(
originalData);

11

12 final String messageBody = new StringBuilder("The time sheet
for week ")

13 .append(originalData.getInt("WeekNumber"))
14 .append("/")
15 .append(originalData.getInt("TheYear"))
16 .append(" for ")
17 .append(getEmployeeName(originalData.getStr("

EmployeeNumber")))
18 .append(" has been submitted and is ready for approval .\n\

nThanks!")
19 .toString ();
20

21 containerRunner.service ().email ()
22 .to(supervisorEmail)
23 .subject("Timesheet is ready for approval")
24 .message(messageBody)
25 .send();
26 }
27 }

Listing 7.4 shows an example of how to send a simple e-mail. In line 21 an e-mail builder
is created. This way of invocation will make the actual sending of the mail be postponed
until the current event (the SubmitTimeSheet) has been successfully completed. So, if
some other extension chooses to issue an error, the mail is not being sent. In line 22 a
mail recipient is associated with the email. In this example, just a single recipient has
been chosen. You can specify several recipients by repeatedly invoking the to method.
And/or you can choose to send the mail as to a “cc” recipient by using the method cc
or as a “blind cc” recipient by invoking the method bcc . Line 23 sets the subject of the
mail message. You can choose to provide a localized message as a MiText argument, or
simply provide a static String. In line 24 the message body of the e-mail is provided.
Again, you can choose to provide a static String or a localized message. Finally, the
completion of the e-mail is signalled in line 25 by invoking the send method. In this

Version 1.4.021, software version 2.5.0 (21.0.sp100) 298 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

case, the mail will not actually be sent at this point in the code; it will be postponed until
after the event has successfully completed. If the event does not complete successfully,
the e-mail will be discarded. Since to sender was specified (using the from method) the
default sender (configured for the coupling service) will be used.

Another example is shown in Listing 7.5. In this example, we extend the PrintInvoice
action in the maconomy:InvoiceEditing container. In line 9 we hold back a possible
printed invoice document. Then in line 35 this document is attached to a mail for the
customer. If the event fails, the invoice is not committed and therefore the e-mail will
not be sent to the customer. If the event does succeed, the e-mail will be sent with the
invoice attached.

Listing 7.5: Sending an Email with an Invoice Attachment
2 /∗∗ { @inher i tDoc } ∗/
3 @Override
4 public void onShow(final MiShow containerRunner ,
5 final McFileResource document) throws

Exception {
6 final MiEventInfo eventInfo = containerRunner.getEventInfo ();
7 if (eventInfo.getEventId () == MeEventId.ACTION
8 && eventInfo.getActionName ().equalsTS(PRINT_INVOICE)) {
9 invoice = opt(document);

10 containerRunner.skip();
11 }
12 }
13

14 @Action("PrintInvoice")
15 public final class PrintInvoiceHandler extends

McAbstractDataModelExtendedAction {
16 /∗∗ { @inher i tDoc } ∗/
17 @Override
18 public void onActionPost(final MiActionPost containerRunner ,
19 final MiAction eventData) throws

Exception {
20 final MiValueInspector originalData = eventData.

getOriginalData ();
21 if (invoice.isDefined ()) {
22 // Send a mai l t o t h e s u p e r v i s o r upon s u bm i t t i n g
23 final String customerEmail = getCustomerEmail(originalData

);
24

25 final String messageBody = new StringBuilder("Attached ,
please find your invoice.")

26 .append(originalData.getInt("\n\n"))
27 .append("Best regards ,\n\n")
28 .append("Trifolium")
29 .toString ();
30

c©Deltek Inc. 2013–2019, All Rights Reserved 299 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.5. SENDING EMAILS

31 containerRunner.service ().email ()
32 .to(customerEmail)
33 .subject("Invoice from Trifolium")
34 .message(messageBody)
35 .attachment(invoice.get())
36 .send();
37 }
38 }
39 }

It is possible to send one e-mail in case of success and another in case of failure. This
may typically be used for events that are primarily intended to be run as background
tasks, but can be used in any case. An example of this is shown in Listing 7.6. In
this example, an action has been made for updating the exchange rate tables based on
some 3rd-party web service. The code for that is not shown. The interesting thing for
this example, however, is that in case of success, an e-mail is being sent to a recipient
(finance@trifolium.com) . This e-mail is set-up in line 10, for clarity explicitly stating
that the e-mail should be postponed until the transaction is committed (i.e., successfully
completed.) In line 18 another e-mail is set up. This time specifying that the e-mail
should be sent only on roll-back (i.e., in case of an error.) Notice that the e-mails are
configured prior to the actual logic. This is to ensure that the e-mails have already been
prepared, should an error occur during the attempt to update the exchange rate tables.
If the errors had been configured after that logic, an error occurring during the actual
update logic would make the transaction fail and roll-back at that time: before the failure
e-mail ever gets configured. Which would mean that the error e-mail would never be
sent.

Listing 7.6: Sending Different Mails for Success and Failure
2 @Action("trifolium:UpdateExchangeRates")
3 public final class UpdateExchRatesHandler extends

McAbstractDataModelRootAction {
4 /∗∗ { @inher i tDoc } ∗/
5 @Override
6 public void onAction(final MiActionPost containerRunner ,
7 final MiAction eventData) throws

Exception {
8 // Prepare an e−mai l in ca s e o f s u c c e s s
9 final ZonedDateTime now = ZonedDateTime.now();

10 containerRunner.service ().email(MeSendState.ON_COMMIT)
11 .to("finance@trifolium.com")
12 .subject("Exchange Rates have been updated on " + now.

toString ())
13 .message("The exchange rates have been succesfully updated

",
14 "/Maconomy")
15 .send();
16

Version 1.4.021, software version 2.5.0 (21.0.sp100) 300 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

17 // Prepare an e−mai l in ca s e o f f a i l u r e
18 containerRunner.service ().email(MeSendState.ON_ROLLBACK)
19 .to("finance@trifolium.com")
20 .cc("maconomy -admin@trifolium.com")
21 .subject("Warning: Exchange rates could not be updated on

" + now.toString ())
22 .message("An error occurred while updating exachange rate

tables!",
23 "See the error log for details.",
24 "/Maconomy")
25 .send();
26

27 // do t h e upda te o f t h e exchange r a t e t a b l e s . . .
28 // I f an e r r o r oc cu r s in t h i s p roce s s , t h e above e r r o r mai l

w i l l a u t oma t i c a l l y be
29 // s en t
30 updateExchangeRateTables(containerRunner);
31 }
32 }

7.6 Accessing Configuration Settings and Integrating with
3rd-Party Systems

Sometimes you may want to integrate to 3rd-party systems. The communication with
such systems could happen in several ways, including:

• By using the file system

• By accessing a URL

• By means of a mail server

However, you likely don’t want to mix the behavior of a production system with that
of a test system. Imagine that you make an extension that picks up vendor invoice
imports from a location where an external invoice scanning system places such files. If
that file-path is hard-coded you are bound to having problems: the production system
and the test system may compete about importing scanned vendor invoices. With the
result that some go to the production system while others go to the test system.

Similarly, if you need to integrate, for example, a salary system through a URL, you don’t
want to let the production salary system be updated from the test system. Instead, you
would like a test-installation of the salary system to be updated by the test system, while
the production salary system is the one being updated from the production system.

This can be achieved by making use of the configurations in the Coupling Service’s
server.ini file which resides in the configuration folder in the Coupling Service’s
installation directory.

c©Deltek Inc. 2013–2019, All Rights Reserved 301 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.6. ACCESSING CONFIGURATION SETTINGS AND INTEGRATING WITH
3RD-PARTY SYSTEMS

The interface MiConfigurationInfo is used to represent part of the information found
in this file. This interface is obtained by invoking the method getConfigurationInfo on
the MiEnvironmentInfo object which in turn can be obtained from a containerRunner
through the method getEnvironmentInfo (see Section 6.2.1). The resulting interface
has the following methods:

Method Remarks
getSystemNature Returns the system nature defined for the current short

name. If no system nature is defined, an empty (undefined)
value is returned.

getEmailConfiguration This method returns information about the email con-
figurations for this short name through a type called
MiEmailConfiguration . This type contains informa-
tion about which mail server is configured for this short
name (and the current user), a possible default sender
and a possible fixed recipient. In several places (e.g., for
background tasks and the EmailOnAction extension, this
recipient will be used if defined, thereby overshadowing
any other recipient.)

getFilePath This method returns a File object representing the path
currently configured for a specified reference name for
the current short name. The method takes an optional
additional relative path as an argument. The resulting
File object represents the folder found by joining the two
paths.

getFilePathOpt This method is similar to getFilePath except that it
returns an optional File. In case the file reference is not
declared, a none value will be returned.

getUrl This method returns a String representing a URL asso-
ciated with a given reference name. The value is the one
configured for this short name. If the name is not defined,
an empty String is returned.

getUrlOpt This method is similar to getUrl except that it returns
an optional value. If the named URL is not defined, a
none value is returned.

getSystemNatures This method returns a collection of all defined system
natures.

getFilePathReferences This method returns a collection of all defined file path
reference names.

getUrlReferences This method returns a collection of all defined URL refer-
ence names.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 302 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

As an example, suppose we have three short names: macoprod (used as the production
system) and macouat1 (used as user acceptance test system 1) and macouat2 (used
as a second user acceptance test system.) Also, suppose the server.ini contains the
following information:

1 ...
2 # de f i n e macoprod as b e i n g o f na tu r e " p r odu c t i on "
3 # and d e f i n e macouat1 and macouat2 t o be o f na tu re " t e s t " .
4 system.nature.macoprod=production
5 system.nature.macouat1=test
6 system.nature.macouat2=test
7

8 # s tanda rd mai l s e r v e r
9 mailserver.address=mailserv.trifolium.com :25

10 # secondary mai l s e r v e r t o be used f o r t e s t s y s t ems
11 mailserver.address.nature.test=mailtest.trifolium.com :25
12

13 # Overshadow t h e ema i l r e c i p i e n t s f o r t e s t s y s t ems
14 email.to.nature.test=testgroup@trifolium.com
15

16 # s e t t h e d e f a u l t s ende r
17 email.from.default=no-reply@trifolium.com
18

19 # de c l a r e f i l e pa th r e f e r e n c e names
20 # standa rd l o c a t i o n f o r p r odu c t i on
21 filepath.vendor_invoice_imports =// fileserver/scans/vendorinvoices/
22 # l o c a t i o n f o r t e s t s y s t ems
23 filepath.vendor_invoice_imports.nature.test =// tstserver/vendorinv/
24 #
25 # standa rd l o c a t i o n f o r p r o j e c t f o l d e r s
26 filepath.job_reports =// projectshare/reports/
27 # l o c a t i o n f o r t e s t s y s t ems
28 filepath.job_reports.nature.test =// tstserver/jobreports/
29

30 # de c l a r e URL r e f e r e n c e names
31 # URL f o r s a l a r y sys tem
32 url.salary=https ://www.supersalarix/trifolium/
33 # URL f o r s a l a r y sys tem used by t e s t s y s t ems
34 url.salary.nature.test=https :// test.supersalarix/trifolium

The above configuration declares a named reference to a file path, vendor_invoice_im-
ports. The source code can obtain the file location configured for this name: when run on
the production system, the resulting file path location will be //fileserver/scans/ven-
dorinvoices/, but when run on one of the test systems, the file path location //tstser-
ver/vendorinv/ will be used instead. In this way, an extension referencing the named
file path location vendor_invoice_imports, can obtain the applicable path depending
on whether it is run on a test system or on the production system.

c©Deltek Inc. 2013–2019, All Rights Reserved 303 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.6. ACCESSING CONFIGURATION SETTINGS AND INTEGRATING WITH
3RD-PARTY SYSTEMS

Listing 7.7 shows an example of this: an action which is intended to import data
from somewhere in the file system—supposedly data generated by some vendor in-
voice scanning software—picks up the appropriate file system path and then invokes
a method that does the actual import (not shown.) The interesting part goes on in
line 9: there we ask the configuration to resolve the file path represented by the name
vendor_invoice_imports. With the configuration settings shown above, this path will
resolve to //tstserver/vendorinv/ when run on one of the test systems (database
short names macouat1 or macouat2) whereas on other systems (in this case the macoprod
short name) then file path will resolve to //fileserver/scans/vendorinvoices/. Ob-
viously, if the name vendor_invoice_imports has not been declared as a file path in
the configuration, the code won’t work. For this reason, it is checked whether the file
reference is defined or not (line 11.) If this is not the case, an error is shown to the end
user, otherwise, we proceed with whatever file path was resolved.

Listing 7.7: Obtaining File Path References from the System Configuration
1 private static MiKey VINV_IMPORTS = key("vendor_invoice_imports");
2 @Override
3 public void onAction(final MiActionPost containerRunner ,
4 final MiAction eventData) throws Exception {
5 final MiConfigurationInfo configInfo = containerRunner.

getEnvironmentInfo ()
6 .

getConfigurationInfo
();

7

8 final MiOpt <File > importPath =
9 configInfo.getFilePathOpt(VINV_IMPORTS);

10

11 containerRunner.check(importPath.isDefined ())
12 .error("No location configured for vendor invoice

imports - contact your system administrator")
;

13 importVendorInvoices(importPath.get());
14 }

It is also possible to obtain a partly variable file-path reference. For example, suppose we
want to implement an action that generates some report for a job, and then stores the
report output as a file in the file system. Only, reports for different jobs should be placed
in a job-specific sub-folder to a common file path. Listing 7.8 shows an example of this:
we extract the relevant job number from the eventData, and in line 12 obtain the file
path reference of job_reports. And as an additional argument to getFilePathOpt , we
provide the job number. In this way, the resulting File represents the sub folder having
the same name as the job number under the resolved file path obtained using the reference
name. Hence, running this code (with the above configuration) on the production system
would result in that the job reports are stored in some location. Running it from one of
the test systems results in a different file location; in both locations, however, the job

Version 1.4.021, software version 2.5.0 (21.0.sp100) 304 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

reports are stored in sub folders corresponding to the job number in context.

Listing 7.8: Obtaining Partially Variable File Path References
1 private static MiKey JOB_REPORTS = key("job_reports");
2 private static MiKey JOB_NUMBER = key("JobNumber");
3 @Override
4 public void onAction(final MiActionPost containerRunner ,
5 final MiAction eventData) throws Exception {
6 final MiConfigurationInfo configInfo = containerRunner.

getEnvironmentInfo ()
7 .

getConfigurationInfo
();

8

9 final MiValueInspector originalData = eventData.getOriginalData
();

10 final String jobNumber = originalData.getStr(JOB_NUMBER);
11 final MiOpt <File > jobReportPath =
12 configInfo.getFilePathOpt(JOB_REPORTS , jobNumber);
13

14 containerRunner.check(jobReportPath.isDefined ())
15 .error("No location configured for job reports -

contact your system administrator");
16 storeJobReports(originalData , jobReportPath.get());
17 }

Similarly, it is possible to obtain URLs declared by the system configuration. Listing 7.9
shows an example of this: in line 9 we obtain the base URL to some salary system from
the system configuration; with the settings above, this would result in different URLs
when the code is run from the production system, compared to when running from one
of the test systems.

Listing 7.9: Obtaining a URL from the System Configuration
1 private static MiKey SALARY_SYSTEM = key("salary");
2 @Override
3 public void onAction(final MiActionPost containerRunner ,
4 final MiAction eventData) throws Exception {
5 final MiConfigurationInfo configInfo = containerRunner.

getEnvironmentInfo ()
6 .

getConfigurationInfo
();

7

8 final MiOpt <String > salaryBaseUrl =
9 configInfo.getUrlOpt(SALARY_SYSTEM);

10

11 containerRunner.check(salaryBaseUrl.isDefined ())
12 .error("The Salary System is not defined -

contact your system administrator");

c©Deltek Inc. 2013–2019, All Rights Reserved 305 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.6. ACCESSING CONFIGURATION SETTINGS AND INTEGRATING WITH
3RD-PARTY SYSTEMS

13 synchronizeSalary(salaryBaseUrl.get());
14 }

In cases your extension logic needs to construct emails, it is recommended that you
hook into the mail-configuration settings provided for the system in question. Again:
such configurations can differ for example between production systems and test systems.
There are several things that can be configured:

• The mail server address and port

• A recipient (that is intended to overshadow any “normal” e-mail recipient.) This
may be used to ensure that—no matter what—e-mails sent by a test system always
go to some internal mail account; never to a customer or vendor

• A default sender, such as no-reply@trifolium.com

Listing 7.10 shows how to obtain this kind of information, resolved for whatever system
is currently running. In line 9 the overall email-configuration object is obtained from
the system configuration. This object comprises several pieces of information. The
mail server (address and port) is obtained in line 12. In case no mail server has been
configured, the resulting value is an undefined (none) value. If it is, we can query the
resulting object to obtain the address and port separately. In the code snippet, this is
done to log the mail-server information in lines 26–27. The “overshadow” e-mail recipient
is obtained in line 19: if it is defined, it is used as the recipient, otherwise, we identify the
recipient “as usual.” Exactly what “as usual" means depends on the actual business logic.
Finally, line 22 looks up which (if any) default sender has been defined in the system
configuration.

Listing 7.10: Obtaining Email Configuration Properties from the System Configuration
1 private static final Logger logger = LoggerFactory.getLogger(

SendAnEmailAction.class);
2 @Override
3 public void onAction(final MiActionPost containerRunner ,
4 final MiAction eventData) throws Exception {
5 final MiValueInspector originalData = eventData.getOriginalData

();
6

7 final MiConfigurationInfo configInfo = containerRunner.
getEnvironmentInfo ()

8 .
getConfigurationInfo
();

9 final MiEmailConfiguration emailConfiguration = configInfo.
getEmailConfiguration ();

10

11 final MiOpt <MiMailServer > mailServer =
12 emailConfiguration.getMailServer ();
13

Version 1.4.021, software version 2.5.0 (21.0.sp100) 306 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

14 containerRunner.check(mailServer.isDefined ())
15 .error("No mail server has been defined - contact

your system administrator");
16

17 // t a k e i n t o account t h a t t h e r e c i p i e n t may have been
overshadowed !

18 final String recipient =
19 emailConfiguration.getEmailTo ().getElse(getRecipient(

originalData));
20

21 final MiOpt <String > optSender =
22 emailConfiguration.getEmailFrom ();
23

24 if (logger.isTraceEnabled ()) {
25 logger.trace("Using mailserver address ={}, port ={}",
26 mailServer.get().getAddress (),
27 mailServer.get().getPort ());
28 }
29 handleDataAndSendMail(originalData ,
30 mailServer.get(),
31 recipient ,
32 optSender);
33

34 }

7.7 Defining Custom Popup Types

As explained in Section 6.2.5, the Maconomy system has a number of so-called popup-
types defined. Each type represent a number of values that can be assigned to fields of a
specific type. In the workspace client, a field of type popup is shown as a drop-down box.
The user is enforced to select a value from the box and cannot start typing a value. Also,
searching is not supported. For this reason, use of popups should probably be avoided,
especially in cases where there are many possible values. In such cases, using standard
foreign-key searches is much better, see Section 4.13.2.

It is, however, perfectly possible to add a field of some defined popup type. But what if
you really want to use a popup, but none of the existing Maconomy types suffice? In
this case, you can add your own popup types to the system.

