

Deltek Maconomy® 2.6.3
Background Tasks Guide

June 28, 2024

Background Tasks Guide ii

While Deltek has attempted to verify that the information in this document is accurate and complete,
some typographical or technical errors may exist. The recipient of this document is solely responsible for
all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is subject to
change without notice.

This publication contains proprietary information that is protected by copyright. All rights are reserved. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, or translated into another language, without the prior written consent of Deltek, Inc.

This edition published June 2024.

© Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and proprietary
information of Deltek, Inc. and its licensors. The Deltek software, and all related documentation, is
provided for use only in accordance with the terms of the license agreement. Unauthorized reproduction
or distribution of the program or any portion thereof could result in severe civil or criminal penalties.

All trademarks are the property of their respective owners.

Overview

Background Tasks Guide iii

Contents
Overview ... 1
Background Task Framework Configuration ... 2

MConfig and settings.ini .. 2
Comments .. 2
General Properties ... 2
System Nature Specific Properties .. 3
Short-name Specific Properties ... 3
Mandatory and Recommended Properties .. 3
Immutable vs. Mutable Properties ... 4

Background Task Framework Runtime Setup... 4
Background Task Administrator Login Name Setup .. 4
Background Task Administrator Locale Setup .. 4
Background Task Execution Control Setup ... 5

Background Task Framework Capacity .. 5
Task Poll Frequency Setup .. 5
Number of Execution Threads Setup ... 6
Dynamic Number of Execution Threads Setup ... 6
Max ExecutionThreads Setup .. 7
Server Limitation Setup.. 8
Priority Distribution Setup .. 8

Background Task Framework Runtime Validation .. 9
System Check Frequency Setup ... 9
Sanity Email Control Setup .. 10
Sanity Start-up Email Setup ... 10
Sanity Error Email Resent Frequency Setup ... 10

Background Task Framework Short-name Control ... 11
Short-name Inclusion Setup .. 11
Short-name Exclusion Setup ... 11

Email Setup ... 12
Mail Server Setup .. 12
Default Sender Email Address Setup .. 12
Default Background Tasks Framework Sender Email Address Setup .. 13
Background Task Administrator Email Address Setup .. 13

Overview

Background Tasks Guide iv

Overruling Receiver Email Address Setup .. 14
Miscellaneous .. 14

System Nature Setup ... 14
Server Descriptive Name Setup .. 15

Background Tasks Framework Setup ... 17
Background Task System Nature Setup ... 17

Setup System Nature ... 17
Activate Background Task Rules ... 20

Background Task Workspace Setup ... 20
Background Task and Schedule Rules Setup .. 21

Overview .. 21
Background Tasks ... 21
Schedule Rules .. 21

Key Generator Setup ... 23
Filters ... 23
Information Fields .. 23
Filter Rows ... 25

Schedule Rule Setup ... 27
Context Fields .. 28
Adding User Input Lines .. 29
Chained Tasks ... 31
Low Priority Tasks .. 31
Different Kinds of Schedule Rules ... 31
Using Expressions in Input Fields .. 33
Using Extended Test Bed .. 33
Test Scheduled Rule Time Pattern .. 34
Low Priority Tasks .. 34
Hold Tasks Rule If Tasks Are Still Pending ... 35
Requests for Pending Tasks .. 35
Retry Scheduling .. 36
Document Archives .. 36
Chained Background Tasks ... 36

Expressions in Background Tasks .. 38
Container Field References ... 38
Context Field References .. 39
Standard Functions ... 39

Overview

Background Tasks Guide v

Combined Expressions .. 40
Expressions Supported in Different Containers .. 40

Key Generators .. 40
Schedule Rules .. 42
Background Tasks ... 44

Supported Standard Functions .. 45
Date and Time Functions ... 45
String Functions ... 48
Popup Functions .. 50
Numeric Type Conversion and Formatting Functions ... 51
Math Functions .. 52
User Functions ... 53
System Table and Environment Functions .. 55
Other Functions ... 63

Fields and Actions ... 65
Fields ... 65
Actions ... 92

Show Next Scheduled Rule ... 92
Export Selected Lines .. 92
Test Schedule Rule .. 92
Export Selected Tasks ... 92
Delete Selected Tasks ... 92
Export Selected Tasks ... 92
Pause Execution .. 92
Delete Inactive Test Tasks .. 93
Activate Inactive Test Tasks .. 93
Show Next Scheduled Rule Execution .. 93

Framework Admin and Maintenance .. 94
Monitoring Background Tasks ... 94

Email Reporting ... 94
Sliding Panel for Error Reporting ... 95
Error Types .. 96
Status Information in Background Task Workspace .. 96
Actions on Execution Nodes Sub-Tab ... 97
Color Coding .. 97