Technically, a popup just attempting to read a certain container which happens to
have a result of a specific kind. So in prinicple, you can add your own popup-types by
implementing such a root container from scratch. While this is perfectly doable, it is a
tedious and very bound task. For this reason, the Extension Framework comes with a way
to easily add your own custom popup types: all you need to do is to let your container
factory extend the abstract class McAbstractFixedValuesPopupContainerFactory .
Doing so will enforce you to implement one method: definePopupTypes . This method

c©Deltek Inc. 2013–2019, All Rights Reserved 307 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.7. DEFINING CUSTOM POPUP TYPES

takes an parameter of type McPopupTypeDefiner . And this type in turn, has a method
called definePopupType . This method takes as argument the type being defined, and
returns a McPopupValueDefiner . That class offers a couple of methods:

Method Remarks
defineValue Defines a single popup value. You must provide the literal

value, the ordinal value and a title value.
defineValues This method takes a list of McPopupDataValues and asso-

ciates each of these with the popup type for which values are
being defined.

In order to avoid conflict with present and future popup values in the Maconomy core
system, you should always provide a name-space for your popup type! All Maconomy-
defined popups are in the name-space maconomy (which is implicit.) You should use a
different name-space, such as, trifolium (a customer name space) or salary (a name
space for a specific salary system.) Once a new popup type has been defined, you can
refer to it when adding fields and variables.

For example, suppose we add the following popup-type to the system: trifolium:PhoneType.
Here trifolium is the name-space, and the PhoneType is the name of the type in that
name-space. Then if we wish to add a field of this type, we can write:
MiKey fieldPhoneType = key("trifolium:PhoneType"); // f i e l d
MiKey phonePopupType = key("trifolium:PhoneType"); // t y p e
return McPaneSpec.McExtended.pane()

.addPopupField(fieldPhoneType , "Phone Type", phonePopupType).
open();

Notice that the type of the popup field is specified as trifolium:PhoneType, i.e., using
the full name-space version!

Listing 7.11 shows how to implement a container that defines a custom popup type.
Notice that you only need to implement the container factory. The class implements one
method: definePopupTypes. This value contributes the type trifolium:PhoneType
and specifies the values that exist. In addition to the specified value a nil value (ordinal
value -1) will always be defined.

Listing 7.11: Defining a Custom Popup Type
2 public class PhonePopupType extends

McAbstractFixedValuesPopupContainerFactory {
3 private static final String PHONE_TYPE_NAME_STR = "trifolium:

PhoneType";
4 private static final MiKey PHONE_TYPE_NAME = key(

PHONE_TYPE_NAME_STR);

Version 1.4.021, software version 2.5.0 (21.0.sp100) 308 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

5

6 public static final MiList <McPopupDataValue > PHONE_TYPE_VALUES =
7 McTypeSafe.createArrayList(
8 McPopup.nil(PHONE_TYPE_NAME),
9 McPopup.val(PHONE_TYPE_NAME_STR , "ios", 0, "iOS"),

10 McPopup.val(PHONE_TYPE_NAME_STR , "android", 1, "Andriod"),
11 McPopup.val(PHONE_TYPE_NAME_STR , "windows", 2, "Windows

Phone"),
12 McPopup.val(PHONE_TYPE_NAME_STR , "blackberry", 3, "

Blackberry"),
13 McPopup.val(PHONE_TYPE_NAME_STR , "other", 4, "Other")).

asUnmodifiableList ();
14

15 @Override
16 protected void definePopupTypes(final McPopupTypeDefiner definer

) {
17 definer.definePopupType(PHONE_TYPE_NAME)
18 .withValues(PHONE_TYPE_VALUES);
19 }

Listing 7.12 shows how the contribution would be in plugin.xml file.

Listing 7.12: Defining a Custom Popup Type
1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <? eclipse version ="3.2"? >
3 <plugin >
4 <extension point="com. maconomy .api. container " name=" Custom Popup Type"

>
5

6 <create container =" trifolium : PhoneType " id="com. trifolium .popup.
phonetype " >

7 <factory class="com. trifolium . examples . containers . PhonePopupType
" />

8 </create >
9 </extension >

10 </plugin >

There is one caveat with custom popups: since the Maconomy server knows nothing
about these types, they cannot be directly persisted in the database as is. You will
have to store them as some other type, e.g., the an integer representing the ordinal
value. Likewise, in MOL-definitions, you cannot use custom popup types. Please refer to
Section 7.9 for more information on how to handle this situation.

7.8 Implementing You Own Persistence Strategy
In Chapter 4 it is explained how you can inform the framework how data is fetched and
persisted. The Extension Framework comes with a few implementations of the interface
MiPersistenceStrategey . A couple of these relate to using the Maconomy database

c©Deltek Inc. 2013–2019, All Rights Reserved 309 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.8. IMPLEMENTING YOU OWN PERSISTENCE STRATEGY

(McMolPersistenceStrategy and McMolAutoPositionablePersistenceStrategy.) Oth-
ers are meant to get something running quickly, but are completely unsuited for production
(McTestPersistenceStrategy and McAutoPositionableTestPersistenceStrategey.)

Sometimes you might wish for another persistence strategy. In such cases, you should
implement your own persistence strategy (unless your needs can be solved by applying a
“codec,” see Section 7.9.)

For example, you might want to implement a persistence strategy with one of the following
capabilities:

• Persist data using a container. This is necessary, for example, if you must for some
reason persist data using standard Maconomy data.

• Persist data that partly uses read-only standard Maconomy data and partly uses
custom (read/write) MOL-tables.

• Persist data using a combination of existing persistence strategies.

• Persist data using some web-service.

• A read-only persistence strategy (in reality a fetch strategy.)

There could be several other reasons why you might consider implementing the MiPersist-
enceStrategy interface yourself. In any case, this interface is expected to be implemented
by 3rd-parties.

Sometimes you might wish to implement a persistence strategy which is not expected
to be used for general searching. This might be the case, if you know your persistence
strategy is to be used by card and table panes. In this case, the Extension Framework will
look up data using relatively simple queries—key values of the corresponding container.
This might be easier to implement than general queries that might impose arbitrary
restrictions, search ordering and paging.

In some cases, you may wish to build a persistence strategy, that reads and persists
through some container (rather than by using the database directly). In such cases, you
may want to make use of the utility class McValueMapExpressionConverter . This class
provides methods that can convert an expression into a (set of) field/value expressions.
The idea is that you create a McValueMapExpressionConverter based on an expression
that is provided to some method in the persistence strategy. In some cases, you wish to
ensure that this corresponds to one or more specific key/value pairs that correspond to a
key value of a container or similar. I.e., not abitrary expressions, but expression of the
form:

Version 1.4.021, software version 2.5.0 (21.0.sp100) 310 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

keyField1 = v11 ∧ keyField2 = v21 ∧ . . . keyFieldn = vn1

∨ keyField1 = v12 ∧ keyField2 = v22 ∧ . . . keyFieldn = vn2

...
∨ keyField1 = v1m ∧ keyField2 = v2m ∧ . . . keyFieldn = vnm

That is that the provided expression has a form that can be seen as a disjunction of m
keys. In the example above, the expression says that we want to consider m different
keys, where key is specified by the n different key fields, keyField1. . . keyFieldn. And
where each of the n key fields in each of the m keys have a certain value. Thus, the first
key value is keyField1 = v11 , and keyField2 = v21 , and keyFieldn = vn1 .

In simple cases, there could be just one key (m = 1). Of course, as an extension program-
mer, you could write this code. However, traversing the structures of expressions is not
the most straight-forward thing to do. Therefore, the McValueMapExpressionConverter
has been introduced to help with this task: it can convert expressions of the above form
into a series of MiValueInspectors that can easily been used to address containers using
container executors. If the expression is of a more complex form, the utility class will
throw an McError. In cases where you want to use, e.g., other containers to host the
values of certain fields, it makes little sense to support expressions of other forms. If it
does, it is likely not very generic in nature, and you will have to implement the expression
converter yourself.

Please refer to the in-line IDE JavaDoc help for more information.

7.8.1 Persistence Strategies for Storing Long Texts

As the Maconomy server does not natively support text strings longer than 255 bytes,
it is always an issue how to address longer texts. By implementing a persistence
strategy that can add long texts by storing the data as smaller chunks of text is a
possibility. And that would require you to implement a persistence strategy, likely using
the McValueMapExpressionConverter mentioned above.

However, as this is considered a thing that many programmers would eventually like
to do, the framework comes with an implementation of a persistence strategy that
can do this: McTextsPersistenceStrategy : this persistence strategy can store (and
fetch) arbitrarily long texts by peristings them as several records. This is done using the
underlying maconomy:Texts container that was introduced in version 16sp2 (2.1.1).

In order to make it even easier to add long-sized strings to containers, the Extension Frame-
work even comes with an abstract data-model implementation that will automatically
use this persistence strategy: McAbstractLongTextFieldExtendedDataModel . Using
this data model, an extension programmer only has to implement one method to add

c©Deltek Inc. 2013–2019, All Rights Reserved 311 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.8. IMPLEMENTING YOU OWN PERSISTENCE STRATEGY

one or more “emulated” long-text fields1. This method, defineTextContentMapping ,
requires the programmer to specify:

• How many long-text fields should be added

• For each field: which (already existing) text field (of “normal size”) is used to store
a reference to the record set that contains the long text.

• The title of each long-text field.

• A possible length limit (this is optional and may be left unspecified which means
“no limit”).

• The “openness” of the long text field (i.e., whether it is open in the create and/or
exists state). This state must follow the settings for the underlying reference field,
or more restrictive. For example, if the underlying reference field is not open in
“create”, then the long text field must also not be open in “create”.

All of these properties are specified using a type called McTextContentMapper . Such
objects are created using a builder object: McTextContentMapperBuilder . You obtain
such an object by invoking the static create factory method on the McTextContent-
MapperBuilder class. The builder class has the following methods:

Method Remarks
create The factory method: this method must be given

a list of the key fields of the record/pane that
you are extending. For example, if you extend
the card of the maconomy:Employees container,
you must specify the key field for records in that
pane, i.e., EmployeeNumber.

1We refer to such fields as “emulated” because the field is not natively stored as one field in one record;
this may lead to less flexibility than you are used to with ordinary fields!

Version 1.4.021, software version 2.5.0 (21.0.sp100) 312 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

Method Remarks
textValueField-

FromTextKeyField This method specifies a new long-text field. The
method is found in a number of flavours, but it
basically specifies:
• The name of the (new) emulated long-text
field.
• The name of the (existing) normal-sized
text field that will be used to contain a
reference to the data holding the long text.
• The title of the (new) emulated long-text
field.
• The openness of the (new) emulated long-
text field. This can be left out in some
variants of the method, which will be in-
terpreted as open in all states.
• The length-limit of the long text field. This
value can be left out in some variants,
which will be interpreted as “unlimited.”

For each emulated long-text field that you wish to add, you declare a text-content mapper
and call the method textValueFieldFromTextKeyField for each of them.

Using this abstract data-model class will allow you to easily add emulated long-text
fields. But only those. If you wish to add other fields as well, you should add those in
an additional data model (otherwise you will have to implement your own persistence
strategy and/or data model). And there is really no need for that.

As an example, suppose we would like to add two emulated long-text fields to the ma-
conomy:Jobs container: LongDescription and LongRemarks. Furthermore, we wish to
use the fields Text7 and Text8 to use as references to the data areas where the two long
text fields are stored.

Listing 7.13: Adding Two (Emulated) Long Text Field to Jobs
2 public class AddLongFieldsToJobsDataModel extends

McAbstractLongTextFieldExtendedDataModel {
3 private static final MiKey JOB_NUMBER = key("JobNumber");
4 private static final MiKey LONG_DESCRIPTION = key("

LongDescription");
5 private static final MiKey LONG_REMARKS = key("LongRemarks");
6 private static final MiKey TEXT7 = key("Text7");
7 private static final MiKey TEXT8 = key("Text8");
8

9 public AddLongFieldsToJobsDataModel(final MiResources resources)
{

c©Deltek Inc. 2013–2019, All Rights Reserved 313 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.8. IMPLEMENTING YOU OWN PERSISTENCE STRATEGY

10 super(resources);
11 }
12

13 private static final McTextContentMapper TEXT_CONTENT_MAPPER =
14 McTextContentMapperBuilder.create(JOB_NUMBER)
15 .textValueFieldFromTextKeyField(LONG_DESCRIPTION ,
16 TEXT7 ,
17 Terms.longDescription ())
18 .textValueFieldFromTextKeyField(LONG_REMARKS ,
19 TEXT8 ,
20 Terms.longRemarks ())
21 .build ();
22

23 /∗∗ { @inher i tDoc } ∗/
24 @Override
25 protected McTextContentMapper defineTextContentMapping(final

MiDefine containerRunner) {
26 return TEXT_CONTENT_MAPPER;
27 }

Listing 7.13 shows an implementation of a data model that will extend the card pane of
the maconomy:Jobs container with two fields. Each of the added fields are represented
to the end-user as long-text fields. The long-text content is “emulated,” and the data
is persisted by using the maconomy:Texts container. The price is that you need to give
up an existing (limited) String field for each of the added long-text fields. In addition
to this, there’s the increased performance overhead in reading/storing the long text
content.

The data-model class extends McAbstractLongTextFieldExtendedDataModel . This
requires us to implement one method: defineTextContentMapping . This implementa-
tion can be seen in line 25. As it can be seen, this method merely returns a statically
defined constant. This constant is defined in lines 13–21. For each of the added long-text
fields, a call to the method textValueFieldFromTextKeyField is made. The first call
declares the long text field LongDescription, and it specifies that the existing field
Text7 is used to hold the reference to the data. The title of the long text field is obtained
as a dynamically localized term (see Section 7.11 for an explanation of this.) Similarly,
the other long-text field: LongRemarks is declared allocating the field Text8 to hold the
reference to the field.

Notice: In order for this implementation to work successfully, the end-users must have
read/write access to the maconomy:Texts container.

You can also add long-text fields to table parts. You should, however, be particularly
sensitive about performance in this case: if the table contains many lines, the overhead
may be annoying, since it is necessary to fetch the long text fields (which each correspond
to reading a table in the maconomy:Texts container) for each line. If you even add more
than one long-text field for each line, this issue becomes event more important! So always

Version 1.4.021, software version 2.5.0 (21.0.sp100) 314 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

carefully consider whether it will benefit your customer to add long text fields to a table
part. The work-around could be extending a card-pane container (showing the contents
of a given line in the card part) with the long-text fields. And then showing that card
pane as an assistant to the table in question. In this case, the long-text is only needed
when the assistant is visible, and only for the current line of the table.

Anyway, let us assume that you do want to add a long-remarks field to the purchase
orders table. I.e., you want every line in the table to contain a long-text remark field.
The first thing to notice is the formal key fields of a purchase order line. Those are:
PurchaseOrderNumber and LineNumber. Now, since the text-content-mapper needs
information about the formal key fields of the underlying table, it would be an easy
mistake to specify these two fields. This will not do! The problem obviously is that
the field LineNumber does not form a key that is invariant; as the end-user adds or
deletes lines, the key fields of the various lines will change! A very nasty property
for key fields! In this case, you should instead use some other set of fields which is
guaranteed to be invariant and unique. Fortunately, all Maconomy database tables
contain such a field: the InstanceKey. Obviously, you need to ensure that instance
keys are enabled for this particular table. This is managed from the container macono-
my:DatabaseRelations.

In the example, we are going to present, we shall use the InstanceKey field to uniquely
identify key fields. Furthermore, we need to point out an existing field that is used to
contain the reference to the contents of the added long-text field. In the example, we shall
use the field SupplementaryText10. We notice that this field is closed in the “create”
state, i.e., when creating new lines. Therefore, the added long-text field also needs to be
closed in this state.

Listing 7.14: Adding an Emulated Long-Text Field to Purchase Orders Table
2 public class AddLongFieldsToPOLinesDataModel extends

McAbstractLongTextFieldExtendedDataModel {
3 private static final MiKey INSTANCE_KEY = key("InstanceKey");
4 private static final MiKey LONG_REMARKS = key("LongRemarks");
5 private static final MiKey SUPP_TEXT10 = key("

SupplementaryText10");
6

7 public AddLongFieldsToPOLinesDataModel(final MiResources
resources) {

8 super(resources);
9 }

10

11 private static final McTextContentMapper TEXT_CONTENT_MAPPER =
12 McTextContentMapperBuilder.create(INSTANCE_KEY)
13 .textValueFieldFromTextKeyField(LONG_REMARKS ,
14 SUPP_TEXT10 ,
15 Terms.longRemarks (),
16 MeOpenness.OPEN_UDPATE)
17 .build ();

c©Deltek Inc. 2013–2019, All Rights Reserved 315 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.9. APPLYING A CODEC TO A PERSISTENCE STRATEGY

18

19 /∗∗ { @inher i tDoc } ∗/
20 @Override
21 protected McTextContentMapper defineTextContentMapping(final

MiDefine containerRunner) {
22 return TEXT_CONTENT_MAPPER;
23 }

Listing 7.14 shows the implementation of a data-model that adds a single long-text
field to the table pane of the maconomy:PurchaseOrders container. Since the class
extends McAbstractLongTextFieldExtendedDataModel, only one method needs to be
implemented: defineTextContentMapping. This is done in line 21. This method merely
returns a statically declared constants which is defined in lines 11–17. Notice that the
specified “key fields” are not the actual formal key fields (since these are not invariant,)
but instead the InstanceKey field. In line 16, it is specified that the added long-text
field is only open in update (i.e., not in create.)

7.9 Applying a Codec to a Persistence Strategy
When introducing custom popup types—and potentially in other cases—it is necessary to
store some field values using a representation which is different from the value represented
internally in the container. In this case you may apply a codec. A codec is a mechanism
that is enable to encode and decode data.

Using the class McPersistenceStrategyUtil , it is easy to transform an arbitrary
existing persistence strategy into a similar persistence strategy with a codec. This utility
class offers the following two factory methods:

Method Remarks
applyCodec This method takes as arguments a persistence

strategy and a codec. It returns a new persis-
tence strategy which is in principle identical to
the one given as argument, with the exception
that all data being stored is encoded before it is
stored, and decoded when fetched. In this way,
it is transparent for the user of that persistence
strategy whether or not encoding/decoding takes
place.

applyCodecAutoPositionable This method is similar to applyCodec ex-
cept that it takes and produces a MiAuto-
PositionPersistenceStrategy.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 316 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

The codec must be an instance of MiPersistenceStrategy . MiCodec . When imple-
menting this interface, there are two methods to consider:

Method Remarks
encode The purpose of this method is to generate a MiDataValues object from a

MiValueInspector. Usually, you will do that by copying the contents of
the value inspector as a MiDataValues structure, using the copyValues
method. The values which must are represented differently when per-
sisted must be changed into that value by this method. For example,
encoding a custom popup value may encode a McPopupDataValue as an
McIntegerDataValue by using the ordinal value.

decode This method is to opposite of the encode method above. Given a
MiValueInspector you must produce a corresponding MiDataValues
structure which represents the similar, but decoded, values. Hence the
returned object must contain the values as represented by the container.
For example, decoding a custom popup value which is encoded by using
its ordinal value as a McIntegerDataValue, will be decoded by converting
that ordinal value into the corresponding McPopupDataValue.

Listing 7.15 shows an example of using a codec with a persistence strategy. In the example,
which shows a complete data model adding two fields, one of the fields, PhoneType is
being encoded/decoded using a codec. The type of the field is the custom popup shown
in Listing 7.11 above. Since it is a custom popup, we must use a codec. The persistence
strategy is created in the definePersistenceStrategy method. It is based on a normal
MOL-based persistence strategy, and then a codec is applied in line 25. The codec is
implemented by the private class in lines 33–50. The encode method takes a copy of
whatever must be encoded, and overwrites the value of the field PhoneType in lines 38–39.
Similarly, the value is decoded by copying the input values and overwriting the value of
the field PhoneType with the custom popup value corresponding to the ordinal. This is
done in lines 46–47. The decoding uses an unmodifiable list defined in the factory class
declaring the existence of the type trifolium:PhoneType.

Listing 7.15: Using a Codec to Store Custom Popup Values
2 @Namespace("Trifolium")
3 public class AddPhoneDataModel extends

McAbstractPersistingExtendedDataModel {
4

5 private static final MiKey FIELD_PHONE_TYPE =
6 NS("PhoneType");
7 private static final MiKey FIELD_PHONE_VENDOR =
8 NS("PhoneVendor");
9 public AddPhoneDataModel(final MiResources resources) {

10 super(resources);

c©Deltek Inc. 2013–2019, All Rights Reserved 317 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.9. APPLYING A CODEC TO A PERSISTENCE STRATEGY

11 }
12

13 @Override
14 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) throws Exception {
15 return McPaneSpec.McExtended.pane()
16 .addPopupField(FIELD_PHONE_TYPE , "Phone Type", key("

trifolium:PhoneType")).open().then()
17 .addStringField(FIELD_PHONE_VENDOR , "Phone Vendor").open()
18 .end();
19 }
20

21 @Override
22 public MiPersistenceStrategy definePersistenceStrategy(final

MiContainerRunner.MiDefine containerRunner) {
23 final MiPersistenceStrategy basePersistenceStrategy =

McMolPersistenceStrategy.create(key("TRI_PhoneData"),
getApiProvider ());

24 return McPersistenceStrategyUtil
25 .applyCodec(new PopupCodec (),
26 basePersistenceStrategy);
27 }
28

29 /∗∗
30 ∗ Codec c l a s s t o encode / decode t h e f i e l d PhoneType which i s o f
31 ∗ t y p e t r i f o l i um : PhoneType
32 ∗/
33 private static final class PopupCodec implements

MiPersistenceStrategy.MiCodec {
34

35 @Override
36 public MiDataValues encode(final MiValueInspector

nonEncodedValues) {
37 return nonEncodedValues.copyValues ()
38 .setInt(FIELD_PHONE_TYPE ,
39 nonEncodedValues.getPopupOrdinal(FIELD_PHONE_TYPE

));
40 }
41

42 @Override
43 public MiDataValues decode(final MiValueInspector

encodedValues) {
44 final MiDataValues decodedValues = encodedValues.copyValues

();
45 final int ordinal = encodedValues.getInt(FIELD_PHONE_TYPE);
46 decodedValues.setPopup(FIELD_PHONE_TYPE ,
47 PhonePopupType.PHONE_TYPE_VALUES.get(

ordinal + 1));
48 return decodedValues;

Version 1.4.021, software version 2.5.0 (21.0.sp100) 318 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

49 }
50 }

7.10 The Transformation “Event”
Sometimes, you may wish to significantly change the perception of data in a given pane.
To support this, the Extension Framework has a notion of a transformation “event.” This
takes place for all data-carrying events, just before the container-contribution is about
to return the container value. This event has been used to emulate long text editing in
containers such as maconomyLongText:InvoiceEditing and maconomyLongText:Quote-
Editing. These containers present the records of the containers maconomy:Invoice-
Editing and maconomy:QuoteEditing so that “text rows” are shown as though the text
was part of the “logical line” to which the text belongs. For example, suppose that, in
maconomy:InvoiceEditing, the table part comprise the following lines:

Line No. Text Billing Price
1 This is a line 2000.00
2 having text that
3 spans multiple
4 lines.
5 This is another 1000.00
6 line.

Hence, the invoice comprises six records. The records 1–4 belong together as one “logical
line,” as does the lines 5–6. By implementing the transformation event, onTransformPane ,
it is possible to completely change the contents of the pane, as visualized against the
client-side/end-user. In the example above, what we wish to present to the end user is a
data-set comprising of two records:

Line No. Text Billing Price
1 This is a line 2000.00

having text that
spans multiple
lines.

2 This is another 1000.00
line.

Hence, two lines where the “Text” is long. The end-user should be able to edit the
long text. The internal representation of eventually splitting this text into a number of
records in the database is an underlying implementation detail that shouldn’t bother the
end-user.

c©Deltek Inc. 2013–2019, All Rights Reserved 319 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.11. SUPPORTING MULTIPLE LANGUAGES

If you do implement the onTransformPane event, you have access to a result object,
which you access through the getResult of the eventData. This method gives you
access to an object of type MiPaneTransformation . Such a pane transformation can
either be an “no transformation” value. This is the default, and it means that the pane
content is not being transformed. Or, it can comprise a number of records; those records
must equal the records to be found in the transformed pane.

It must be noted, that transforming a pane is a very low-level and highly advanced thing
to do. It should only be performed by programmers having a through understanding of
the pane-content structures and how the container mechanisms work. For example, if you
change the number of rows in a pane (as in the maconomyLongText:InvoiceEditing
example), the usual data-carrying events (except for Read, and possibly Initialize)
can no longer be allowed to progress past your contribution! There are two reasons for
this:

1. The row-index will likely be wrong

2. The data seen by the client-side is different from the data found in the database,
so a “data changed by another user” will likely occur!

Therefor, if you implement the onTransformPane for panes that are not read-only,
you must skip all events in the “pre”-phase, and do something else using a container
executor.

If you are considering implementing the onTransformPane method, it is strongly advised
that you have a look at the abstract class McAbstractEmulatedLongTextTableDataModel
which is an abstract implementation of a data-model that can be used to collate “text
records” with “logical records.”

For read-only panes, it is easier to implement the transformation event, because you don’t
need skip and figure out how to transform events into something that can be applied to
the underlying “pure” implementation.

Other use-cases of the transformation event could include applying some kind of filtering
of the data shown in a given pane. Due to the increased complexity and decreased
performance that will follow from utilizing the transformation event, you should only use
it reluctantly, and only when you are very confident about what you are doing.

7.11 Supporting Multiple Languages

Maconomy supports multiple languages. Your extension should also be made so that
multiple languages are supported. This may be needed for installations targeting users
with multiple language preferences. Also, if your extension is “generic” in the sense
that it could be used for several installations, your extension must support multiple
languages.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 320 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

First, let us have a look at the type of things your extension can do involving multiple
languages

• Adding new fields or variables: the title needs to be adjusted to the language
in question. This also applies when changing the title using changeField or
changeVariable.

• Adding new actions: the title needs to be adjusted to the language in question.
This also applies when changing the title using changeAction.

• Adding new foreign keys or search keys: the title needs to be adjusted to the language
in question. This also applies when changing the title using changeForeignKey or
changeSearchKey.

• When an error message, warning message or notification message is given to the
user, the message needs to be adjusted to the language in question.

• When a progress bar is started or updated, the descriptive message needs to be
adjusted to the language in question.

It is important to notice, that the extension programmer should never care which language
or dialect is used by the end-user. For this reason, all terms that need to be localized2

should always be provided in a common source language. By convention, this common
source language is (US) English. In the dictionaries supplied for a Maconomy installation,
the source language is that found in the left-hand column.

7.11.1 Specifying a Localized Term

Whenever you need to provide a term that needs to be localized, you must specify a
reference to the term, rather than the actual term/text. The term-references are identified
by a key. A special file, called a .properties-file must specify the phrasing of the term
in the source language. On run-time, the extension framework will ensure that the
terms are automatically localized into the language chosen by the user by consulting
the installed dictionaries. Obviously, if a term is missing in a given dictionary, the term
cannot be localized, and will be left untouched. An example .properties-file could contain
the following:

Listing 7.16: Declaring Terms in a .properties File.
2 # This f i l e c on t a i n s term d e f i n i t i o n s f o r use w i t h t h e
3 # pr i c e−ad ju s tmen t e x t e n s i o n
4 #
5 AdjustPricesAction = Adjust Prices
6 AjdustmentPercentageField = Adjustment %
7 CostPriceCannotBeNegative = The cost price cannot be negative

The file in Listing 7.16 declares three different terms:
2I.e., translated into the language chosen by the end-user

c©Deltek Inc. 2013–2019, All Rights Reserved 321 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.11. SUPPORTING MULTIPLE LANGUAGES

AdjustPricesAction defined in line 5 is the key to use to reference the term which—in
English–would read “Adjust Prices.” There is no particular requirement to the
format of the key, but it is usually some sort of readable but abbreviated form of
the actual term. In this case, it also explains to the programmer that it is indented
as an action title.

AdjustmentPercentageField is the key to use to reference the term which in English
would read “Adjustment %”

CostPriceCannotBeNegative is the key to use to reference the term which in English
would read “The cost price cannot be negative”

Notice that the keys are readable (and typically “short”) but not suited to be shown to
an end-user. For example, they don’t contain spaces. Whereas the actual term is written
in natural language (suitable for it’s intended scope) and may contain spaces, special
characters, common abbreviations etc. Also notice that you may specify comments by
starting the line with a hash mark character (#)3.

7.11.2 Referencing a Term

Defining the terms is not enough. Obviously, as an extension programmer, you need to
specify when a given term is used. You can do that in a number of ways:

Invoking a text factory By invoking the term method of text factory implementing
the MiTextFactory . MiLocalize interface. You can construct such an object
my invoking the bundle -factory method in the class McTextFactory . By do-
ing that, you instruct the framework about which OSGi-bundle is hosting the
properties file. In that bundle, the framework will look for a .properties-file
called Messages.properties in the package called messages. Notice, that this
package, hence, must be a top-level package. I.e, not com.trifolium.messages or
my.package.prefix.messages! The messages package should not be exported by
the OSGi-bundle in question! An example showing how to use the text-factory is:
MiTextFactory.MiLocalize tf =

McTextFactory.bundle("com.myorg.adjustpr");
MiText localizedTerm = tf.term("CostPriceCannotBeNegative");

As we shall see in Section 7.11.3, there is an even more elegant way to obtain a text
factory. Using a text factory is the recommended way of obtaining localized terms.

Specifying a bundle and key using McText The McText class is normally used to
provide non-localized and direct texts using the text-method. However, by invoking
the term method you can reference a term instead. Doing so, you must specify
the id of the bundle hosing the corresponding Messages.properties file (in the
messages package.) You do that by providing a String that contains the bundle-id,
followed by a colon “:” followed by the term-key. For example

3The hash-mark character must be the first character of the line

Version 1.4.021, software version 2.5.0 (21.0.sp100) 322 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

MiText localizedTerm =
McText.term("com.myorg.adjustpr:CostPriceCannotBeNegative");

The downside of this is that it is somewhat cumbersome to read, write and maintain.

Inlining in term Rather than providing the term directly you can specify the actual
term-phrase (in English). This is done by invoking the method termInline of
the McText class4.

MiText localizedTerm =
McText.termInline("The cost price cannot be negative");

The down-side of this way of obtaining a localized term is that there is no easy way
to identify all the terms that must be added to the dictionary (in case they are not
already present.)

7.11.3 Using Text Factories

As mentioned above, using a text-factory is the recommended way of referencing dynami-
cally localized terms. This is mainly due to the following reasons:

1. Term-references are easy to read and write

2. All terms that are needed in the dictionaries are found in one common and
standardized place: this standardized place is the Messages.properties file, and
the terms that needs to be present in the dictionaries are found as the right-hand
side of = in the term definitions.

At this stage, you may feel that using the text-factory seems more cumbersome because
you have to declare it, and you have to deal with the bundle id. Fortunately, these reasons
are very weak. First, the text factory can be declared as a final static constant in
your class. Second, the text-factory can be declared with an indirect bundle-reference.
By providing a class implementing the interface MiBundleText (which is just a marker
interface5), the Extension Framework will assume the bundle in which that provided
class is declared. Hence, you can do the following:

• Declare a class inside your bundle that implements MiBundleText. For example,
you can define a singleton enum class, thereby giving you easy access to an object
instance.

• In your data-model class declare the a final static constant text factory by
providing the singleton enum as input to the bundle method of the McTextFactory
class.

• Everywhere you need a term, obtain it through that text-factory constant.
4This will be supported from version 15.0sp8
5I.e., an interface with no requirements to implement any specific methods

c©Deltek Inc. 2013–2019, All Rights Reserved 323 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.11. SUPPORTING MULTIPLE LANGUAGES

Let us have a look at an example. First we need to declare an enum class with one
element, letting it implement MiBundleText.

1 public enum Terms implements MiBundleText {
2 /∗∗ S i n g l e t o n c l a s s ∗/
3 INSTANCE;
4 }

Next the data-model class (or whatever class needs to reference terms) declares a
constant:

Listing 7.17: Referencing Terms from Java Code.
2 private static final MiKey ACTION_ADJUST_PRICES =
3 NS("AdjustPrices");
4 private static final MiKey FIELD_ADJUSTMENT_PCT =
5 NS("AdjustmentPercentage");
6 private static final MiKey COST_PRICE = key("CostPrice");
7

8 private static final MiTextFactory.MiLocalize tf =
9 McTextFactory.bundle(Terms.INSTANCE);

10

11 /∗∗ { @inher i tDoc } ∗/
12 @Override
13 public MiPaneSpec.MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
14 return McPaneSpec.McExtended.pane()
15 .addAction(ACTION_ADJUST_PRICES ,
16 tf.term("AdjustPricesAction"))
17 .then()
18 .addRealField(FIELD_ADJUSTMENT_PCT ,
19 tf.term("AjdustmentPercentageField"))
20 .open()
21 .then()
22 .end();
23 }
24

25 /∗∗ { @inher i tDoc } ∗/
26 @Override
27 public void onChangePre(
28 final MiContainerRunner.MiChangePre containerRunner ,
29 final MiEventData.MiUserChange eventData) throws Exception {
30 final MiUserData userData = eventData.getUserData ();
31 containerRunner.check(userData.unchanged(COST_PRICE)
32 || userData.getAmount(COST_PRICE).signum

() >= 0)
33 .error(tf.term("CostPriceCannotBeNegative"));
34 }

Listing 7.17 shows how terms are referenced from Java code. The example code shows part
of a data-model implementation. In lines 8–9 a private static text-factory constant is

Version 1.4.021, software version 2.5.0 (21.0.sp100) 324 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

declared. This text-factory is then used to reference the terms in multiple locations in
the code. In line 16 the term AdjustPricesAction is referenced to give a title for an
added action. In line 19 the term AjdustmentPercentageField is referenced to produce
a title for an added field. Finally, in line 33 the term CostPriceCannotBeNegative is
referenced to produce an error message. Depending on the selected language, the end-user
would experience the following6:

Language Action Title Field Title Error message
English Adjust Prices Adjustment % The cost price cannot be negative
French Ajuster les prix % d’ajustement Le coût de revient ne peut pas être

negatif
Danish Justér priser Justrings% Kostprisen må ikke være negativ
Swedish Justera priser Justering % Kostpriset kan inte vara negativ
Dutch Prijzen aanpassen Aanpassings-% De kostprijs kan niet negatief zeijn

Hence, the language presented to the end-user is automatically adjusted without the
extension programmer knowing or caring about it. The only prerequisite is that the
extension programmer informs the framework that a named term is intended, rather than
specifying a static text (using the McText.text()-method.)

The observant reader will notice that there is still a downside: the reference to the terms
may easily contain typos, leading to unresolved terms at run-time. For this reason, it is
recommended that you implement a class that has a static method for each term. This
class is then referenced everywhere you need that specific term. In this way, you will not
only get content-assistence from the IDE while coding, the compiler will complain if you
reference a non-existing term!

A good candidate class for containing such static term-methods is the singleton enum
class introduced above. Also, this class could be placed in the messages package that also
contains the Messages.properties file. If the terms should be made available to several
bundles, this class should be placed in a package that is exported by the OSGi-bundle.
And the messages package should not be exported!

Let us have a look at how the enum class could be implemented provided that it contains
methods to obtain the localized terms.

Listing 7.18: Implementing Terms as Utility-Methods.
2 public enum Terms implements MiBundleText {
3 /∗∗ S i n g l e t o n i n s t a n c e ∗/
4 INSTANCE;
5

6 private static final MiTextFactory.MiLocalize tf = McTextFactory
.bundle(INSTANCE);

7

6Assuming that corresponding translations are defined in the installed dictionaries

c©Deltek Inc. 2013–2019, All Rights Reserved 325 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.11. SUPPORTING MULTIPLE LANGUAGES

8 public static MiText adjustPricesAction () {
9 return tf.term("AdjustPricesAction");

10 }
11

12 public static MiText ajdustmentPercentageField () {
13 return tf.term("AjdustmentPercentageField");
14 }
15

16 public static MiText costPriceCannotBeNegative () {
17 return tf.term("CostPriceCannotBeNegative");
18 }

Listing 7.18 shows a number of static methods defined in the Terms class. In line 6 the
text-factory is declared locally as a private constant. This text-factory is then used by
each term-defining method to obtain a specific term (lines 9, 13 and 17.) By convention,
the method name resembles the internal name of the term-id, except that it begins with
a lower-case letter in order to adhere to standard Java naming conventions.

In this way, there is only one place to reference the term key specified in the Mes-
sages.properties file. Using these term-methods, the data-model from above would
now look like:

Listing 7.19: Referencing Terms from Java Code Using static Methods.
2 private static final MiKey ACTION_ADJUST_PRICES =
3 NS("AdjustPrices");
4 private static final MiKey FIELD_ADJUSTMENT_PCT =
5 NS("AdjustmentPercentage");
6 private static final MiKey COST_PRICE = key("CostPrice");
7

8 /∗∗ { @inher i tDoc } ∗/
9 @Override

10 public MiPaneSpec.MiExtended defineDomesticSpec(final MiDefine
containerRunner) {

11 return McPaneSpec.McExtended.pane()
12 .addAction(ACTION_ADJUST_PRICES ,
13 Terms.adjustPricesAction ())
14 .then()
15 .addRealField(FIELD_ADJUSTMENT_PCT ,
16 Terms.ajdustmentPercentageField ())
17 .open()
18 .then()
19 .end();
20 }
21

22 /∗∗ { @inher i tDoc } ∗/
23 @Override
24 public void onChangePre(
25 final MiContainerRunner.MiChangePre containerRunner ,

Version 1.4.021, software version 2.5.0 (21.0.sp100) 326 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

26 final MiEventData.MiUserChange eventData) throws Exception {
27 final MiUserData userData = eventData.getUserData ();
28 containerRunner.check(userData.unchanged(COST_PRICE)
29 || userData.getAmount(COST_PRICE).signum

() >= 0)
30 .error(Terms.costPriceCannotBeNegative ());
31 }

The code in Listing 7.19 is functionally equivalent to that from Listing 7.17. The only
difference is that the terms are obtained using the static term-defining methods, as it
can be seen in lines 13, 16 and 30.

7.11.4 Handling Terms with Variable Content

Sometimes, the messages you want to display to an end-user has content that may vary
depending on the given situation. For example, suppose you have an extension giving an
error if the user enters an amount in a field, and the specified amount exceeds another
amount specified on the customer information card. In such a case, you could give a
generic message such as “The entered amount exceeds the maximum specified for the
customer.” However, the usability would probably be higher if the user had a little more
context such as: “The entered amount of 10.000 exceeds the maximum of 8.000 specified
for customer 665-8827.” We obviously don’t want to provide static terms for all possible
combinations. Instead, we can use placeholders in the term definition. Placeholders are
specified with the following syntax: ˆdigit.