Verify and Delete Tasks .. 99

Overview

Background Tasks Guide vi

Clear “Override Auto-Deletion of Tasks” ... 100
Admin FAQs and Troubleshooting .. 101

Is the Background Task System Running? ... 101
I Need to Shut Down the Coupling Service – Should I Do Anything? ... 102
I Need to Copy the Production Database to Test – Can I Do So Safely? ... 103
What is the Status of the Background Tasks? ... 103
Why Did a Background Task Fail? .. 106
How Can I Limit the Size of the Background Task Database Table? .. 107
Can I See Tasks That Were Run as Another User? .. 108
What is the Purpose of the HistoricBackgroundTask table? ... 109
How Can I Limit the Size of the HistoricBackgroundTask Table? ... 109
Execution Threads are Active; But No Tasks are Being Executed. Why? .. 109
My Background Tasks Are Not Run at an Adequate Pace – Why? .. 110
My Background Task is Green, But It Didn’t Run – Why? ... 111
My Background Tasks Generator Hasn’t Run - Why? ... 112
What Happens If Other Users are Changing the Data of a Background Task? 113
Where Did the Output of a Background Task End Up? ... 114

Admin Field Descriptions .. 116

Overview
This document contains details on how to set up and use Background Tasks in Maconomy, including
setup and configuration, a description of the main concepts, field descriptions, and troubleshooting.

In Maconomy, companies can set up tasks to run in the background (that is, without manual intervention
and according to a predetermined schedule). There are two options:

 Schedule Rules – At scheduled intervals, Maconomy triggers a rule, and the rule generates one
or more concrete tasks. Each task runs only once. The rule is triggered periodically, with each
triggered instance generating a new set of the same concrete tasks.

 Background Tasks – These refer to standalone tasks that run once.

 Certain tasks are well-suited to this functionality. For example, you can use schedule
rules for periodically ensuring that all employee information is current, calculating To-
Dos, and so on. As for background tasks, you can use these for the occasional task
that has to take effect at a specific time. For example, if you need to update a specific
system parameter’s value by a certain date, you can set this up as a background
task. You will not have to log in to Maconomy right before the target date to apply the
change; Maconomy automatically does it for you.

Note: While Maconomy does not strictly require scheduled background tasks to function,
this feature greatly enhances efficiency by minimizing the tasks that users have to
perform manually. It is recommended that companies fully utilize this feature to reduce
the administrative demands they have to make on their employees.

Background Task Framework Configuration

Background Tasks Guide 2

Background Task Framework Configuration
The following contains information about how to configure the Background Task Framework in
Maconomy. This functionality is available in all systems (standard, CPA, and PSO).

MConfig and settings.ini
The Background Task Framework initial configuration is done by setting a number of properties in
MConfig and in the settings.ini file.

In MConfig the batch properties are found under OSGi products. The properties managed by MConfig
are:

 Batch Mail Server (mandatory)

 Batch Mail Server Port Number (mandatory)

 Batch Administrator Mail Address (recommended)

 Default Mail Sender Address (recommended)

The rest of the properties are managed manually in the settings.ini file and none of them are mandatory.
The settings.ini file is found in the Coupling Service of a Maconomy System in
/configuration/settings/settings.ini.

Change the different properties by opening the settings.ini file in a text editor, complete the updates, and
save the file.

If a property is defined more than once in the settings.ini file, the latest instance in the file is the definition
used for the current property, though more specific definitions (by system nature and short-name; see
below) may potentially override the value.

Comments
Define comments by prefixing the comment with a hashtag. The rest of the line is then a comment. For
example:
This is a comment
my.property = MyValue # This is also a comment

General Properties
Each parameter in the settings.ini file is defined as a property name followed by an equal sign and a
value of a specific type. Typically, property names consist of a number of sub-names divided by dots. For
example:
batch.administrator.loginname = BatchAdministrator

This statement assigns the value (BatchAdministrator) to the property
(batch.administrator.loginname).

System nature and short-name specific definitions of properties overwrite general values for a property.

Most of the properties used by the Background Tasks Framework can be defined in a system nature or
short-name specific way.

Background Task Framework Configuration

Background Tasks Guide 3

System Nature Specific Properties
A system nature can be seen as a named grouping for one (or more) short-name(s) handled by a
Coupling Service. See System Nature Setup for more information about System Natures.

Some properties are defined for a specific system nature.

Properties defined in scope of a specific system nature retain the format of the system nature property, as
follows:

<property-name>.nature.<system-nature-name> = …

where <property-name> is the current property name

(such as, batch.administrator.loginname)

and <system-nature-name> is the name of the name of system nature (such as, test)

The complete definition of a property in a system nature scope could therefore be the following:
batch.administrator.loginname.nature.test = …

System nature-specific definitions of properties overwrite default values and general defined values for a
property in the current system nature context.