Listing 7.20: Declaring Terms with Placeholders
2 # This f i l e c on t a i n s term d e f i n i t i o n s f o r use w i t h t h e
3 # pr i c e−ad ju s tmen t e x t e n s i o n
4 #
5 AdjustPricesAction = Adjust Prices
6 AjdustmentPercentageField = Adjustment %
7 CostPriceCannotBeNegative = The cost price cannot be negative
8 /// SimplePropertiesEnd
9 AmountExceeded = The entered amount of ^1 exceeds the maximum of

^2 for customer ^3

Listing 7.20 shows an example of a Messages.properties file defining a term with
placeholders. This is done in line 9. Since the placeholders are enumerated, it is possible
to define a translation that puts the placeholders in a different position. Switching the
placeholders may be required by the grammar of certain languages. Luckily, this is of no
concern to the extension programmer.

When a term is defined with placeholders, it means that representatives for each place-
holder must be provided when the term is instantiated. This means that the term
AmountExceeded expects three arguments, since there are three placeholders. The actual
value of a specific invocation of the term will determine the exact content that is eventu-
ally presented to the user. In order to provide arguments for a term, you can use the

c©Deltek Inc. 2013–2019, All Rights Reserved 327 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.11. SUPPORTING MULTIPLE LANGUAGES

overloaded version of the term method that takes an arbitrary number of additional
String arguments.

Listing 7.21: Referencing Terms With Placeholders.
2 final String customerNumber =
3 originalData.getStr(CUSTOMER_NUMBER);
4 final BigDecimal enteredAmount =
5 userData.getAmount(AMOUNT_FIELD);
6 final BigDecimal customerLimit =
7 getCustomerLimit(customerNumber);
8 containerRunner.check(
9 enteredAmount.compareTo(customerLimit) > 0)

10 .error(tf.term("AmountExceeded",
11 enteredAmount.toPlainString (),
12 customerLimit.toPlainString (),
13 customerNumber));

Listing 7.21 shows how a term with placeholders is obtained. First some values are
retrieved, and then used in lines 10–13. Notice that all placeholder-values must be
converted into String objects.

In this case, introducing methods that generate the actual localized terms (as suggested
in Listing 7.18) becomes even more desirable. In Listing 7.21 above, there’s nothing
preventing the programmer from providing arbitrary String-typed arguments, even
though, the intention is clearly that two of the parameters are amount-typed values.
Arguments of the correct type can be ensured by introducing a static method to obtain
the localized term. We can add the following to the Term class outlined in Listing
7.18.

Listing 7.22: Implementing Placeholder Terms with Type-Safe Arguments.
2 /∗∗
3 ∗ Returns a l o c a l i z e d message i n d i c a t i n g t h a t an en t e r e d
4 ∗ amount e x c e e d s t h e l i m i t s p e c i f i e d f o r a s p e c i f i c cus tomer .
5 ∗ @param enteredAmount t h e amount en t e r e d by t h e u s e r .
6 ∗ @param cus tomerL imi t t h e l i m i t a p p l i c a b l e f o r t h e cus tomer
7 ∗ @param customerNumber t h e cus tomer number
8 ∗ @return a l o c a l i z e d t e x t w i t h t h e s p e c i f i c amount and
9 ∗ cus tomer r e f e r e n c e s i n s e r t e d .

10 ∗/
11 public static MiText amountExceeded(
12 final McAmountDataValue enteredAmount ,
13 final McAmountDataValue customerLimit ,
14 final McStringDataValue customerNumber) {
15 return tf.term("AmountExceeded",
16 McAmount.of(enteredAmount).toPlainString (),
17 McAmount.of(customerLimit).toPlainString (),
18 McStr.of(customerNumber));
19 }/// EndTypedTermFunction

Version 1.4.021, software version 2.5.0 (21.0.sp100) 328 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

20 }

Using the static method defined in Listing 7.22, you are enforced to provide arguments
of the correct type when instantiating the term, and the term-method is now in control
of how, e.g., amount values are converted into a Strings. The extension code obtaining
the term would look like:

Listing 7.23: Referencing Terms With Type-Safe Placeholders.
2 final McStringDataValue customerNumber =
3 originalData.getStrVal(CUSTOMER_NUMBER);
4 final McAmountDataValue enteredAmount =
5 userData.getAmountVal(AMOUNT_FIELD);
6 final McAmountDataValue customerLimit =
7 getCustomerLimit(customerNumber);
8 containerRunner.check(
9 enteredAmount.compareTo(customerLimit) > 0)

10 .error(Terms.amountExceeded(enteredAmount ,
11 customerLimit ,
12 customerNumber));

Listing 7.23 shows how a method defining a term with typed placeholders is invoked from
extension code. Notice that not only will you get assistance by the IDE (ensuring the
correct number of arguments, and showing the documentation for each placeholder,) you
would also get a compile-error if you provide arguments of incorrect types, e.g.

// . . .
containerRunner.check(enteredAmount.compareTo(customerLimit) > 0))

// ! Gives a compi le−t ime e r r o r !
.error(Terms.amountExceeded(customerNumber ,

enteredAmount ,
customerLimit);

7.11.5 Annotating Terms with Comments

Sometimes you might want to provide some kind of context to the terms you define.
Basically, this is needed to help whoever makes dictionary translations into knowing the
context in order to provide a suitable translation. As an example, suppose you introduce
an action used to close a financial year in some context. If you give this action the title
“Close,” the person responsible for translating this into a given language gets no more
information than the word “Close.” If you’re lucky, the translator will make the correct
translation for the context. If you’re unlucky, the translation will be made from ‘Close’ as
in ‘Nearby.’ Or you maybe another term ‘Close’ was previously introduced and translated
different from what you expect.

In order to get around such unfortunate situations, Maconomy supports the concept of
comments inside your terms. A comment has the following syntax:

c©Deltek Inc. 2013–2019, All Rights Reserved 329 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.11. SUPPORTING MULTIPLE LANGUAGES

{ coment text }

Hence, text inside curly braces. At the moment the curly braces cannot be escaped.
Therefor, it is impossible to present a message containing curly braces.

Listing 7.24: Annotating Terms with Comments
2 # This f i l e c on t a i n s term d e f i n i t i o n s f o r use w i t h t h e
3 # pr i c e−ad ju s tmen t e x t e n s i o n
4 #
5 AdjustPricesAction = Adjust Prices
6 AjdustmentPercentageField = Adjustment %
7 CostPriceCannotBeNegative = The cost price cannot be negative
8 /// SimplePropertiesEnd
9 AmountExceeded = The entered amount of ^1 exceeds the maximum of

^2 for customer ^3
10 /// PlaceholderPropertiesEnd
11 CloseAction = Close{Financial Year}

Listing 7.24 shows an example Messages.properties file that contains a term which is
annotated by a comment in line 11. The comment will not be shown to the end-user,
but it will be shown to whoever needs to make a translation. Also, when the term is
looked up in a given dictionary, the comment is part of the entry being looked up. If
another term “Close” (without comments or with some other comment) is also defined
in the dictionary, that term will not match. Unless it is absolutely clear what is meant,
comments should be used in order to ensure good-quality translations.

You can have as many comments as you want, and they can be placed anywhere. For
example

The job is closed{No entries allowed} for ^1{User Name}

Here a term is defined and two comments are defined. The first comment gives context
to what it means that the “job is closed”, and the second gives context to the placeholder
(indicating that it is expected to be a reference to a user name.)

7.11.6 Locale Annotations

It is possible to specify terms that are locked to a specific language. By having a specific
kind of comment at the very end of the text, specifying a specific locale in square brackets,
means that the term is defined in the specified language. At the moment, there is no way
of translating terms from arbitrary languages, so doing that will imply that localization
will not take place for the specified term. Hence specifying:
MyDanishTerm = Check CVR Register {[da_DK]}

means that the term MyDanishTerm is defined in Danish and will never be translated
to another language. Hence, even if the end-user has specified French as a preferred
language, the term above will be shown in Danish. You can specify the default locale at

Version 1.4.021, software version 2.5.0 (21.0.sp100) 330 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

the top of a Messages.properties file, by specifying a value for Locale@locale at the
top of the properties-file7. This will make the framework interpret all terms as defined in
that language, except if something else is explicitly specified. For example

Locale@locale ={[da_DK]}
MyDanishTerm = Check CVR Register

MySwedishTerm = Kolla SJ tidtabell {[sv_SE]}

MyTranslatableTerm = This term can be translated {[]}

MyEnglishTerm = This term is always in American -English {[en_US]}

In this example, it is stated that all terms by default are specified with Danish locale.
Hence, the term MyDanishTerm does not explicitly need to specify a locale. Since it’s
locale is fixed, it will never be translated. The term MySwedishTerm specifies that the
corresponding term is in Swedish. Since it has a fixed locale, it will never be translated.
The term MyTranslatableTerm is explicitly annotated with an empty locale. An empty
locale corresponds to the common source language. This is interpreted by the Extension
Framework such that it will be looked up in the dictionaries. It is consequently expected
that the term “This term can be translated” is found in the dictionaries on run-time.
The term MyEnglishTerm has a fixed locale of American-English, and will therefore not
be localized.

Except if you have very explicit needs, we recommend that you define terms without
locale, thus letting your terms be translated to any language.

If you specify a term in a specific language, it is highly recommended that you also
specify the locale. If you don’t, unexpected results may occur! For example, suppose
you are defining the term “Save.” But since you (think you) know that the client you’re
working for only needs to have the terms presented in Danish, you opt to not specify the
term in English and expanding the dictionary. So, your term is just specified as:

MyTerm = Gem

In this case, no locale is specified, altough the term was intended to be specified in
Danish8. This means that the term will be attempted localized, and terms may be
extracted as input to the dictionaries. Hence, the Danish-speaking user would suddenly
not see the expected term “Gem” whenever the save-context should appear. Instead,
he’d see “Ædelsten” (i.e., “precious stone,”) since that is the correct Danish translation
of the English word “Gem.” Highly unexpected, and highly confusing. This would not
have happened, had the term been defined with the proper locale:

MyTerm = Gem{[da_DK]}

7If no such locale annotation is specified, the default locale will be the common source language
8“Gem” in Danish means “Save”

c©Deltek Inc. 2013–2019, All Rights Reserved 331 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.12. ENABLING LOGGING

Of course, if the term had been specified without locale as Save, the term would be
translated into Danish (or whatever other language one of the end-users one day opts to
use—provided that the dictionaries are properly defined!)

7.12 Enabling Logging

Often when developing software, it is practical to have the ability to log some output.
This can happen for a number of reasons, typically for debugging/diagnostic purposes on
running installations.

The coupling service is pre-configured with the ability to do logging. The underlying
logging frameworks that are used are: “Logback” [Log] and “SLF4J” [Slf].

By using these logging frameworks, logging output from your extension code can be
managed in the same way as logging output from other parts of the coupling service.
What to log, how to log and which log-levels are wanted can be configured by editing the
file logback.xml which resides in the configurations folder inside the folder in which
the coupling service is installed.

In order to be able to access the logging frameworks, you need to instruct the OSGi
engine that you depend on this. This is done by opening the MANIFEST.MF file of your
project, selecting the “Dependencies” tab, and the declare a dependency to the slf4j and
the logback bundles:

Once this is done, you can start adding a logger to your classes. The recommended
way of doing this is to declare a static constant, by convention called logger, which is
named in the same way as your class (including package prefix!)

In order to do this, you need to import the following in your class (or let the Extender
IDE help you)

• org.slf4j.Logger

• org.slf4j.LoggerFactory

Version 1.4.021, software version 2.5.0 (21.0.sp100) 332 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

Listing 7.25: Enabling Logging Output.
2 public class LoggingExampleDataModel extends

McAbstractExtendedDataModel {
3 // Dec l a r e a l o g g e r s p e c i f i c t o t h i s c l a s s
4 private static final Logger logger = LoggerFactory.getLogger(

LoggingExampleDataModel.class);
5

6 private static final MiKey BLOCKED_FOR_INVOICING = key("
BlockedForInvoicing");

7

8 public LoggingExampleDataModel(final MiResources resources) {
9 super(resources);

10 }
11

12

13 /∗∗ { @inher i tDoc } ∗/
14 @Override
15 public void onUpdatePre(final MiUpdatePre containerRunner ,
16 final MiUpdate eventData) throws

Exception {
17 final MiUserData userData = eventData.getUserData ();
18 final String currentUser = containerRunner.getEnvironmentInfo

().getUserName ();
19 if (logger.isDebugEnabled ()) logger.debug("Log a debug message

");
20

21 if (userData.changed(BLOCKED_FOR_INVOICING)) {
22 if (logger.isDebugEnabled ()) {
23 logger.debug(
24 "Blocked inv. status for job: {} set by user {}",
25 userData.getBool(BLOCKED_FOR_INVOICING),
26 currentUser);
27 }
28 // do your own l o g i c
29 }
30 // I f you need t o ou t pu t more than 2 p i e c e s o f i n f o rma t i on
31 // you must make an Objec t−array c on t a i n i n g t h e
32 // e l emen t s
33 if (logger.isDebugEnabled ()) {
34 final Object [] info =
35 new Object [] {currentUser ,
36 Calendar.getInstance ().getTime (),
37 userData.getStr("JobNumber"),
38 userData.getUserChange ()};
39 logger.debug("Fields changed by user {} on {} for job {}: {}

", info);
40 }
41 }

c©Deltek Inc. 2013–2019, All Rights Reserved 333 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.13. MISCELLANEOUS UTILITIES

Listing 7.25 shows how to enable logging output. The first thing you should note is
the declaration of the static logger in line 4. This logger can now be used throughout
the code. If logging has been enabled for that specific logger for an adequate log-level,
logging will occur once one of the methods info , warn , error , debug and trace
is invoked. If the corresponding logger and log-level is not activated (through the logging
configuration), then nothing is done. You should be careful to guard your logging
statements with the corresponding log-level-enabled methods, like isDebugEnabled .
The reason is that if any of the arguments to the logger are non-trivial object-references,
then the code evaluating the logging content will be executed even if logging is not
enabled. For this reason, it is good practice to always guard the logging statements. In
the example, a simple static text is logged in line 19 (but again only if debug log-level
is enabled for the current logger at run-time.) In lines 24–26 a logging statement is
potentially made with variable logging content. Each {} will denote a placeholder. The
first argument object will be inserted at that place if logging does occur. Hence, you
should not construct your logging messages using the + operator for Strings. If you need
more than one or two variables inserted, you must provide the information objects as an
Object-array. This is shown in lines 35–38, and the logging statement is done in line 39.
The exact format of the logging contents will depend on the contents of the logback.xml
file at run-time. It is possible to edit the configuration file while running, and the log
output will adapt almost immediately.

For more details on how to manage and configure logging, you are left to the documentation
[Log,Slf].

7.13 Miscellaneous Utilities

This section contains references to miscellaneous utilities that are not mentioned elsewhere
in this book.

7.13.1 Long-Text Splitting

In order to work with strings that exceed the 255 byte limit offered by the Maconomy
database, you may sometimes need to split a string into smaller chunks. If you eventually
want to print these strings using MPL, you may want to cut a string into chunks that
are restricted not only by the number of bytes, but also by the width the text will have
when printed. Of course, this width will depend on the font properties being used.

The framework contains a utility class that can be used for this: McSplitTextUtil . This
class contains a single method, splitText that—given a String and a specification of
font-properties and the desired maximum width, will split the text into chucks that:

1. Will not exceed the specified width, if printed using the specified font characteristics

2. Will not exceed 255 bytes

Version 1.4.021, software version 2.5.0 (21.0.sp100) 334 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 7. ADVANCED TOPICS

3. Will attempt to break the string at a space or newline

4. Will contain a marker, if the string was split in mid-word. For this the constant
McSplitTextUtil.APPEND_USING_NO_SEPARATOR9 is used.

5. Will contain a marker, if the text was broken at a space (rather than at a newline).
For this the the constant McSplitTextUtil.APPEND_USING_WORD_SEPARATOR10 is
used.

You are referred to the JavaDoc visible inside the Maconomy Extender IDE for more
information.

9Currently represented by the invisible unicdoe character \uFEFF
10Currently represented by the invisible unicode character \u200B

c©Deltek Inc. 2013–2019, All Rights Reserved 335 Version 1.4.021, software version 2.5.0 (21.0.sp100)

7.13. MISCELLANEOUS UTILITIES

Version 1.4.021, software version 2.5.0 (21.0.sp100) 336 c©Deltek Inc. 2013–2019, All Rights Reserved

Chapter 8

Tips and Tricks

This chapter gives various tips and tricks about performing certain tasks in ways that
may not be obvious.

8.1 Filter Containers Based on Custom Universes
A thing that is frequently needed, is building a container that provides access to a given
universe through a filter pane.

Prior to version 17 (2.2), the way to do this was to do a number of steps:

• Create a universe

• Create a new root container contribution that implements the definePersistence-
Strategy method by returning an instance of McMolPersistenceStrategy associ-
ating the universe name.

• Let the defineDomesticSpec of the filter data-model replicate all the field defini-
tions of the universe

While this is simple to explain, it is a tedious, error-prone and impractical task to do.
This is so, because:

• You have to replicate all fields from the universe (the ones you wish to expose),
their type and their titles.

• If you extend the universe, you will have to update your data-model with these
fields, recompile and deploy.

• All though it’s not a lot, you need to actually write the boiler-plate Java code that
declares the container and the data model.

In order to ease this kind of task, Maconomy 17 comes with a feature that can almost
automatically provide a container having a filter that is targeted at a specific universe.

337

8.1. FILTER CONTAINERS BASED ON CUSTOM UNIVERSES

You can get this without writing a single line of Java code. The steps you must do are
the following:

1. Create the universe, including an interface that specifies the fields you wish to
expose. The interface fields must be “flat,” i.e., it is not supported to expose
“dotted” field names (such as ProjectManager.EmployeeNumber.)

2. Create a mapping MOL file that maps to the universe, identifies the key fields and
specifies the container name-space

Having done this, you can now operate a container, which has a filter pane that is targeted
at the universe.

Example: assume you have a universe called Trifolium::CustomerU that exposes
information about customers with additional information from a custom MOL file
(Tri_CustomerAddendum). Among other things, this MOL table contains information
about whether or not a given customer is considered a “premium” customer.

Now, we add a MOL-file, called tri_CustomerU1. This MOL file declares the connec-
tion to the Trifolium::CustomerU universe, declares that there is one key field (the
field CustomerNumber) and that the name space for the filter-pane container is to be
Trifolium. Now, you can invoke the container called Trifolium:Find_tri_CustomerU
from workspaces, as well as programmatically!