Short-name Specific Properties
Properties which can be defined in a system nature specific way can also be defined in a short-name
specific way, which enables even more specialization that the system nature specific definition.

For properties which can be defined in scope of a short-name, the format of the short-name property is as
follows:

<property-name>.<short-name> = …

where <property-name> is the current property name (such as.
batch.administrator.loginname)

and <short-name> is the name of the current short name (such as, m21).

The complete definition of a property in a short name scope could therefore be the following:
batch.administrator.loginname.m21 = …

Short-name specific definitions of properties overwrite default values, general defined values and system
nature defined values for a property.in the current short-name context.

Mandatory and Recommended Properties
Most properties have sensible default values. This means that if a property is not mentioned in the
settings.ini file or set in MConfig, it is still assigned a value from within the system. If a property cannot be
assigned a sensible default value, a value must be defined for the property for the system to work
properly. Such a property is referred to as a mandatory property.

For both situations, it is noted in the description whether the property is mandatory or what the default
value is.

As mentioned, only the Batch Mail Server and Batch Mail Server Port Number are mandatory properties.
However, we strongly recommend that a non-default value is assigned to the following properties:

• batch.administrator.loginname – We recommend you create a dedicated administrator
user for this purpose

Background Task Framework Configuration

Background Tasks Guide 4

• batch.administrator.email.to - if this property is unset, you will not receive emails if the
Batch Sanity validation needs to report an issue

email.from.default—System-wide setting specifying default sender of emails from the
Maconomy system

• email.to— We strongly recommended that a default value is defined for all non-production
systems to prevent emails from being sent to actual recipients during testing and development.

Immutable vs. Mutable Properties
Some properties in the settings.ini file are immutable when the Coupling Service is running. This means
that if an immutable property is changed and saved while the Coupling Service is running, the value is not
picked up until next time the Coupling Service is restarted.

Other properties are mutable. If a mutable value is changed and saved during runtime, the new value is
picked up after a short while (a few seconds), immediately applied, and used by the coupling service right
away.

There is no way you can tell if a property is immutable or mutable; you need to know from the
documentation below.

Background Task Framework Runtime Setup

Background Task Administrator Login Name Setup
batch.administrator.loginname

This property defines the administrator user for the Background Task Framework. This user orchestrates
the batch execution system and is also the user to execute tasks when no specific user is assigned to a
task.

The Background Tasks Administrator must be an administrator user in the current Maconomy-system
and we recommended you create a dedicated administrator user (such as: BatchAdmin) for this
purpose.

batch.administrator.loginname = <administrator-number>

The value syntax of this property is the “number” of the batch administrator user. For example,
BatchAdmin.

Mandatory: No, but strongly recommended for all systems

Default value: Administrator

Change state: Immutable (Coupling service must be restarted for a change to take effect).

System nature and short-name specific versions:
batch.administrator.loginname.nature.<system-nature> = …
batch.administrator.loginname.<short-name> = …

Background Task Administrator Locale Setup
batch.administrator.locale

This property defines the locale used by the Batch Administrator user and the default locale used when
executing tasks on behalf of specific users. Override the locale for specific users by setting the locale for

Background Task Framework Configuration

Background Tasks Guide 5

users in the Users workspace, or use scheduled rules and tasks by setting a specific locale on the
rule/task.

The locale affects logging and error information from the Background Task Framework in both clients and
emails.

batch.administrator.locale = <locale-token>

The value syntax of this property is a locale token, such as: en_US, da_DK or en_US_MCS

Default value: en_US_W

Change state: Immutable (Coupling service must be restarted for a change to take effect).

System nature and short-name specific versions:
batch.administrator.locale.nature.<system-nature> = …
batch.administrator.locale.<short-name> = …

Background Task Execution Control Setup
batch.enabled

This property enables and disables the Background Task execution. When the Background Task
Framework is disabled, no tasks or scheduled rules are executed. Changes to this property are detected
at runtime and take effect right away.

If the property system.maintenance is set to true, that setting overrules the setting of any
batch.enabled property and the execution is disabled.

batch.enabled = <boolean>

The value syntax of this property is a boolean, either false or true

Default value: true

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
batch.enabled.nature.<system-nature> = …
batch.enabled.<short-name> = …

Background Task Framework Capacity

Task Poll Frequency Setup
batch.delay.poll

This property defines the delay in seconds (secs) between each check by a task execution thread for
tasks due for execution. When an execution thread is assigned a due task, the Background Tasks
Framework wakes up other threads, which immediately check for due tasks as well.