In this example, the MOL-file tri_CustomerAddendum is defined like this:

Listing 8.1: Regular MOL file containing additional customer fields.
1 <MOL 1.2>
2 <Entity name= tri_CustomerAddendum " Customer Addendum "
3 ContainerNameSpace =Trifolium >
4

5 . CustomerNumber : String :"Cust. No." :Key+
6 . PremiumCustomer : Boolean :" Premium Cust."
7 . AgreementId : String :" Agreement Id"
8 . CreditBalanceLimit : Amount :" Credit Bal. Limit"
9 <End Entity >

The universe definition could be something like this:

Listing 8.2: Universe that we want to expose through new container.
1 <MUL 1.4>
2

3 <universe Trifolium :: CustomerU " Customer ">
4

5 <object Customer >
6 <object CustomerBalance >
7 <object Tri_CustomerAddendum >
8

9 <join (Customer , CustomerBalance) accessControl = skipKeep >

1The name can be freely chosen, although it must contain a MOL name-space, in this case tri_.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 338 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 8. TIPS AND TRICKS

10 . CustomerNumber
11 <end join >
12

13 <join (Customer , Tri_CustomerAddendum)>
14 . CustomerNumber
15 <end join >
16

17 <field LimitExceeded "Limit Exceeded " >
18 CustomerBalance . CreditBalanceBase > Tri_CustomerAddendum .

CreditBalanceLimit
19 <end field >
20

21 <field CreditLimitGap " Credit Limit Gap" >
22 Tri_CustomerAddendum . CreditBalanceLimit - CustomerBalance .

CreditBalanceBase
23 <end field >
24

25 <interface basis=Customer >
26 . DebitBalanceBase : CustomerBalance . DebitBalanceBase
27 . CreditBalanceBase : CustomerBalance . CreditBalanceBase
28 . DebitBalanceStandard : CustomerBalance . DebitBalanceStandard
29 . CreditBalanceStandard : CustomerBalance . CreditBalanceStandard
30

31 . PremiumCustomer : Tri_CustomerAddendum . PremiumCustomer
32 . AgreementId : Tri_CustomerAddendum . AgreementId
33 . CreditBalanceLimit : Tri_CustomerAddendum . CreditBalanceLimit
34 . LimitExceeded :. LimitExceeded
35 . CreditLimitGap :. CreditLimitGap
36 <end interface >
37 <end universe >

8.1.1 Mapping MOL Specifications

So, we want a root container contribution that connects to the universe Trifolium::Cus-
tomerU defined in Listing 8.2. Instead of writing that by hand, we can let the Maconomy
server know about (and handle) that container automatically. All we need to do is to
specify a mapping MOL file that connects the universe to a container. Notice that the
universes does not contain any information about key fields, so an important part of this
mapping MOL file is to declare how to identify the key (there could be several possibilities
for a given universe.) Also, we must specify the name space of the container. This
name space must be defined in order to avoid name clashing with standard Maconomy
containers.

c©Deltek Inc. 2013–2019, All Rights Reserved 339 Version 1.4.021, software version 2.5.0 (21.0.sp100)

8.1. FILTER CONTAINERS BASED ON CUSTOM UNIVERSES

Listing 8.3: Mapping MOL file establishing a link between a universe and a container.
1 <MOL 1.2>
2 <Entity name= tri_CustomerU " Customer "
3 Universe = Trifolium :: CustomerU
4 interface = SearchInterface
5 ContainerNamespace =Trifolium >
6

7 . CustomerNumber :Key+
8 <End Entity >

Listing 8.3 shows such a mapping MOL file. Notice the MOL version number that must
be at least 1.2. Also notice that in MOL version 1.2, the tag formerly called <Object>
must now be called <Entity>. This subtle change in terminology reflects that the MOL
file declares an abstract data entity which gives you, more possibilities, such as a filter
container.

In line 3 the name of the universe which is being mapped by this MOL file is declared.
Furthermore, it must be specified which interface of that universe is being exposed by
the container. This is done in line 4. At the time of writing, the interfaces referenced
in mapping MOL files must be flat. That is, the field names must not be “structured”
inside sub-names, such as .CustomerBalance.CreditBalanceBase. Instead these must
be “flattened out” as it has been done in Listing 8.2, lines 26–35. In line 5 the name
space of the new container is defined, in this case as Trifolium. Finally, the mapping
MOL file declares which fields act as key fields of this container. In line 7 it is declared
that the container has one key field; the field CustomerNumber.

When this MOL file is installed, the Maconomy system will now automatically comprise
a container called Trifolium:Find_tri_CustomerU. Hence the name of the container is
built in the following way:

〈container name-space〉:Find_〈name of mapping MOL (incl. MOL name-space)〉

The resulting container will, thus, include all fields comprised by the specified interface.
In addition, all foreign keys that can be deduced from the definitions of the underlying
Maconomy tables will be included, provided that all necessary fields are part of the
interface. These foreign keys can be used to bind other panes together with the generated
container in workspaces.

8.1.2 Using the Mapping MOL Container

The container resulting from the mapping MOL can now be address in exactly the same
way as any other containers. For example, in workspaces.

1 <Filter source =" Trifolium : Find_tri_CustomerU ">
2 <Bind foreignKey =" primary ">
3 <Card source =" CustomerCard ">
4 </Bind >
5 <Bind foreignKey =" StandardBillingPriceList_JobPriceListInformation ">
6 <Card source =" JobPriceLists " title="Std. Price List">

Version 1.4.021, software version 2.5.0 (21.0.sp100) 340 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 8. TIPS AND TRICKS

7 </Bind >
8 </Filter >

In this workspace specification, the container Trifolium:Find_tri_CustomerU is refer-
enced in line 1. In line 2, a binding is made (using the key fields, e.g., the CustomerNumber)
to the maconomy:CustomerCard container. Also, in line 5, a binding is made using one
of the inherited foreign keys to the maconomy:JobPriceLists container.

Just like you can reference the container from workspaces, you can reference the con-
tainer programmatically. For example, suppose that you would like to change the
search container used when the user searches for customers from the maconomy:Jobs
container. In order to achieve that, we can change the foreign key used for this purpose
(CustomerNumber_Customer). All we need to do is to change the search container into
Trifolium:Find_tri_CustomerU.

Listing 8.4 shows an implementation that does the following:

• Changes the search container used to search for customers. This is done in line 14.

• Restricts the search into only showing “premium customers” in case the responsible
department (represented by the Location) is “SPOP” and showing only ordinary (i.e.,
non-premium) customers for jobs belonging to other departments. The premium
field is put into the custom (ordinary) MOL table (Listing 8.1), and exposed through
the universe (Listing 8.2.) This takes place in the onRestrict method in lines 31
and 33.

• Whenever the customer is changed, it is checked that for SPOP jobs, the new
customer is a premium customer, and that the customer is an ordinary customer
for non-SPOP jobs. This is done by programmatically accessing the container
Trifolium:Find_tri_CustomerU. This goes on in the method onChangePost. In
line 53 a container executor referencing the universe-container is declared. In line
65 the container is read implicitly, after having been adequately restricted, as a
side-effect of querying the number of rows.

Listing 8.4: Programmatic References to Universe Container
2 private static final MiContainerName FIND_TRI_CUST_U =
3 McContainerName.create("Trifolium:Find_Tri_CustomerU");
4 private static final McSimpleExpressionBuilder expr =

McSimpleExpressionBuilder.expr();
5 private static MiExpression <McBooleanDataValue > PREMIUM =
6 expr.eq("PremiumCustomer").bool(true);
7 private static MiExpression <McBooleanDataValue > ORDINARY =
8 expr.not("PremiumCustomer");
9

10 @Override
11 public MiExtended defineDomesticSpec(final MiDefine

containerRunner) {
12 return McPaneSpec.McExtended.pane()

c©Deltek Inc. 2013–2019, All Rights Reserved 341 Version 1.4.021, software version 2.5.0 (21.0.sp100)

8.1. FILTER CONTAINERS BASED ON CUSTOM UNIVERSES

13 .changeForeignKey("CustomerNumber_Customer")
14 .searchContainer(FIND_TRI_CUST_U)
15 .end();
16 }
17

18 @Override
19 public void onRestrict(final MiRestrict containerRunner ,
20 final MiEventData.MiRestrict eventData)

{
21 final MiKey fkName = eventData.getForeignKeyName ();
22 final MiValueInspector restrictionValues = eventData.

getRestrictionValues ();
23 final MiQueryExpressionAdmission queryExpr =
24 eventData.getQueryExpressionAdmission ();
25

26 if (fkName.isLike("CustomerNumber_Customer")) {
27 // Jobs hav ing l o c a t i o n SPOP must be l i n k e d t o
28 // premium cus tomers .
29 // Other j o b s must not be l i n k e d t o premium
30 if (isSpopJob(restrictionValues)) {
31 queryExpr.and(PREMIUM);
32 } else {
33 queryExpr.and(ORDINARY);
34 }
35 }
36 }
37

38 private final boolean isSpopJob(final MiValueInspector job) {
39 final String location = job.getStr("LocationName");
40 return location.equals("SPOP"); // v a l u e f o r Sp e c i a l−P r i o r i t y

Opera t i on s depar tment
41 }
42

43 @Override
44 public void onChangePost(final MiChangePost containerRunner ,
45 final MiUserChange eventData) throws

Exception {
46 final MiDataValues resultData = eventData.getResultData ();
47 final MiUserData userData = eventData.getUserData ();
48 if (userData.changed("CustomerNumber")) {
49 // Check i f t h e s e a r ch c on t a i n e r c on t a i n s a cus tomer
50 // w i t h t h e s p e c i f i e d cus tomer number
51 // and t h e r e q u i r e d premium s t a t u s
52 final MiContainerExecutor filter =
53 containerRunner.executor(FIND_TRI_CUST_U)
54 .construct(MePaneType.FILTER);
55 MiExpression <McBooleanDataValue > condition =
56 resultData.copyValues("CustomerNumber").asExpression ();
57 if (isSpopJob(resultData)) {

Version 1.4.021, software version 2.5.0 (21.0.sp100) 342 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 8. TIPS AND TRICKS

58 condition = and(condition , PREMIUM);
59 } else {
60 condition = and(condition , ORDINARY);
61 }
62 filter.control ().select("CustomerNumber")
63 .restrictBy(condition);
64

65 containerRunner.check(filter.getRowCount () > 0)
66 .error("No such customer (or customer premium

status is not as required)");
67 }
68 }

8.1.3 Filter Containers Based on Plain MOL Tables

Sometimes you just want a filter container based on a plain MOL table. Thus, a table
that isn’t used to map a universe, but one that represents a real database table.

It is very easy to get such a container. Basically, all you need to do is to specify the
ContainerNameSpace attribute in the MOL header. And this will give you a filter
container reflecting all fields of the MOL table.

For example, consider the custom MOL-file in Listing 8.1. In that file, a ContainerName-
Space attribute is declared (in fact, in MOL version 1.2, it is mandatory to specify this
attribute.) Hence, for this plain MOL file, a filter container is automatically provided.
It’s name is Trifolium:Find_tri_CustomerAddendum.

8.2 Obtaining Universe Definitions
A frequently asked question goes something like:

“In M-Script, we used to be able to get programmatic access to universe
definitions. Can we do this in the Java Extension Framework?”

With the possibilities mentioned in Section 8.1, this is now possible by making use of the
universe-based filter containers.

For example, consider Listing 8.2. Suppose we want programmatic access to this universe.
Or rather, to a specific interface of that universe. We can obtain that through the
container provided by the mapping MOL-file, defined in Listing 8.3.

The trick is to obtain a container executor for the filter pane of the associated container,
and then examine the result of the specify method. The specify method returns
an object of type MiContainerSpec . From this, you can obtain an inspector of the
container specification by using the method container , which returns an object of type
MiContainerSpecInspector . Using this class, you can query all panes of a container
about its capabilities such as fields (including their types, titles, mandatoryness etc.),

c©Deltek Inc. 2013–2019, All Rights Reserved 343 Version 1.4.021, software version 2.5.0 (21.0.sp100)

8.2. OBTAINING UNIVERSE DEFINITIONS

foreign keys and search keys (including their specification, titles, corresponding search
containers etc.) and actions (including their title, availability and default icon specifi-
cations.) Using the MiContainerSpec you can in principle also access this information
by addressing the Java-object representation of the MDSL XML DOM. These classes
are constructed by the JAXB library [OM03], and therefore the interface to these are
slightly different from the usual framework classes. For instance, some of the methods
may return null. These JAXB classes are notoriously difficult to work with, and doing
so should be left to the framework! The API of these classes cannot be guaranteed to be
completely stable. Use the inspector interfaces instead!

Listing 8.5: Obtaining Universe Specs Programmatically
2 final MiMap <MiDataType.MeType , MiList <String >> fieldsByType =

McTypeSafe.createHashMap ();
3

4 final MiContainerExecutor.MiProvider universeContainer =
5 containerRunner.executor("Trifolium:Find_tri_CustomerU").

initiate ();
6

7 final MiContainerSpecInspector specification =
8 universeContainer.specify ().container ();
9 final MiPaneSpecInspector filter =

10 specification.panes ().get(MePaneType.FILTER);
11

12 for (final MiFieldSpecInspector field : filter.fields ()) {
13 final MiDataType.MeType fieldType =
14 field.getType ().getType ().getType ();
15

16 if (! fieldsByType.containsKeyTS(fieldType)) {
17 fieldsByType.putTS(fieldType ,
18 McTypeSafe.<String >createArrayList ());
19 }
20 final String fieldDescriptor;
21 if (field.getTitle ().isDefined ()) {
22 fieldDescriptor = field.getTitle ().asString ();
23 } else {
24 fieldDescriptor = "<Untitled: " + field.getName ().asString

() + ">";
25 }
26 fieldsByType.getTS(fieldType).add(fieldDescriptor);
27 }
28 // now l i s t a l l t h e f i e l d s , g rouped by t y p e
29 for (final Map.Entry <MiDataType.MeType , MiList <String >>

entries : fieldsByType.entrySetTS ()) {
30 System.out.println("Fields of type " + entries.getKey ());
31 for (final String fieldDescriptor : entries.getValue ()) {
32 System.out.println(" " + fieldDescriptor);
33 }
34 }

Version 1.4.021, software version 2.5.0 (21.0.sp100) 344 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 8. TIPS AND TRICKS

Listing 8.5 shows an example, where the specification is obtained for the container
Trifolium:Find_tri_CustomerU, and therefore, in effect, the specification of the uni-
verse Trifolium::CustomerU. The example code traverses all the available fields, group
them by type, and then print out the types followed by the fields of that type. In line 8
the specify method is invoked to obtain the (MDSL) specification of the entire container,
and the container method is used to obtain an inspector. In line 10 we obtain the
information related to the filter pane (assuming that the filter pane is indeed present!)
In line 12 we loop over all fields of that pane. For each field, we first check its most basic
type information (line 14) and add a description of the field to a list mapped by that
type.

In order to obtain the specification of a plain MOL file, simply access the speci-
fication of the corresponding Find_-container. For example, in order to program-
matically inspect the fields available in the custom table tri_CustomerAddendums
(see Listing 8.1) you can do that by examining the specification of the container
Trifolium:Find_tri_CustomerAddendums.

Similarly, you can inspect the specification of any “ordinary” container, such as macono-
my:TimeSheets or maconomy:GeneralJournal.

8.2.1 Inspecting Specifications

Obviously, you can use such inspectors to inspect the properties of any pane (not only the
filter pane, as shown in the example above.) In the following, we shall list the relevant
methods used for this purpose.

Everything starts with the MiContainerSpec which is the direct result of the specify
method. This type has a number of methods:

Method Remarks
container This method returns a MiContainerSpecInspector . This

is the recommended way of inspecting container specifica-
tions!

getResource This method returns the entire specification as an MDSL file
resource. This is rarely used outside of the framework, but
may be useful for debugging.

getXContainer This method returns a JAXB representation of the underlying
XML. You are discouraged from using this information, and
the API is not guaranteed to be stable! Use the inspectors
instead!

So, the inspector top-enty level is the MiContainerSpecInspector . This type has a
number of methods:

c©Deltek Inc. 2013–2019, All Rights Reserved 345 Version 1.4.021, software version 2.5.0 (21.0.sp100)

8.2. OBTAINING UNIVERSE DEFINITIONS

Method Remarks
getName Returns the name of the container.
getKeyFieldNames Returns a collection of names, representing the key-fields

used when addressing this container. For example, the maco-
nomy:Jobs container will return one key field: JobNumber,
whereas the maconomy:TimeSheets container will return
EmployeeNumber and PeriodStart.

panes This method returns an object representing the collection
of panes. Among other things, this type implements an
Iterable that allows you loop through all the panes using
Javas for-each construct.

Pane Specifications

The panes method returns an object of type MiPaneSpecsInspector . This represents
the overall collection of panes within the container.

Since it implements Iterable < MiPaneSpecInspector > you can easily iterate through
all pane inspectors of panes in this container. In addition, this type has a number of
interesting methods:

Method Remarks
getNames Returns a collection of all known pane names.
get This method takes either a pane type or a pane name as argument,

and returns an inspector giving access to information of the spec-
ified pane. If the specified pane does not exist, an exception is
thrown.

getOpt This method is similar to get except that it returns an optional
(i.e., potentially undefined) inspector. If the specified pane does
not exist, and undefined value is returned.

stream Returns the collection of pane specs as a Stream.

Each pane specification inspector is represented by MiPaneSpecInspector . It has a
number of interesting methods:

Method Remarks
getName Returns the name of this pane.
getType Returns the pane type.
getTitle Returns the title of the pane.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 346 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 8. TIPS AND TRICKS

Method Remarks
getEntityName Returns the name of the entity (i.e., the actual or virtual

database table) containing the data in this pane. For example
TaskListLine or JobHeader.

getEntityTitle Returns the title of the entity of this pane. The title is always
descriptive, such as Task or Job.

fields This method returns an object of type MiFieldSpecsInspec-
tor, representing the collection of fields (and variables) in
this pane.

actions This method returns an object of type MiActionSpecsIn-
spector, representing the collection of actions in this pane.

foreignKeys This method returns an object of type MiForeignKeySpecs-
Inspector, representing the collection of foreign keys (and
search keys) in this pane.

getKeyFieldNames Returns the key field names of the data in this pane.

Field Specifications

The MiFieldSpecsInspector class implements Iterable < MiFieldSpecInspector >.
This means that you can easily iterate over all fields in a pane using Javas for-each
construct. In addition this class has the following methods of interest:

Method Remarks
getNames Returns a collection of all field names defined in this pane.
get This method takes a field name as argument, and returns an

inspector giving access to information about that field. If the
specified field does not exist, an exception is thrown.

getOpt This method is similar to get except that it returns an optional
(i.e., potentially undefined) inspector. If the specified field does
not exist, and undefined value is returned.

stream Returns the collection of field specs as a Stream.

Hence, a field specification is represented by an object of type MiFieldSpecInspector .
This type contains a number of interesting methods:

Method Remarks
getName Returns the name of this field.

c©Deltek Inc. 2013–2019, All Rights Reserved 347 Version 1.4.021, software version 2.5.0 (21.0.sp100)

8.2. OBTAINING UNIVERSE DEFINITIONS

Method Remarks
getType Returns type information about the field, represented

by the type MiFieldTypeSpecInspector. A number of
type-related information is comprised by that type.

getTitle Returns the title of the field.
isMandatory Returns information about the mandatoryness of the field.
getOpenness Returns information about whether this field is open for

editing or not, and if it is, in what states the field is open.
isAutoSubmit Returns information about the default auto-submit be-

havior of the field.
isHidden Returns information about whether or not the field is

considered “hidden” (i.e., cannot be part of a layout.)
isSecret Returns information about whether or not this field is

considered “secret” (i.e., it’s content is shown using bullets
or similar rather than clear text.)

isKey Returns information about whether this field is a key field.
isField Returns true if the field is a “field” (i.e., persisted.)
isVariable Returns true if the field is a “variable” (i.e., not persisted.)
getSearchSuggestions Returns the search-suggestions behavior used for this field

by default.
getForeignKeyOrdering Returns an ordered list of names representing the foreign

keys to which this field is related. The items are “ordered”
in the sense that the first (enabled) searchable foreign key
is used when/if searching is applied.

The type information, represented by MiFieldTypeSpecInspector contains detailed
information about the type of the field. It has the following relevant methods:

Method Remarks
getType Returns the actual type information about this field, for

example whether this is a String, an Amount, a Boolean
etc. Also some of this information is further annotated. For
example, it is indicated what the maximum length of Strings
are, and what the actual type of a “popup” types is. You can
obtain the very pure type information (i.e., String, Amount,
Boolean etc.) by further invoking the getType method on
the resulting object.

getSubType This method returns sub-type information, if defined. For
popup types, it will represent the actual popup type. Reals
can have a sub type of “TimeDuration” meaning that the
real-value should be shown as hh:mm by default.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 348 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 8. TIPS AND TRICKS

Method Remarks
getMaxLength If max-length information is specified (for String types), the

information can be obtained using this method. An undefined
value means that there is no maximum length.

isMultiLine Returns information about whether this field may contain
newline characters.

Action Specifications

Action specifications are represented by the MiActionSpecsInspector type which
implements Iterable < MiActionSpecInspector >. This means that you can easily
iterate over all actions of a pane using Javas for-each construct. In addition this class
has the following methods of interest:

Method Remarks
getNames Returns a collection of all action names defined in this pane.
get This method takes an action name as argument, and returns an

inspector giving access to information about that action. If the
specified field does not exist, an exception is thrown.

getOpt This method is similar to get except that it returns an optional
(i.e., potentially undefined) inspector. If the specified action does
not exist, and undefined value is returned.

standardActions This method returns a collection of all actions which represent
standard actions. A standard action is one of the generically
available actions representing an event on a container: Add, Insert,
Create, Read, Update, Delete, PrintThis, Move_Up, Move_Down,
Indent or Outdent. Notice the absence of the Print method: it
is not considered a “standard action”, but a “print action” (see
below.)

specificActions This method returns a collection of all specific actions of this pane.
A specific action is one of the named actions that can be defined
“ad hoc.” on a container pane, such as SubmitTimeSheet, Post
and CloseJob. Hence, these are the actions representing events on
the container pane which are not considered standard acttions.

getPrintAction This method returns an optional inspector giving information about
the “Print” (or Print. . .) action. Notice that this is not the “Print
This” action! The Print “action” is not really an action, certainly
not one invoking an event in this container. Rather, it represents
a hint to the client side, that the card pane of some auxiliary
container can be launched.

stream Returns the collection of action specs as a Stream.

c©Deltek Inc. 2013–2019, All Rights Reserved 349 Version 1.4.021, software version 2.5.0 (21.0.sp100)

8.2. OBTAINING UNIVERSE DEFINITIONS

The MiActionSpecInspector type, thus, contains information about the actions of this
pane. I.e., actions that can lead to an event in the container in question. This type has
the following methods of interest:

Method Remarks
getName Returns the name of this action.
getType Returns type information about the field, represented by

the type MiFieldTypeSpecInspector. A number of type-
related information is comprised by that type.

getTitle Returns the title of the action.
getIcon Returns the default icon name associated with this action.

This value may be undefined, in which case the system default
will be assumed.

getAvailability Returns an enum value representing the availability of the
action, i.e., whether it must be explicitly stated in the layout
in order to appear.

isStandardAction Returns true if the action is one of the “standard ac-
tions”, i.e., Add, Insert, Create, Read, Update, Delete,
PrintThis, Move_Up, Move_Down, Indent or Outdent.

isSpecificAction Returns true if the action is a “specific action”, such as
SubmitTimeSheet, Post and CloseJob. Hence, an action
that is not a standard action and is not a the Print. . . action.

getType Returns the action type. The resulting enum has one of the
following values:
• STANDARD which indicates that this is a standard action.
• SPECIFIC which indicates that this is a specific action.
• PRINT which indicates that this is the Print action.

The Print-”action” is represented by the MiPrintActionSpecInspector type. In
addition to the methods listed above for the MiActionSpecInspector, it has the following
methods:

Method Remarks
getContainerPaneName Returns the name of the container/pane which can be

launched from the client side.
getLayoutName Returns the layout name that should be used to display

the launched pane.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 350 c©Deltek Inc. 2013–2019, All Rights Reserved

CHAPTER 8. TIPS AND TRICKS

Foreign Key and Search Key Specifications

The specification of foreign keys and search keys are described using the same types.
The MiForeignKeySpecsInspector type represents the collection of all foreign- and
search keys. This type implements Iterable < MiForeignKeySpecInspector > and
can therefore be used with Javas for-each construct. Apart from this, it contains the
following methods of interest:

Method Remarks
getNames Returns a collection of all foreign key/search key names defined in

this pane.
get This method takes a foreign key/search key name as argument,

and returns an inspector giving access to information about that
foreign key. If it does not exist, an exception is thrown.

getOpt This method is similar to get except that it returns an optional
(i.e., potentially undefined) inspector. If the specified foreign
key/search key does not exist, and undefined value is returned.

stream Returns the collection of foreign-key specs as a Stream.

The type MiForeignKeySpecInspector is used to describe each foreign key/search key,
and contains the following methods:

Method Remarks
getName Returns the name of this foreign key/search key.
getTitle Returns the title of this foreign key/search key.
isSearchable Returns true if this foreign key can be used for search-

ing. Notice that all search keys are searchable, whereas
a foreign key need not be.

isSearchKey Returns true if this specification represents a search
key (not a foreign key.)

isForeignKey Returns true if this specification represents a foreign
key (not a search key.)

isParentReference Returns true if this foreign key is used to designate
the parent reference in a tree-table structure.

getSearchContainerPane Returns the name of the search container/pane used
when searching takes place. In case the foreign key is
not searchable, an undefined value is returned.

getLinks Returns a collection of all links of this foreign
key/search key. Each link is represented by the type
MiLinkSpecInspector.

c©Deltek Inc. 2013–2019, All Rights Reserved 351 Version 1.4.021, software version 2.5.0 (21.0.sp100)

8.2. OBTAINING UNIVERSE DEFINITIONS

Method Remarks
getSupplementLinks Returns a collection of all supplement links of this

foreign key/search key. Each supplement link is repre-
sented by the type MiLinkSpecInspector.

getEnablementOpt This method returns an optional enablement specifi-
cation. If this is undefined, it means that there is no
specific enablement condition and, hence, that this
foreign key/search key is always considered enabled. If
the returned value is defined, the enablement condition
is specified by the type MiEnablementSpecInspector.

The MiLinkSpecInspector has the following methods of interest:

Method Remarks
getFieldName Returns the name of a field in this container which is related

to a field in the foreign container.
getForeignFieldName Returns the name of a field in the foreign container which is

linked to the field returned by getFieldName.

The MiEnablementSpecInspector is used to describe a conditional foreign key/search
key. A condition has one of the forms:

• field = 〈popup value〉

• “default” which means that this is valid for any value of the field that is not used
by any other foreign key.

and has the following methods of interest:

Method Remarks
getFieldName Returns the name of a field which is part of the enablement

condition.
getValue Returns the specific value forming the enablement condition.

If this enablement condition does not have a specific value,
an exception is thrown.

getValueOpt Returns the specific value forming the enablement condi-
tion, or an undefined value, if the enablement is a default
enablement.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 352 c©Deltek Inc. 2013–2019, All Rights Reserved

Bibliography

[CMd] Deltek Inc. Deltek Maconomy—MDML Language Reference Guide.

[Del13] Deltek Inc. Deltek Maconomy Extender—Handbook for Extending the Workspace
Client, March 2013.

[EL] Deltek Inc. Deltek Maconomy—MDML/Expression Language Standard Func-
tion.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language
Specification. Addison-Wesley, 3rd edition, 1996–2005.

[iTe08] iText Software Corp. itext 2.1.3. http://itextpdf.com/history/?branch=21&node=213,
July 2008.

[jav] What’s new in jdk 8.

[Log] Logback documentation. http://logback.qos.ch/manual/.

[Low10] Bruno Lowagie. iText in Action. Manning, 2nd edition, November 2010.

[MQL] Deletek Inc. MQL Language Reference.

[MSca] Deltek Inc. M-Script Language Reference.

[Mscb] Deltek Inc. M-Script Maconomy API Reference.

[MVA10] Jeff McAffer, Paul Vanderlei, and Simon Archer. OSGi and Equinox, Creating
Highly Modular JavaTM Systems. Addison-Wesley Professional, 2010.

[OM03] Ed Ort and Bhakti Mehta. Java architecture for xml binding (jaxb), March
2003.

[OSG08] OSGi Alliance. http://www.osgi.org/Specifications/HomePage/, June 2008.

[Pdm] Deltek Inc. Portal Development Method.

[QMc] Deltek Inc. Deltek Maconomy—MCSL Quick Reference Guide.

[QMd] Deltek Inc. Deltek Maconomy—MDML Quick Reference Guide.

[QMm] Deltek Inc. Deltek Maconomy—MMSL Quick Reference Guide.

353

BIBLIOGRAPHY

[QMn] Deltek Inc. Deltek Maconomy—MNSL Quick Reference Guide.

[QMw] Deltek Inc. Deltek Maconomy—MWSL Quick Reference Guide.

[Slf] Slf4j documentation. http://www.slf4j.org/docs.html.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 354 c©Deltek Inc. 2013–2019, All Rights Reserved

Migration Guidelines

This appendix describes migration issues that may occur when migrating from version
16 to a later version, and how to address them.

Methods that have been Removed

Migrating from 16 to 17
In version 16, a number of methods were marked as deprecated. Following the deprecation
cycle, these have now been removed in version 17.

Type/Area Method Remarks
MiExtendedData-
Model (extended
data models)

setKeyField This previously deprecated method was
clearly marked with a “Do not use”
warning, since it was meant for frame-
work use only. There is no replacement
for this method.

McKey key(MiKey) This method (creating an MiKey based
on an MiKey) existed by accident. It
is not at all needed, and has been re-
moved. If this method has been used, it
is equivalent to just reference the argu-
ment. Hence:
MiKey key1 = ...;
MiKey key2 = McKey.key(key1)
is equivalent to:
MiKey key1 = ...;
MiKey key2 = key1

Notice that the key method taking a
String argument still exists!

A single method has been removed (without having been previously marked as depre-
cated.)

355

Method Remarks
containerExecutor.specify() This method has been removed from

the container executor interface. In-
stead, the method inspect has been
introduced. This method is, however,
not a 1:1 replacement of the specify
method. Instead, the specify method
is now available on the object returned
by the executor method.

Version 17 to 19
In version 17, a number of methods were marked as deprecated. Following the deprecation
cycle, these have now been removed in version 19.

Type/Area Method Remarks
MiDatabaseApi
(SQL)

sql(String, McRowRange) This method was deprecated in 17 ser-
vice pack 1 (2.2.1). Due to the poten-
tial security issues that may arise, un-
less the programmer takes great care,
this method has now been completely
removed.
While it is still possible to make
SQL queries based on a textual con-
tent, the API has been changed such
that it can enforce proper guarding
against SQL-injection, without requir-
ing special attention from the pro-
grammer using the method. There-
fore, the method sqlBuilder found on
the MiDatabaseApi interface, should be
used to constuct a McSql object. From
such an object, you can either directly
run the query, or you may pass it on to
the method sql(McSql) instead. Please
refer to Section 6.2.2 for more informa-
tion on using this.

MiDatabaseApi
(Commit etc.)

commit() This method was always clearly marked
as having been deprecated, and that it
must not be used. It has now been re-
moved from the database interface, and
there is no replacement for this method.

rollback() This method was always clearly marked
as having been deprecated, and that it
must not be used. It has now been re-
moved from the database interface, and
there is no replacement for this method.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 356 c©Deltek Inc. 2013–2019, All Rights Reserved

APPENDIX . MIGRATION GUIDELINES

Type/Area Method Remarks
setAutoCommit() This method was always clearly marked

as having been deprecated, and that it
must not be used. It has now been re-
moved from the database interface, and
there is no replacement for this method.

getAutoCommit() This method was always clearly marked
as having been deprecated, and that it
must not be used. It has now been re-
moved from the database interface, and
there is no replacement for this method.

MiQueryInspector asPaneValue() This method is now deprecated, since it
clearly returns information that cannot
be relevant for a query-result inspection.
Code that makes use of this method
should therefor be rewritten to query
the data by directly invoking the query
inspector methods.

A single method has been removed (without having been previously marked as depre-
cated.)

Method Remarks
containerExecutor.specify() This method has been removed from the container ex-

ecutor interface. Instead, the method inspect has been
introduced. This method is, however, not a 1:1 replace-
ment of the specify method. Instead, the specify
method is now available on the object returned by the
executor method. The inspect method relates to the
pane targeted by the current container executor, the
specify method relates to the entire container.

In addition to the above methods, the methods that were deprecated between 16 and 17
have been removed in version 19. See below for details.

Version 19 to 20

In version 19, a number of methods were marked as deprecated, and Lock and Unlock
events were entirely deprecated since this could no longer occur.

Following the deprecation cycle, these have now been removed in version 20. See below
for details.

c©Deltek Inc. 2013–2019, All Rights Reserved 357 Version 1.4.021, software version 2.5.0 (21.0.sp100)

Version 20 to 21

In version 20, the McCachedDataHost class was deprecated and replaced by McDataCaches.
Following the deprecation life cycle, McCachedDataHost has now been removed. See
below for details.

In version 19 a couple of methods in the utility classes McAmount , McBool etc. were
deprecated. The methods took a record and a field name and returned the value as the
specific data value type of the utility class. For example:
McAmountDataValue adv = McAmount.val(record, fieldName).

Better is to extract the value directly from the record, i.e.,
record.getAmountVal(fieldName)

These methods have now been removed from McAmount , McBool etc.

The methods containsAllValues and containsValue that were previously depre-
cated (and replaced by similar method named containsAllVals and containsVal)
have been removed from the MiValueInspector interface.

Two methods, invert and update have been removed from the MiNameMap interface
as stated in the JavaDoc of these methods. It was never the intention that these methods
should be used externally.

Changes in Popup Values API

Since version 19, the API to popup values was changed, the old one being deprecated.
The deprecated methods have now been removed. Generally, the “literal name” (or the
“internal name”) of a popup is now returned as the type MiLiteralName instead of a
MiKey . The MiLiteralName values allows underscores to replace spaces (which was not
the case for MiKey values). Methods formerly named something like getPopupLiteral

are now called something like getPopupLiteralName . For the McPopup utility class,
the method of has been removed. That method used to return a MiKey of the form
type name followed by an apostrophe (’) followed by literal name. The latter part was
potentially escaped with backslashes. Instead of that method, use the literalNameOf
and typeOf to extract the literal name or the type name. In addition, some of the
variants of the val method have been removed: MiKey is no longer accepted as a literal
value—use a MiLiteralName instead.

Methods With Changed API

Version 17 to 19

Until and including version 17, MiFetchStrategy , MiPersistenceStartegy and ex-
tensions of those interfaces have exposed a return value of type MiPaneInspector or

Version 1.4.021, software version 2.5.0 (21.0.sp100) 358 c©Deltek Inc. 2013–2019, All Rights Reserved

APPENDIX . MIGRATION GUIDELINES

MiPaneAdmission .

Apart from the fact, that it’s clearly a mistake that a MiPaneAdmission was returned,
(and even the fact that pane-related information is returned), such values are very difficult
to provide. A much better choice would have been to return MiQueryInspector s.

For this reason, we have decided to break backwards compatibility by letting the select
methods return a MiQueryInspector. And we have enhanced the way MiQueryInspectors
can be constructed: this now happened using easy-to-apply factory methods create on
the McQueryInspector class. To summarize

Method Remarks
select These methods on fetch- and persistence strategies, thus

MiFetchStrategy and MiPersistenceStrategy now return
a MiQueryInspector rather than a MiPaneInspector or
MiPaneAdmission . The migration is expected to be easily done,
since essentially the intentionn was to return a set of records: some-
thing that is nicely done by a MiQueryInspector. We would advice
not to be tempted to make the code conversion by applying the
asPaneValue()-method on the returned MiQueryInspector. Instead
make use of the methods directly offered on that type to query the
data.
In case you have implemented your own MiPersistenceStrategy,
simply let the select methods return a MiQueryInspector. Either
construct such values directly from the pane value you already have,
or simplify your code by creating a query inspector from a set of
records or from a MiRecordCollection.

Methods that Have Become Deprecated

Version 16 to 17

In version 17, a number of methods are now marked as deprecated for various reasons.
These will be removed in a future version of Maconomy, most likely version 18. Therefore,
code making use of deprecated code should be changed as soon as possible.

Root Data Models
The following methods may have been implemented by root data models. Please refer to
the guide line in the table below:

c©Deltek Inc. 2013–2019, All Rights Reserved 359 Version 1.4.021, software version 2.5.0 (21.0.sp100)

Method Remarks
defineDomesticSpec
definePersistenceStrategy
defineAdditionalReadCondition
defineReadCondition
defineDefaultSortOrder
defineSomeKeyValue
defineAutoChildrenDeletion

All of these methods are superseded by meth-
ods with a similar name, but having an ad-
ditional argument: a containerRunner of
type MiContainerRunner.MiDefine. Simply
change your data model into implementing the
method with the additional containerRunner
argument.

getPaneName This method has been deprecated. Instead,
the pane name can be obtained from the
containerRunner. Methods that did not pre-
viously have a containerRunner argument
now do.

searchSuggestions Used inside the defineDomesticSpec method.
This method has been deprecated. Instead,
similar functionality can be obtained by us-
ing the method searchBehavior . This
method takes a new (but similar) enumera-
tion type as argument. The values of the
enumeration type arguments have the same
names as previously. Thus, simply change the
argument type from XeSuggestionsType to
MeSearchBehavior and change the method
name into searchBehavior. In the unlikely
case that the method argument has previ-
ously been obtained from somewhere else, the
MeSearchBehavior type contains a method
that can convert from the old type to the new.

Extended Data Models
The following methods may have been implemented by extended data models. Please
refer to the guide line in the table below:

Method Remarks
defineDomesticSpec
definePersistenceStrategy
defineSomeKeyValue
defineDomesticAutoDeletion

All of these methods are superseded by meth-
ods with a similar name, but having an ad-
ditional argument: a containerRunner of
type MiContainerRunner.MiDefine. Simply
change your data model into implementing the
method with the additional containerRunner
argument.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 360 c©Deltek Inc. 2013–2019, All Rights Reserved

APPENDIX . MIGRATION GUIDELINES

Method Remarks
defineDualField Used inside the defineDomesticSpec method.

The concept of “dual fields” is deprecated. In-
stead of “automatically” storing duplicate in-
formation in database tables representing addi-
tional fields, make use of universes or database
joins to efficiently retrieve information from
the original source record.

searchSuggestions Used inside the defineDomesticSpec method.
This method has been deprecated. Instead,
similar functionality can be obtained by us-
ing the method searchBehavior . This
method takes a new (but similar) enumera-
tion type as argument. The values of the
enumeration type arguments have the same
names as previously. Thus, simply change the
argument type from XeSuggestionsType to
MeSearchBehavior and change the method
name into searchBehavior. In the unlikely
case that the method argument has previ-
ously been obtained from somewhere else, the
MeSearchBehavior type contains a method
that can convert from the old type to the new.

getPaneName This method has been deprecated. Instead,
the pane name can be obtained from the
containerRunner. Methods that did not pre-
viously have a containerRunner argument
now do.