As long as due tasks exist, execution threads request a new task immediately after a task has finished.
When no more tasks are due, all the task execution threads pause for the specified amount of time (secs)
before an execution thread polls for due tasks again.

The unit of the value is seconds.
batch.delay.poll = <integer>

The value syntax of this property is a positive integer (>0)

Background Task Framework Configuration

Background Tasks Guide 6

Default value: 20 (secs)

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
batch.delay.poll.nature.<system-nature> = …
batch.delay.poll.<short-name> = …

Number of Execution Threads Setup
batch.threads

This property defines number of execution threads running for any given short-name, unless one or more
scheduled execution thread configurations (see below) are defined.

If any scheduled execution threads are defined (by batch.threads.schedule), this value is only
used until the scheduled execution threads configuration triggers the first time. When this has happened,
the scheduled execution threads definition always has precedence over this property.

When a task execution thread has an active execution task, it occupies at most one server. This means
that an execution thread has the same impact on the system as ONE (to some extent, very active) user.

For this reason, the number of threads at most use the same number of servers (unless the total number
of servers is limited by batch.server.max [see below]).

This property can, without restarting the Coupling Service, be changed in the interval between 0 and the
explicit or implicit value of batch.threads.max (see below). If a higher value than
batch.threads.max is defined for this property, the resulting value is limited to the
batch.threads.max.

batch.threads = <integer>

The value syntax of this property is an positive integer or zero (>=0)

Default value: 3 (threads per short-name)

Change state: Mutable. (can be changed within [0; batch.threads.max] without restarting the
Coupling Service).

System nature and short-name specific versions:
batch.threads.nature.<system-nature> = …
batch.threads.<short-name> = …

Dynamic Number of Execution Threads Setup
batch.threads.schedule

This property defines the number of execution threads running for any given short-name at any given
time. If no value is defined, the number of active threads are defined by batch.threads.

The value assigned to this setting is a list of pairs of thread counts and cron time trigger patterns, where
values of thread count and pattern must be separated by a colon (:) and the value pairs must be
separated by a semicolon (:).

Example:
batch.threads.schedule = 5 : 0 7,10 * * *; 10 : 0 18 * * * ; 15 : 0 22 * * *;

1 : 0 8 * * mon

Background Task Framework Configuration

Background Tasks Guide 7

This example makes the Background Task Framework use the following number of threads around the
clock.

Threads Time active

5 7:00 - 18:00 (exception for Mondays, see line below)

1 8:00 - 10:00 (only Mondays)

10 18:00 - 22:00 (6 p.m. - 10 p.m.)

15 22:00 - 7:00 (10 p.m. - 7 a.m.)

Whenever one of the time-patterns are fulfilled, it triggers the associated number of threads applied to the
system.

If two patterns trigger at the same time, it is undefined which value is applied.

When a trigger pattern is activated, the applied number of threads remains active until another pattern
triggers. This means that there are never more than one time trigger value-set defined, as this value set
always remains active after triggering the first time.

batch.threads.schedule = (threads : cron-pat (; threads : cron-pat)*

The value syntax of this property is a semicolon separated list of number of thread (integer) and a
colon followed by a cron-trigger pattern.

Default value: <empty> (no trigger defined)

Change state: Mutable. The full specification can be changed except increasing any number of
execution thread count (in any new or existing trigger) above the value defined by explicit or
implicit as batch.server.max without restarting the Coupling Service.

System nature and short-name specific versions:
batch.threads.schedule.nature.<system-nature> = …
batch.threads.schedule.<short-name> = …

Max ExecutionThreads Setup
batch.threads.max

This property defines the maximum number of execution threads which can run at any given time for any
shortname in the current Coupling Service.

If a value is defined for this property, the given value defines the maximum number of execution threads
as defined in settings for batch.threds and batch.threads.scheduled. If the value for any of
these two properties is larger the max value, they are truncated to this value, both for values defined at
startup and if any of these values are changed in the settings.ini file during runtime.

If no value for batch.threads.max is explicitly defined, the max thread count for any definition of
batch.threads and batch.threads.scheduled is the defined value for batch.threads.max.

Example:
batch.threads.schedule = 5 : 0 7,10 * * *; 15 : 0 18 * * * ; 10 : 0 22 * * *
batch.threads = 12
The resulting value of batch.threads.max is: 15

Background Task Framework Configuration

Background Tasks Guide 8

By explicitly setting this value higher than batch.threads, you enable the possibility of raising the
number of active threads at a later time without restarting the Coupling Service.

batch.threads.max = <integer>

The value syntax of this property is an positive integer or zero (>=0)

Default value: The max value among the thread count for any definition of batch.threads and
batch.threads.scheduled.

Change state: Immutable (Coupling service must be restarted for a change to take effect).