Extended Data Models with Long-Text Fields

The class McAbstractLongTextFieldDataModel has been superseded by the class McAbs-
tractLongTextFieldExtendedDataModel. Therefore, if you have made data models ex-
tending McAbstractLongTextFielDataModel, change them into extending McAbstract-
LongTextFieldExtendedDataModel instead.
The following methods may have been implemented by extended data models based on
McAbstractLongTextFieldExtendedDataModel

c©Deltek Inc. 2013–2019, All Rights Reserved 361 Version 1.4.021, software version 2.5.0 (21.0.sp100)

Method Remarks
defineTextContentMapping This method is superseded by a method

with a similar name, but having an ad-
ditional argument: a containerRunner of
type MiContainerRunner.MiDefine. Simply
change your data model into implementing the
method with the additional containerRunner
argument.

defineSplitTextSpec This method has changed name, and in ad-
dition takes an additional containerRunner
argument. The name of the method
is now defineSplitTextFormat . Sim-
ply implement this method instead, using
the same code body as the one used for
defineSplitTextSpec.

thisFieldCannotBeChangedMessage This method has changed name, and in ad-
dition takes an additional containerRunner
argument. The name of the method is now
defineMessageFieldCannotBeChanged .
Simply implement this method instead, using
the same code body as the one used for
thisFieldCannotBeChangedMessage.

defineNoTextsAccessErrorMessage This method has changed name, and in ad-
dition takes an additional containerRunner
argument. The name of the method is
now defineMessageNoTextsAccess . Sim-
ply implement this method instead, using
the same code body as the one used for
defineNoTextsAccessErrorMessage.

Container Executors

In order to keep the API of the framework in good shape, it has been decided to change
how container executors are obtained. The reasons for this are:

• The number of methods available for obtaining a container executor is quite large.
This is due to the fact that a number of different parameters were needed and that
each of these parameters should be supported using different concrete types. This
has led to an API that is harder to manage both for programmers and framework
providers.

• Even though a large number of methods were available, not all relevant combinations
were supported. After the change, all (including the missing) combinations exist.

• The API has now been changed to a style that offers more flexibility, a smaller
number of methods, and a style that is very much in line with other areas in the

Version 1.4.021, software version 2.5.0 (21.0.sp100) 362 c©Deltek Inc. 2013–2019, All Rights Reserved

APPENDIX . MIGRATION GUIDELINES

framework.
As a result, the following methods have been deprecated:

Method Remarks
openExecutor A container executor is now obtained by first invok-

ing the executor method and then the construct
method. The argument to the executor method cor-
responds to the container name (it can be left out sim-
ilar to cases where there were no container name pro-
vided for the openExecutor method). The argument
to the construct method corresponds to the pane
name/pane type. Leaving out the pane name/type
corresponds to the situation where openExecutor was
invoked without arguments. The following entries in
this table points out how to migrate invocations to
openExcecutor.

openExecutor() Replace by: executor().construct()
openExecutor(pType) Replace by: executor().construct(pType)
openExecutor(pName) Replace by: executor().construct(pName)
openExecutor(cName, pType) Replace by: executor(cName).construct(pType)
openExecutor(cName, pName) Replace by: executor(cName).construct(pName)
createContainer A container executor provider is now obtained by

first invoking the executor method and then the
initiate method. The argument to the executor
method corresponds to the container name. The fol-
lowing entries in this table points out how to migrate
invocations to createContainer.

createContainer(cName) Replace by: executor(cName).initiate()
ce.deriveExecutor To derive a container executor from a “mas-

ter” container executor, ce, the method name
is now simply derive . Hence, simply replace
deriveExecutor(pName) by derive(pName). The
new method is now additionally found in a variant
that accepts the pane type, in addition to accepting
the pane name.

Version 17 to 19

Pane Values

A number of interfaces reflecting pane values (read-only as well as read-writable). This
applies to interfaces MiPaneInpspector , MiPaneAdmission and MiPaneValue .

Here the method previously called getKeys has been deprecated. The same functionality
is now offered through the method called getKeyValues .

c©Deltek Inc. 2013–2019, All Rights Reserved 363 Version 1.4.021, software version 2.5.0 (21.0.sp100)

Database Access
In the MiDatabaseApi the following methods have been deprecated.

Method Remarks
mselect(MiKey, MiQuery) This variant of the method has been dep-

recated. Use the builder-style variant:
mselect(...).from(...).where(...) instead.

select(MiKey, MiQuery) This variant of the method has been dep-
recated. Use the builder-style variant:
select(...).from(...).where(...) instead.

mcount(MiKey, MiQuery) This variant of the method has been dep-
recated. Use the builder-style variant:
mcount(...).where(...) instead.

count(MiKey, MiQuery) This variant of the method has been dep-
recated. Use the builder-style variant:
mcount(...).where(...) instead.

insert(MiKey, MiValueInspector) This variant of the method has been dep-
recated. Use the builder-style variant:
insert(...).setAll(...) instead.

update(MiKey, MiValueInspector,
MiQuery)

This variant of the method has been dep-
recated. Use the builder-style variant:
update(...).setAll(...).where(...) instead.

delete(MiKey, MiQuery) This variant of the method has been dep-
recated. Use the builder-style variant:
delete(...).where(...) instead.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 364 c©Deltek Inc. 2013–2019, All Rights Reserved

APPENDIX . MIGRATION GUIDELINES

Record-like classes

Method Remarks
retainAllCopy This method has been deprecated and replaced with

a method named absorbAllCopy. The two methods
are identical in behavior: only the name has changed.
This has happened because the name of the old
method has proved hard to understand.

retainAll This method has been deprecated and replaced with
a method named absorbAll. The two methods are
identical in behavior: only the name has changed.
This has happened because the name of the old
method has proved hard to understand.

Controlling Container Contribution Dependencies

The ordering of container contributions can be impacted by certain declarations in the
plugin.xml files.
In order to make the terminology more clear as well as to introduce new functionality,
some of those declarations have changed.

Method Remarks
<predecessor id="..."> This declaration was used to declare that this con-

tribution “comes after/is below” (i.e., is closer to
the root contribution) than the contribution indi-
cated by the id. This declaration has been dep-
recated, and changes name to <below id="...">.
This name change has been made to make the state-
ment more readable: If a is “below” b, a is closer to
the root (the root is at the “bottom”.)

<successor id="..."> This declaration was used to declare that this contri-
bution “comes before/is above” (i.e., is further away
from the root) than the contribution indicated by
the id. This declaration has been deprecated, and
changes name to <above id="...">. This name
change has been made to make the statement more
readable: it is the opposite of <below> (see above).

<drop id="..."> This declaration was used to declare that some other
contribution should be entirely disregarded. This
notion is unsound, and has been deprecated. It is
not replaced by anything: you should change your
code so that <drop> is not needed!

c©Deltek Inc. 2013–2019, All Rights Reserved 365 Version 1.4.021, software version 2.5.0 (21.0.sp100)

<extend ...type="generic"> This declaration was used to indicate that an exten-
sion contribution was “generic” and thereby (even if
it matches all names in a sequence of cloned contain-
ers) should only occur once and at the very top (i.e.,
opposite the root contribution). This concept was
easily confused with the any="true" declaration
which means something different, although the two
was in practice used together. The type attribute
has been deprecated and is now replaced by the
attribute group. A contribution that was before
marked as type="generic" must be converted into:
group="top".

Lock and Unlock events
As of Maconomy 2.3, Lock and Unlock events will not occur. These events have always
been considered “convenience locks,” with no real guarantee that locking really does
occur. Since these events have been removed, a number of methods are now deprecated,
with no replacements.

Method Remarks
MiMsg . getText This method is used to get the “text” part of a

message, returned as a MiText object. This method
has been renamed, and the old method name is
therefore marked as deprecated. The method is
replaced by asText .

Version 19 to 20

Cached Data Hosts

The utility class McCachedDataHost and the associated class McCachedData have been
deprecated. The are several reasons for this:

1. The interface to these classes were somewhat inflexible.

2. The use of these classes led to somewhat verbose code.

3. The classes only supported data connections for data sources with one key field.

New classes and interfaces McDataCaches , MiDataCache and MiSingleKeyDataCache
have been introduced instead. Using these, it is possible to completely move away from
using the more cumbersome and inflexible McCachedDataHost and McCachedData.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 366 c©Deltek Inc. 2013–2019, All Rights Reserved

APPENDIX . MIGRATION GUIDELINES

The use of the new classes is reasonably straight forward, but there is not a full one-to-one
correspondence between old methods and new methods. The following table highlights
the main use cases. For more specialized uses, you are referred to the JavaDoc which is
available from within the Maconomy Extender.

Method Remarks
McCachedDataHost Instead of constructing an new instance of this class, you

should invoke the factory method create in the class
McDataCaches . The McDataCaches generally takes the
place of McCachedDataHost by being the container of a
number of named data caches. The result of the create
method is a builder interface that can be used to define all
the caches contained, including things like default values for
data fields: this fact is an important difference compared to
the now deprecated classes: instead of specifying a default
value for every data invocation, you define the default
values once. And “natural” default values can even be left
implicit. This fact means that in the unlikely case, that
you have queried a specific field twice with different default
values, you will have to define two separate data caches,
each one specifying the specific default value.

installCache In the deprecated interface, a new cache was defined by
this method. You were required to specify the (one and
only) key field, which (single) key value you might want
to “ignore” and all the data fields you might be interested
in. All of this functionality is now declared in builder-style
properties that will guide you through the process in a
compile-time safe way. This approach has the ability to
let you specify several key fields (if applicable), specify
several “ignore key values”, and lets you specify default
values for the individual data fields up front, and in a
type-safe manner. Furthermore, if you want the “natural
default values” (i.e., empty strings, nil popups, null dates,
etc.) you do not have to specify anything.

getCache A similarly named method exists on the McDataCaches
class: the result will be a data cache of type MiDataCache
which has an interface that supports several key fields. If
your data cache has been declared with one key field, you
may use an overloaded variant of this method to obtain an
extended interface called MiSingleKeyDataCache which
has convenience methods that lets you look up data using a
simple value rather than a formal key specification. Much
like it was supported for McCachedData.

c©Deltek Inc. 2013–2019, All Rights Reserved 367 Version 1.4.021, software version 2.5.0 (21.0.sp100)

clearAll The McDataCaches does not have a method that clears
all of the caches at once. In the unlikely case that you need
this, you must instead loop over all caches and clear each
one individually. To enable this, the new class contains
a method getCacheNames which returns a collection of
all the cache names of this cache collection. You can then
subsequently obtain each of these by using the getCache

method and then invoking the clear method on each of
them.

McDataCache . getVal This method required you to provide the key value, the
field name to look up and a default value. In the new
interface, this method has been replaced by the method
getRecord which returns a record (containing all the
declared data fields) from a key value. Since the default
values are specified at declaration time, these cannot be
provided here. The result of the getRecord method is
a MiValueInspector which lets you look up field values
in any way you may desire; returning either “native Java
types”, typed data values or general data values, all de-
pending on your need.

exists This method has been replaced in the new interface by a
method called existsOrIgnoreKey . Beware that the
new interface contains a method called exists: unlike the
deprecated method, it does not treat an “ignored value”
as existing.

existsUnconditionally This method has been replaced in the new interface by a
method simply called exists .

populate The new interface contains the method populate which
does roughly the same thing as the deprecated method.
However, this methods make use of formal key values rather
than a simple data value. For MiSingleKeyDataCache

the methods populateVal and populateVals can be
used in exactly the same way as the previous and now
deprecated populate method.

clear The new interface contains an identically named method
clear which does exactly the same thing.

McConfigurationInfo

. create(cRunner)

2 This way of obtaining the configuration information
is now deprecated. Instead, you should invoke the
getConfigurationInfo on the environment information
object that you obtain from a containerRunner. For ex-
ample:
cRunner.getEnvironmentInfo().getConfigurationInfo()

2Applies to 20sp105 (2.4.5)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 368 c©Deltek Inc. 2013–2019, All Rights Reserved

APPENDIX . MIGRATION GUIDELINES

Version 20 to 21

Defining and Using Namespaces
The way name spaces are defined has changed. The previous way is now deprecated.
With the new way of defining name spaces, it is now easier to declare names (such as
field names) that are name spaced correctly.

Method Remarks
defineNamespace This method was used to define the name space of a data

model class. Instead of implementing this method, the
data-model class should be annotated by the @Namespace
annotation. This annotation is defined in the package
com.maconomy.toolkit.panes.datamodels. Hence, code that
previously looked like:
private static final MiKey NS = key("MyNamespace");
@Override
public MiKey defineNamespace() {
return NS;

}

should be replaced by the annotating the data model class:
@Namespace("MyNamespace")
public final class MyDatamodel extends ... {
...

}

This applies to any type of datamodel class.
ns This method could be used to declare names (such as field names)

that in this way get the name space prepended. The problem
with the ns method was that it didn’t allow the name to be
declared as a static. Therefore, declared names tended to be
declared using some kind of string concatenation. E.g.,
private final static MiKey NS = "MyNamespace";
private final static MiKey MY_FIELD =
NS.concat(":MyField");

Instead of using the pattern above or the ns method, use the new
static NS method. Syntactically, the NS method is identical
to ns, but it can be used in a static setting. For example:
private final static MiKey My_FIELD = NS("MyField");

In order to make use of the NS method, you must declare the
name space using the @Namespace annotation.

c©Deltek Inc. 2013–2019, All Rights Reserved 369 Version 1.4.021, software version 2.5.0 (21.0.sp100)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 370 c©Deltek Inc. 2013–2019, All Rights Reserved

New and Noteworthy

This appendix highlights new & noteworthy features in the Extension Framework. It
was first introduced from Maconomy version 19 (2.3) and therefore does not include
information prior to that version.

For more details about the news, you are referred to the applicable sections elsewhere in
this guide.

Version 19 (2.3)

Background Tasks

The Maconomy server/application now has a built-in framework for defining and executing
tasks in the background, at a scheduled date and time. This framework is expected to
conveniently compliment extensions. While it does not require any coding to set-up
such scheduled background tasks, any extension logic will be taken into account by this
framework, including new actions and new containers.

Furthermore, it is possible to programmatically add tasks from the Extension Frame-
work.

Container Executors and Record Executors

New API has been introduced to easily iterate over records in a container executor, giving
access to invoke events on each of the iterated records. The concept of a “record executor”
has been introduced to supplement this (see Section 6.1.7.) As an example, deleting all
rows where the ActivityNumber is empty is now significantly easier. In previous versions
you had to do something like:
// Ver s i ons < 19
MiContainerExecutor ce = ...;
final int lastRowIndex = ce.getRowCount () - 1;
boolean hasMoreRows = ce.setRowIndex(lastRowIndex);
while (hasMoreRows) {

MiRecordInspector record = ce.getRecord ();
if (record.getStr(ACT_NO).isEmpty ()) {

371

ce.delete ();
}
hasMoreRows = ce.decRowIndex ();

}

In version 19 this can be expressed like:

// Vers ion 19
MiContainerExecutor ce = ...;
MiExpression <McBooleanDataValue > cond = eq(ACT_NO).str("");
for (MiRecordExecutor record : ce.matchBy(cond).reverse ()) {

record.delete ();
}

The events create and update have had the type of the changeValues argument loosened
to accept a MiValueInspector rather than a MiDataValues type. This change does not
break any current use of container executors, but make the methods easier to use in
addition to making it clear, that the argument is not (cannot be) modified.

A new method on container executors, getKeyValues, can return the formal key value
of the record having focus.

Miscellaneous

• The Maconomy server 2.x (previously known as the coupling service) now supports
Java 8. This means that extension code can make use of Java 8 features, including
lambda-expressions and Streams. Please refer to the Java 8 release notes [jav] for
more information.

• A few handy utility methods have been added to record-like classes. These include:
keepAllCopy, keepAll, getPopupLiteral, entryIterator

• It is now possible to declare that a container contribution should be grouped “close
to the root.” For example, if you clone an existing container and expose it by
a new name, and then make an extension to the new name that you would like
to be effectively seen as a part of the “root” of that container, you can do that
by declaring group="root" in the declaration of the extension contribution. Any
other standard extension contributions will be placed “above” any contribution in
the root group. It is only possible to declare explicit dependencies of extensions
that are part of the same group.

• An API has been introduced for picking up certain configurable system settings.
This includes mail-server information, references to file paths and references to
URLs. Using this API, it is possible to make, e.g., integrations to 3rd-party systems
while ensuring that conflicts do not accidentally occur between, e.g., a production
system and various test systems.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 372 c©Deltek Inc. 2013–2019, All Rights Reserved

APPENDIX . NEW AND NOTEWORTHY

Version 20 (2.4)

Miscellaneous

• A number of classes has been augmented with a streams method that returns
iterable content as a Java 8 Stream.

• A replacement for McCachedDataHost , McDataCaches , has been introduced.
This offers a less verbose, more flexible and more familiar interface to corresponding
functionality. As an important enhancement, the new class now supports data
sources with more than one key field.

• For data models that implemented refreshVariables, the method refreshVariablesPrepare
will now always be invoked: in previous versions, it was only invoked if more than
one records needed variable calculation.

New E-mail Api (2.4.5)

A new API has been added for constructing and sending e-mails. The e-mails will
automatically be sent using the e-mail server configured for your coupling service, and
properties such as overriding of mail recipients (e.g., for test systems) will be taken into
account. In addition, you can control whether an e-mail should be sent unconditionally,
only in case of a successfully completed event or only in case of a failed event.

Version 21 (2.5)

Defining and Using Namespace

Name spaces for data models are now easily defined simply by annotating data model
classes by the @Namespace annotation. This way of defining a name space, allows
definitions of name-spaced identifiers by using the NS method. Also, contributed root
actions no longer need to have the name space as part of the @Action annotation: the
fact that such an action is contributed by the data model in question implies the name
space of the @Namespace annotation.

c©Deltek Inc. 2013–2019, All Rights Reserved 373 Version 1.4.021, software version 2.5.0 (21.0.sp100)

Version 1.4.021, software version 2.5.0 (21.0.sp100) 374 c©Deltek Inc. 2013–2019, All Rights Reserved

Document History

Version Remarks
1.0.016 First final version.
1.1.017 Updated with new features for version 17 (2.2). Section 4.2.4

is completely new and describes how name spaces can be
used for fields, variables, actions, foreign keys and search
keys.
Significant changes to sections 6.2.2, 6.2.3 and 6.2.4. These
sections have been updated to cover builder-style queries.
Added warning against SQL injection when using String-
based SQL API. Updated virtually all examples to use name
space.
Section 6.1 has been updated to cover new way of obtain-
ing container executors. All examples have been updated
accordingly.
Added Chapter 8, explaining how filter-pane containers based
on custom universes may be automatically obtained from
the Maconomy server, and how to obtain a universe or MOL
specification programmatically.
Appendix on Migration Guidelines has been added.
Section 1.3 has been added to make it easier to understand
code listings.

1.1.117 Updated documentation to cover revised textual SQL api.
1.2.019 Updated documentation to cover Maconomy version 2.3 (19).

Section 6.1 has been updated to cover the use of record
executors. Record executors are especially documented in
Section 6.1.7. Section 6.3 includes information on back-
ground tasks and the background task API. Section 7.6
documents how to access the system configuration, including
using named references for paths and URLs. Lock/Unlock
event no longer occur and have become deprecated.