System nature and short-name specific versions:
batch.threads.max.nature.<system-nature> = …
batch.threads.max.<short-name> = …

Server Limitation Setup
batch.server.max

This property defines the maximum number of concurrent servers which are permitted for use by the
Coupling Service when running background tasks. The Background Task Framework never uses more
than batch.server.max for task execution at any time.

If the Background Task Framework uses the maximum number of servers (defined by
batch.server.max), new tasks are held back for execution until another task is done using a server,
which is thereby released the Background Task Framework.

If the value of this property is 0 (zero), this means that there is no limit to the number of servers which can
be used by the Background Task Framework.

This property should only be used in configurations where many short-names are running on the same
Coupling Service. For example, the Coupling Services is serving 20 short-names (customers) with 3
execution threads for each short-name. The server need peeks at (3+1 [for surveillance]) * 20 = 80
servers. By setting the batch.server.max to 10 for this Coupling Service, the number of concurrent
servers used by the Background Tasks Framework (at any given time) is limited to 10 (instead of 80).

The default value is 0 (unlimited).
batch.server.max = <integer>

The value syntax of this property is an positive integer or zero (>=0)

Default value: 0 (No limitation)

Change state: Immutable (Coupling service must be restarted for a change to take effect).

System nature and short-name specific versions:
batch.server.max.nature.<system-nature> = …
batch.server.max.<short-name> = …

Priority Distribution Setup
batch.task.standard-priority.percentage

When defining tasks and scheduled rules in the Background Tasks Framework, you can set them to have
either low or standard priority.

This property defines the percentage by which a standard priority task is given priority in execution over a
low priority task (out of 100), even if the standard priority task has a later (but still fulfilled) due time.

Background Task Framework Configuration

Background Tasks Guide 9

For the rest of the cases (100 - batch.task.standard-priority.percentage) all task priorities
(low and standard) are picked randomly, if they have same due time.

This distribution between low and standard priority tasks is used as long as there are tasks of both low
and standard priority due for execution.

If only tasks of one of the priorities are due, these will use 100% of the capacity.

The minimum value of this property is 0 (zero). This means that tasks which are due are always picked
without considering the priority of the tasks. Setting this value to zero thereby overrules the setting of task
priority, as all tasks with same due time are handled equally.

The maximum value for the property is 90. In this case 9 out of 10 tasks executed are standard tasks,
even though low-priority-tasks with an earlier due time exist. The reason we do not allow the value of 100
is that we do not want starvation of low priority tasks, which could happen if the value is set to 100.

batch.task.standard-priority.percentage = <integer>

The value syntax of this property is an integer in the range [0;90]

Default value: 70 (%)

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
batch.task.standard-priority.percentage.nature.<system-nature> = …
batch.task.standard-priority.percentage.<short-name> = …

Background Task Framework Runtime Validation

System Check Frequency Setup
batch.system-check.interval

This property defines the interval (in seconds) between system integrity checks (sanity checks) done by
the Background Tasks Framework itself. A system integrity check monitors the state of the batch
execution system.

If any problem is detected by the framework, an email is sent to the batch administrator, and a notification
is raised in the Management panel of the Background Task-workspace.

When the system integrity check is executed, one server is occupied for this.

System integrity checks are also done whenever the settings.ini file is updated.

The unit of the value is seconds.
batch.system-check.interval = <integer>

The value syntax of this property is an positive integer (>0)

Default value: 300 (secs)

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
batch.system-check.interval.nature.<system-nature> = …
batch.system-check.interval.<short-name> = …

Background Task Framework Configuration

Background Tasks Guide 10

Sanity Email Control Setup
batch.sanity.email.disabled

This property can enable/disable the Background Tasks Framework sanity validation emails. These
emails are sent if a system integrity check done by the framework detects any problem regarding the
Background Task Framework. When a problem is detected, an email is sent (and maybe later resent) if
emailing is enabled by this property. If the email announced error is fixed without shutting the system
down, a new email calling the error fixed will be sent at next integrity check by the framework.

If an error is detected before a connection to the Maconomy-server can be made, the global setting
(batch.sanity.email.disabled) is used exclusively (as the nature and/or short-name setup is not
known at this time). After the connection is made, the more specific values, such as
(batch.sanity.email.disabled.nature.<system-nature->/
batch.sanity.email.disabled.<shortname>) are used if defined. For this reason, the global
property should always be true if you want to disable all e-mails – event during startup.

batch.sanity.email.disabled = <boolean>

The value syntax of this property is a boolean, either false or true

Default value: false (Emailing enabled)

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
batch.sanity.email.disabled.nature.<system-nature> = …
batch.sanity.email.disabled.<short-name> = …

Sanity Start-up Email Setup
batch.sanity.email.announce-okay-startup

This property can enable/disable a Background Framework sanity check email on startup in cases of no
errors.