375

Version Remarks
1.3.120 Information about Lock and Unlock events (and related

methods that were deprecated in version 19) has been re-
moved. Information about McCachedDataHost has been re-
moved (except for the Migration appendix) and the documen-
tation has been udpated to cover McDataCaches with several
new examples, especially in Section 6.2.6. A “Listings” table
has been added to the document.

1.3.320 Added documentation on new e-mail feature, as well as minor
enhancements to the background task api.

1.4.021 McCachedDataHost that was deprecated in the previous ver-
sion has been removed.
New Namespace annotation added.

Version 1.4.021, software version 2.5.0 (21.0.sp100) 376 c©Deltek Inc. 2013–2019, All Rights Reserved

Index

Symbols
@Action-annotations, 113–115
3rd-party libraries, 3, 4, 32

A
action annotations, see @Action-annotations
action events, 26, 112–119
actions

adding, see adding actions
availability, 63
changing, see changing actions
disabling, 133
enablement of, 119, 124, 131–136
enabling, 132
icon of, 63
properties, 62, 350
title of, 63

add search key, 69
add capabilities, 50
add field, 54
add foreign key, 68, 146
add records, 100
add search key, 146
adding actions, 55
adding crud actions, 55
adding print-this action, 55
adding standard actions, see adding actions
adding variables, 127
advanced management of progress bars, see

progress bars, advanced manage-
ment of

amount data type, see data types
amounts, 10

utilities, 12

append records, see add records
auto positioning, 53, 59, 100–102

context, 59
auto search, 61, 62, 145
auto submit, 61
auto-position context, 53, see auto position-

ing, context
automatic line numbering, see auto posi-

tioning
availableWhen, see actions, availability

B
background tasks, 302
background tasks, 251–281

action event, 256
action selection, 255
call-back handling, 270–276
create event, 255, 258, 264
delete event, 256
dependencies, 278–281
due date & time, 276
e-mails, 271
email-on-completion, 276
grouping, 252, 279–281
match-by selection, 264–265
max. duration, 270
misc. properties, 268
multiple records, 262–263
pane selection, 254
print event, 256
properties, 254
require execution, 269
restriction selection, 260
run as employee, 266, 267

377

INDEX

run as user, 266
run as user role, 266
update before action, 260
update event, 256
user selection, 266–268

BigDecimal, 10, 11
boolean data type, see data types
booleans, 10

utilities, 12
bundles, 31, 32

creating, 33
naming of, 31

business logic, 29

C
cached data, see data caches
call, 160
call-backs, 153–178

using parameters with, 161
capabilities, specifying, 48
card panes, 24
change capabilities, 50
change events, 103, 104, 106, 108
changed, 88
changing actions, 57
changing a field, see fields, changing
changing a variable, see variables, chang-

ing
changing capabilities, 50
changing crud actions, 57
changing foreign keys, 57
changing print-this action, 57
changing search keys, 58
changing standard actions, see changing ac-

tions
check, 156
class casting, 10
client-side extensions, 18
cloning containers, 138–140
close events, 28, 145
codecs, 316–319
coding conventions, 2

naming, 2, 31
compatibility

forward, 71
complement, 86
conditional foreign keys, see foreign keys,

conditional
conditional search keys, see search keys, con-

ditional
configurations, 301–307

email, 302, 306–307
file path references, 272, 273, 275, 302–

305
url references, 302
url references, 305

construct container executor, see container
executors, construct

container executors
initialize, 180

container contributions, 45, 46
above, 284
below, 285
generic, 289
generic for specific name spaces, 290
id of, 284
order of, 283
skipping remaining, 290

container executors, 179–206, 311
changing row index of, 193–195
construct, 180, 182, 189, 190
control object, 184–186
current row, 191–193
derived, 204
filter restrictions, 185
initiate, 189
initiate vs. construct, 189
inspecting data of, 190–195
iterating over, 196–198
multiple panes, 204–205
operations, 186–188
providers, 180
record executors and, 201–203
reverse iteration, 201
using parameters with, 188
with key, 185
without key, 185

Version 1.4.021, software version 2.5.0 (21.0.sp100) 378 c©Deltek Inc. 2013–2019, All Rights Reserved

INDEX

container factory, 41
container implementation, 41
container specification, 48
container value, 28
containers, 23, 29, 35, 179

programmatic access, 30
contains, 87
containsAll, 86
copy values, 85
coupling service, 1, 21, 33
coupling service, debugging, see debugging

code
coupling service, starting, see starting code
coupling service, stopping, see stopping code
create events, 25, 103–106
creating containers, 45
creating records, 99, see create events
current date, see today
current time, see now
current user name, 207

D
data caches, 127, 129, 238–251

defining, 239–246
populating, 247, 251
using, 246–251
with custom fetch strategy, 240, 245
with single key, 250–251

data model resources, 206
data models, 29, 35, 42, 78

persisting fields, 91
data models, configuring, 41
data type, conversion of, see type conver-

sion
data types, 9
data values, 10, 80
data-carrying events, 25, 27, 45, 75

life cycle, 75–77
databases

accessing, 208–238
delete from, 210, 233
detecting type of, 210
insert into, 210, 233
modifying data, 233–236

update, 210, 233
update using persistence strategy, 235

date data type, see data types
dates, 10

utilities, 13
day, 13
debugging code, 37–40
default sort order, 124, 125
default values, 83, 143
defineConfiguration, see data models, con-

figuring
defineConfiguration, 46
defineDomesticSpec, 49, 51, 52, 72

addAction, 55
addField, 54
addForeignKey, 56, 68
addPrintAction, 55
addSearchKey, 57
addVariable, 54, 55
autoPositionPane, 53
addSearchKey, 69
changeAction, 57
changeField, 57
changeForeignKey, 57, 70
changePrintAction, 57
changeSearchKey, 58, 70
changeVariable, 57
pane, 53
removeAction, 58
removeStandardAction, 58
treePane, 53

definePersistenceStrategy, see persist-
ing data

defineSpec, 48
delete events, 25, 110–112
derived container executors, see container

executors, derived
dialogs, see containers
disable searching, see no search
disabling actions, see actions, disabling
document call-backs, 153, 170–178

reacting to, 175
documents

c©Deltek Inc. 2013–2019, All Rights Reserved 379 Version 1.4.021, software version 2.5.0 (21.0.sp100)

INDEX

loading, 170, 171, 174–175
saving, 170
showing, 170

double, 10, 11
drag’n’drop, see move events

E
E-mails, 293–301
eclipse, 33
email configuration, see configurations, email
emulated long text fields, 311–316
enabledBy, 71
enablement of actions, see actions, enable-

ment of
enabling actions, see actions, enabling
end progress bar, see progress bars, stop-

ping
enforcing data refresh, 291–292
enum types, see popups
environment information, 206–208, 302
errors, 153, 154, 157, 321
evaluation contexts, 142, 144
events, 25, 27, 45

parameters, 140–144
expressions, 141–143, 151, 216–222, 256–

259, 310
extending containers, 45
extension contributions, 46
extension data models, 78
extension points, 40

F
factory class, 41, 42
fatal errors, 155, 158
fetching data, 123
fields, 27

adding, see add field
changing, 57
filterable, 61
hidden, 61
mandatoryness, 60
multi-line, 61
openness, 60
properties, 59, 347

title of, 60
file descriptors, 172
file path references, see configurations, file

path references
file resources, 170–172
file selectors, 174
filter panes, 24
filterable fields, see fields, filterable
Find_-containers, 66
foreign key

adding, see add foreign key
changing, 70

foreign keys, 56, 64–71
conditional, 67, 71
order of, 62
prioritization of, 62
properties, 64, 351
switch field, 68, 71
title of, 65, 70

foreign-key conditions, see search conditions
fullRefresh, 292

G
generic container contributions, see con-

tainer contributions, generic
getOriginalData, see original data
getResultData, see result data
getUserChange, 88
getUserData, see user data

H
hidden fields, see fields, hidden
host container, 146
hours, 16

I
ide, 32, 33
implicit updates, 106
indent, see move events
initialize events, 25, 99–104
initiate container executor, see container

executors, initiate
inner classes, 113

referring to, 41

Version 1.4.021, software version 2.5.0 (21.0.sp100) 380 c©Deltek Inc. 2013–2019, All Rights Reserved

INDEX

inrange, 221
insert records, 100
instance keys, 315
integer data type, see data types
integers, 10

utilities, 13
intersection, 86
iText, 120, 172

J
jaconomy client, 21

K
key fields, 59

L
language support, 320–332
layout parameters, 141
layouts, see mdml layouts
line numbering, see auto positioning
link, 70
link field, 70
link fields, 56, 66
List, 4
load documents, see documents, loading
localization, 320–332
localization comments, see terms, localiza-

tion comments
logging, 306, 332–334
long text fields, 311–316, 334
looking up field values, 80–83

M
maconomy extender, 17, 32–40
maconomy name space, 31
mail server, see configurations, email
mandatory fields, see fields, mandatoryness
manifest file, 31, 32, 332
Map, 4
McAbstractExtendedContainer, 46
McAbstractPersistingExtendedDataModel,

91
McAbstractRootContainer, 46
McAmount, 10
McAmountDataValue, see data values

McBool, 10
McBooleanDataValue, see data values
McContainerConfiguration, 47
McDataCaches, see data caches
McDataValue, see data values
McDate, 10
McDateDataValue, see data values
McExprDataValue, 256
McExtended, 52
McFileDescriptor, see file descriptors
McFileResource, see file resources
McInt, 10
McIntegerDataValue, see data values
McOpt, see option type
McPaneSpec, 52
McPopup, 10
McPopupDataValue, see data values
McReal, 11
McRealDataValue, see data values
McRoot, 52
McStr, 11
McStringDataValue, see data values
McTime, 11
McTimeDataValue, see data values
mdml layouts, 24
mdsl specifications, 48, 49, 343–352
message call-backs, 153–162

invoking, 156–160
reacting to, 160
unconditional, 160

message type, 157
MiContainerExecutor, see container execu-

tors
MiContainerFactory, see container factory
MiDatabaseApi, see databases, accessing
MiDataCache, see data caches
MiFileSelector, see file selectors
MiKey, 8
MiList, 4
MiMap, 4
MiMsg, 157
minutes, 16
MiOpt, see option type

c©Deltek Inc. 2013–2019, All Rights Reserved 381 Version 1.4.021, software version 2.5.0 (21.0.sp100)

INDEX

MiSet, 4
MiText, 8
MiUserData, see user data
MiValueAdmission, see value admission
MiValueInspector, see value inspector
mol tables, 106, 309, 310, 343

mapping to universes, 337, 339, 343
month, 13
move after, 122
move before, 122
move events, 26, 120–122

move operation, 122
source row, 121
target row, 121

move into, 122
mpl, 334
mql, 209, 211, 214, 215, 224, 225
msg, 157, 158
multi-line fields, see fields, multi-line
multiple languages, see language support

N
name clashing, 31, 71, 339
name spaces, 31, 71–75, 290, 308

database fields, 236
named-action events, see action events
naming conventions, see coding conventions,

naming
nested classes, see inner classes
next, 161
no search, 62
no search, 61
notifications, 153, 155, 157, 321

suppressing, 160
now, 16
null, usage of, 2
nullDate, 13
nullTime, 16

O
of method, 11
on-demand search, 61, 62
onChange, see change events
open events, 27, 145

option lists, 148–151
option type, 3–4
original data, 79–87
osgi, 31–33, 325, 332

console, 37
outdent, see move events

P
pane-level read, 136
panes, 23

transforming values of, 319–320
panes, types of, 24
parametrized events, see events, parame-

ters
pdf, 120, 170, 172
pdm, 17
persistence strategies, 309–319

utilities, 310
persisting data, 105, 107, 111, 123, 235,

309
plugin.xml, 40, 284
popup data type, see data types
popups, 10, 211, 237–238, 307

custom types, 307–309, 317
get value of, 80, 82
iterating over, 238
nil value, 14, 308
set value of, 95
utilities, 14

portal, 17, 21
post events, 76
pre events, 75
primary foreign key, 64
print events, 25, 119–120, 133
print this, see print events
progress bars, 153, 162, 321

advanced management of, 166–167
cancelling, 166
starting, 163
stopping, 164
updating, 164

progress call-backs, 153, 162–169
reacting to, 167

Version 1.4.021, software version 2.5.0 (21.0.sp100) 382 c©Deltek Inc. 2013–2019, All Rights Reserved

INDEX

R
read conditions, 124, 125
read events, 25, 122–140
real data type, see data types
reals, 11

utilities, 14
record executors, 195–204

container executors and, 201–203
record-centric vs. container-value centric,

78
refreshActions, see actions, enablement

of
refreshing variables, 123, 126–130, 248–250

preparing, 129, 248
removing actions, 58
removing crud actions, 58
removing standard actions, see removing

crud actions
restrict events, 28, 145–151
result data, 79, 90–99

changing values of, 91, 92
retainAllCopy, 86
root actions, 115
root contributions, 46
root data models, 78

S
save documents, see documents, saving
search keys

changing, 70
search as you type, see auto search
search conditions, 145–151
search container, 65, 71, 146
search event, see restrict event
search for data, 64, 145–151
search keys, 57, 64–71

adding, see add search key
conditional, 67, 71
order of, 62
prioritization of, 62
properties, 64, 351
switch field, 71
title of, 65, 70

search-key conditions, see search conditions

searching
disable, see no search

seconds, 16
server-side extensions, 18
Set, 4
setAllCopy, 85
setting default string length, 58
setting field values, 92–98
short names, 207
show documents, 153, see documents, show-

ing
skip, 161, 177, 291, 320
specify events, 28
specifying capabilities, 50
splitting text, 334
sql, 211, 226

building, 226–233
start progress bar, see progress bars, start-

ing
starting code, 37–40
step progress bar, see progress bars, updat-

ing
stop progress bar, see progress bars, stop-

ping
stopping code, 37–40
string data type, see data types
string values

limited, 97
unlimited, 97

strings, 11
truncating, 15
utilities, 15

Strings, usage of, 7
supplement link fields, 56, 66–67, 71
supplementLink, 71
supportive events, 27, 45, 48, 145–151
suppress notifications, see notifications, sup-

pressing
suppress warnings, see warnings, suppress-

ing

T
table panes, 24

c©Deltek Inc. 2013–2019, All Rights Reserved 383 Version 1.4.021, software version 2.5.0 (21.0.sp100)

INDEX

default sort order, see default sort or-
der

target platform path, 37
terms, 321–332

inlining, 323
locale annotations, 330–332
localization comments, 329–330
placeholders, 327
static method classes, 325, 326
variable content, 327–329

text factories, 322–327
time data type, see data types
time values, 11

utilities, 15
title, 60, 63, 65, 70, 321
today, 13
transactions, 111, 154
transformation event, see panes, transform-

ing values of
tree tables, 53
truncating strings, see strings, truncating
type conversion, 10–16
type safe collections, 4–7

U
unchanged, 88
union, 85
universes, 337, 339

definitions of, 343
update events, 25, 106–110
update progress bar, see progress bars, up-

dating
url references, see configurations, url refer-

ences
user data, 79, 87–90

modifying, 89–90
user languages, 207, 320, 325
user names, 207

V
val method, 11
value admission, 90, 92
value inspector, 80, 84

equality of, 87

variables, 27
adding, see adding variables
changing, 57
properties, see fields, properties
refreshing, see refreshing variables

W
warnings, 153, 154, 157, 321

suppressing, 160
wizards, 80, 107
workspace, 21, 23
workspace client, 1, 21
workspace engine, 21

Y
year, 13

Version 1.4.021, software version 2.5.0 (21.0.sp100) 384 c©Deltek Inc. 2013–2019, All Rights Reserved

	Introduction
	The Scope of Extensions
	General Coding Conventions
	General Naming Convention for Framework Types
	null is Never Used
	The Java List, Set and Map are never used directly
	On the Use of Strings
	Working with Data Types

	Coding Conventions Used in this Manual
	A Note for PDM Developers
	Server-Side versus Client-Side
	Compositional Architecture
	All Extensions are First-Class Citizens

	Overview
	The Maconomy 2.0 Architecture
	Containers and Panes
	Extension Principles
	More on Container Events
	Using Data-Models
	``Mixing'' Container Behaviors
	Names and Name Spaces

	OSGi

	Getting Started
	A ``Hello World'' Extension
	Starting, Stopping and Debugging the Generated Code
	A closer look at the code

	Container Events
	Implementing a Container (Contribution)
	Binding data-models to the container

	Specifying the capabilities of a container
	Field and Variable Properties
	Action Properties
	Foreign-Key and Search Properties
	Using Name Spaces

	Implementing Data-Carrying Events
	Working with Data-Models

	Implementing Initialize Events
	Automatic Management of Line Positions

	Implementing Create Events
	Implementing Update Events
	Implementing Delete Events
	Implementing Action Events
	Implementing Print Events
	Implementing Move Events
	Implementing Read Events
	Controlling Restrictions and Sorting
	Refreshing Variable Values
	Refreshing Action States
	Pane-Level Read Data

	Parameterizing Events
	Parameters from the Layout
	Programmatic Event Parameters
	Using Parameters

	Other Container Events
	Open and Close Events
	Restrict Events; Modifying Searches

	Container Call-backs
	The Call-Back Mechanism
	The General Call-Back Event Flow

	Message Call-Backs
	Invoking Message Call-Backs
	Reacting on Message Call-Backs

	Progress Call-Backs
	Invoking Progress Information
	Reacting on Progress Call-Backs

	Document Call-Backs
	Invoking Document Call-Backs
	Reacting on Document Call-Backs

	Programmatic Data Interaction
	Accessing Containers
	Obtaining access to a container
	Obtaining Access to a Container with Automatic Management of Open/Close
	Controlling the Scope of Container Operations
	Invoking Operations using the Container Executor
	Inspecting Data of a Container Executor
	Navigating and Iterating through Records
	Record Executors
	Working with Multiple Container Panes

	Accessing System and Database Information
	Accessing Environment Information
	Accessing the Maconomy Database
	Modifying Data in the Database
	Database Access with Name-Spaced Fields
	Obtaining Popup Values from the Maconomy Database
	Data Caches

	Creating Asynchronous Background Tasks
	Adding Attributes to a Background Task

	Advanced Topics
	Determining the Order of Container Contributions
	Grouping of Container Contributions
	Cloned containers and Ordering of Extension Contributions

	Building Generally Applicable Extensions
	Dynamically Changing an Event Flow
	Enforcing Full Data Refresh
	Sending Emails
	Accessing Configuration Settings and Integrating with 3rd-Party Systems
	Defining Custom Popup Types
	Implementing You Own Persistence Strategy
	Persistence Strategies for Storing Long Texts

	Applying a Codec to a Persistence Strategy
	The Transformation ``Event''
	Supporting Multiple Languages
	Specifying a Localized Term
	Referencing a Term
	Using Text Factories
	Handling Terms with Variable Content
	Annotating Terms with Comments
	Locale Annotations

	Enabling Logging
	Miscellaneous Utilities
	Long-Text Splitting

	Tips and Tricks
	Filter Containers Based on Custom Universes
	Mapping MOL Specifications
	Using the Mapping MOL Container
	Filter Containers Based on Plain MOL Tables

	Obtaining Universe Definitions
	Inspecting Specifications

	Bibliography
	Migration Guidelines
	New and Noteworthy
	Document History
	Index