If this property is true, an email is sent on Coupling Service startup to the Background Task Framework
administrator in all cases, even if the system is fine and no errors are detected by the system integrity
check. If this property is false, an email is only sent if the system integrity system detects an error.

batch.sanity.email.announce-okay-startup = <boolean>

The value syntax of this property is a boolean, either false or true

Default value: true (emailing okay startup enabled)

Change state: This feature is only used during startup (Coupling service must be restarted for a
change to take effect).

System nature and short-name specific versions:
batch.sanity.email.disabled.nature.<system-nature> = …
batch.sanity.email.disabled.<short-name> = …

Sanity Error Email Resent Frequency Setup
batch.sanity.email.resend-error.interval

This property defines the interval (in seconds) between each mail describing an already-reported error
issue from the integrity check. A mail is sent when an error is detected by the Background Task

Background Task Framework Configuration

Background Tasks Guide 11

Framework integrity system validation and a new mail is resent with an interval defined by this property.
This repeats until the error has been addressed and removed or the Coupling Service is shut down.

If the value of this property is set to 0 (zero), no re-sending of error mails takes place (only the initial mail
is sent).

The unit is in seconds.
batch.sanity.email.resend-error.interval = <integer>

The value syntax of this property is an positive integer (>0)

Default value: 7200 (secs) = 120 min. = 2 h.

Change state: Mutable (Can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
batch.system-check.interval.nature.<system-nature> = …
batch.system-check.interval.<short-name> = …

Background Task Framework Short-name Control

Short-name Inclusion Setup
batch.database.shortnames

This property defines the set of short-names on which the Background Tasks Framework run and thereby
execute tasks.

The value of this property can be a list of (enabled) short-names or one of the tokens: <all> or <none>.

The token <all> is equal to the list of all short-names existing in the application.

The token <none> indicates that the list of short-names is empty. The Background Task Framework is
not running on any short-name of the application if this token is used.

The list of short-names defined (implicit or explicit) by this property can be restricted by the property
batch.database.shortnames.exclude.

batch.database.shortnames = short-name (; short-name)* | <all> | <none>

The value syntax of this property is a list of short-names separated by a semicolon (;)

Default value: <all> (all short-names are enabled to run background tasks)

Change state: This feature is only used during startup (Coupling service must be restarted for a
change to take effect)

Short-name Exclusion Setup
batch.database.shortnames.exclude

This property can prevent short-names from having tasks executed by the Background Task Framework.

The short-names in this list are excluded from the list of active short-names (given implicit or explicit by
batch.database.shortnames).These short-names are therefore not enabled, and thereby have no
tasks executed by the Background Task Framework.

The token <all> is equal to the list of all shortnames in this context. If this token is used as value for the
property, NONE of the shortnames in this Coupling Service will be included in the Background Task
Framework execution.

Background Task Framework Configuration

Background Tasks Guide 12

The token <none> means that the list of excluded shortnames is empty. Therefore, all the short-names
defined by batch.database.shortnames will have task execution enabled as none of the shortnames
in this context are excluded from Background Tasks Framework execution.

batch.database.shortnames.exclude = short-name (; short-name)*| <all> | <none>

The value syntax of this property is a list of short-names separated by a semicolon (;)

Default value: <none> (all short-names in this context are enabled to run background tasks)

Change state: This feature is only used during startup (Coupling service must be restarted for a
change to take effect)

Email Setup

Mail Server Setup
mailserver.address

The mail-server address property specifies the mail-server used by the Maconomy runtime. This mail-
server is used for sending sanity and task-specific emails from the Background Tasks Framework as well
as sending emails when the "EmailOnAction" action is used in the application.

mailserver.address = <server-address>:<portnumber>

The value syntax of this property is: <server-address>:<portnumber>
such as, “172.10.8.100:25” or “mailserver.trifolium.com:25”

Mandatory for all systems: Yes

Change state: Mutable (Can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
mailserver.address.nature.<system-nature> = …
mailserver.address.<short-name> = …

Default Sender Email Address Setup
email.from.default

This property is used to specify a default sender for e-mails, (such as sent by the Background Task
Runtime), invoke the application action: EmailOnAction, or send emails from Java extensions.

The default sender email address is only used in cases where no specific email sender is defined.

If no default email sender address is specified, either by email.from.default or
batch.email.from.default (see below), no emails without a specific sender defined, will be sent.

email.from.default = <default-sender-email-address>

The value syntax of this property is: <default-sender-email-address>
such as, no_reply@trifolium.com

Mandatory: No, but strongly recommended for all systems

Default value: <empty> (no email addresses defined)

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:

mailto:no_reply@trifolium.com

Background Task Framework Configuration

Background Tasks Guide 13

email.from.default.nature.<system-nature> = …
email.from.default.<short-name> = …

Default Background Tasks Framework Sender Email Address Setup
batch.mail.from.default

This property is used to specify a default sender for e-mails sent by the Background Task Runtime.
Defining this property overwrites the default email sender (see above) when sending emails from the
Background Task Framework. Emails sent from other parts of the system that the Background Task
Framework will not be affected by this property.

The default sender email address is only used in cases where no specific email-sender is defined.
batch.mail.from.default = <default-sender-email-address>

The value syntax of this property is a single email address, such as
batchAdmin@trifolium.com

Default value: the value defined by email.from.default

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
batch.email.from.default.nature.<system-nature> = …
batch.email.from.default.<short-name> = …

Background Task Administrator Email Address Setup
batch.administrator.email.to, batch.administrator.email.cc,
batch.administrator.email.bcc

This property defines one or more email address(es) for background task administrators or system
administrator(s) surveying the background task execution. This/these emails are used when the Batch
Sanity validation system needs to report an issue to the administrator(s).

If this property is not defined, you will have a notification in the Background Task workspace,
Management tab.

If an error is detected before a connection to the Maconomy-server can be made, the system nature and
short-name versions of this property is ignored. For this reason, the standard property
(batch.administrator.email.to) should always be defined, even if system nature or short-name
specific definitions covers all defined Maconomy systems on the current Coupling Service.

batch.administrator.email.to = <default-sender-email-address>

The value syntax of this property is one or more email addresses separated by ‘,’ (comma) or ‘;’
(semicolon) such as: batchAdmin@trifolium.com; administrator@trifolium.com

Mandatory: No, but strongly recommended for all systems

Default value: <empty> (no email addresses defined)

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
batch.administrator.email.to.nature.<system-nature> = …
batch.administrator.email.to.<short-name> = …

mailto:batchAdmin@trifolium.com
mailto:batchAdmin@trifolium.com
mailto:administrator@trifolium.com

Background Task Framework Configuration

Background Tasks Guide 14

It is also possible to add Cc and Bcc receivers to receive the same mail as the Background Task
Administrators. For this purpose, the following properties exist in standard, system nature, and short-
name versions:

batch.administrator.email.cc
batch.administrator.email.bcc

Overruling Receiver Email Address Setup
email.to

This property is used to OVERRULE any email recipient (including Cc and Bcc) for mails sent by the
Maconomy system. This property is respected by the Background Task Runtime, the EmailOnAction
action, emails send by Java extensions, and others.

If this setting is defined, current email recipients are replaced by the email address specified by this
property. This may be especially useful for non-production systems. For these, a system nature-specific
property is used to ensure that emails are NOT sent to customers (and others, if applicable) from such a
system, but are directed to a fixed internal email address.

email.to = <default-sender-email-address>

The value syntax of this property is an email address, most like in an in-house domain, such as
test@trifolium.com

Mandatory: No, but strongly recommended for all non-production systems

Default value: <empty> (no email addresses defined)

Change state: Mutable (can be changed without restarting the Coupling Service)

System nature and short-name specific versions:
email.to.nature.<system-nature> = …
email.to.<short-name> = …

Miscellaneous

System Nature Setup
system.nature

Setting up databases by type / nature allows you to control how background tasks are carried out in test
and production databases. Since background tasks are copied as part of a database replication for
testing purposes, if you do not take measures to control the background tasks, they will carry out as
scheduled. This could lead to such predicaments as inadvertently synchronizing data with third party
systems or sending customer emails from the test system as well as the production system. Instead,
specify that a background task is only picked up by databases of a certain nature, such as Production or
Test.

To facilitate this feature, first set up the needed system natures in the configuration file, and then activate
background task assignment to a system nature in Workspace Client.

Additionally, you can set up precautions for certain background tasks so that these items behave
differently based on the nature to which they are assigned. Precautions exist for file location, URLs, and
email accounts so, for example, that you do not inadvertently send a client an email from a test system, or
sync integration data from a test system.

mailto:test@trifolium.com

Background Task Framework Configuration

Background Tasks Guide 15

Setup System Nature
You must first set up database natures so that you can then assign them to background tasks.

Additionally, all recommendations in this section define the default settings to reference the settings you
want for the test nature. You must also define a specific setting for the production nature (and possibly
other natures as well).

To set up database natures:
1. In the Coupling Service, go to configuration/settings/settings.ini.
2. Enter a default nature to a system shortname that defines the configuration, such as test or

production.

For example:
default nature is test
system.nature=test

the production database short name
system.nature.macoprod=production

development databases belong to nature
development
system.nature.dev1=development
system.nature.dev2=development

Server Descriptive Name Setup
server.description

You may have Multiple Maconomy server instances. The server.description property enables you to
assign a meaningful name/description to your Maconomy server instance for easy identification.

The property lets you insert certain placeholders to expand.

1. Open the settings.ini file.

2. Enter the description of the server:

• ^{shortname}—expands to the current shortname

• ^{nature}—expands to the nature of the current shortname

• ^{pid}—expands to the current process ID of the coupling service

• ^{hostaddress}—host address defined by 'server.address'

• ^{hostname}—(os-)name of the host machine

Note: The system nature names are user-defined, though we recommend using names such test,
dev, and production.

Note: While you may have more than one system shortname database of test or dev nature,
you must have only one system assigned production nature. Additionally, assigning a system
as test ensures that, unless a background task is assigned a different nature, its default
assignment will be the test type.

Background Task Framework Configuration

Background Tasks Guide 16

• ^{canonicalhostname}—canonical (os-)name of the host machine

• ^{webport}—communication port for clients connecting

Note: This property can be specified globally, by system nature, and/or shortname. Additionally, the
global value can be overwritten by the system nature value which again can be overwritten by the
shortname value. If the description property is not defined, a default value is generated. The default value
is:

"^{hostname}:^{hostaddress}:^{webport}:^{nature}"

The “:^{nature}” is omitted if there is no nature specified for the current shortname.

* server.description = <server-description-macro-expression>

* server.description.nature.<system-nature-id> = <server.description>

* server.description.<shortname> = <server.description.nature.<system-nature-id>>

Examples:
server.description=App1Server

Gives the (static) description “App1Server” for this server.

server.description=App1Server@^{webport}

Gives the dynamic description “App1Server@web-port-in-use”

For example, if the coupling service uses port 8084 as it is a web.port, then the name is expanded to:
“App1Server@8084” at run-time.

server.description=App1Server@^{webport} (^{pid})

Gives the dynamic description “App1Server@web-port-in-use (process-id-for-the-running-coupling-
service)

For example, if the coupling service runs with process-id 27884 on the operating system, and uses port
8084 as its web.port, then the name is expanded to: “App1Server@8084 (27884)” at runtime.

mailto:server.description=App1Server@%5e%7bwebport%7d

Background Tasks Framework Setup

Background Tasks Guide 17

Background Tasks Framework Setup
This functionality is available in all systems (standard, CPA, and PSO). To set up background tasks, you
must complete the following:

1. Background Task nature setup

2. Background Task workspace setup

Background Task System Nature Setup
Setting up databases by type / nature allows you to control how background tasks are carried out in test
and production databases. Since background tasks are copied as part of a database replication for
testing purposes, if you do not take measures to control the background tasks, they will carry out as
scheduled. This could lead to such things as inadvertently synchronizing data with third party systems, or
sending customer emails from the test system as well as the production system. Instead, specify that a
background task will only be picked up by databases of a certain nature, such as Production or Test.

To facilitate this feature, first set up the needed system natures in the configuration file, and then activate
background task assignment to a system nature in Workspace Client.

Additionally, you can set up precautions for certain background tasks so that these items behave
differently based on the nature to which they are assigned. Precautions exist for file location, URLs, and
email accounts so, for example, that you do not inadvertently send a client an email from a test system, or
sync integration data from a test system.

Setup System Nature
You must first set up database natures so that you can then assign them to background tasks.

Additionally, all recommendations in this section define the default settings to reference the settings you
want for the test nature. You must also define a specific setting for the production nature (and possibly
other natures as well).

To set up database natures:
3. In the Coupling Service, go to configuration/settings/settings.ini.
4. Enter a default nature to a system shortname that defines the configuration, such as test or

production.

For example:
default nature is test
system.nature=test

the production database short name
system.nature.macoprod=production

development databases belong to nature
development
system.nature.dev1=development
system.nature.dev2=development

Note: The system nature names are user-defined, though we recommend using names such test,
dev, and production.

Background Tasks Framework Setup

Background Tasks Guide 18

Email Account Precaution

You can control email-related background tasks by associating them with systems of a certain nature,
and the system nature assignment overrides the email behavior. However, as a precaution you can also
set up default email accounts associated with test systems to ensure that, if a setting is inadvertently
missed, emails from a test system go to a pre-defined email account, such as an internal test account.
This precaution ensures that, for example, you do not send test email to customers, as it overrides
whatever email address is assigned to the background task.

To set up a default email account for a test system:
1. In the Coupling Service, go to configuration/settings/settings.ini.

2. Find the email lines where you define email properties.

3. Enter a new email line to define that emails of a test nature go to a pre-determined email address,
in the format:
email.to.nature.test=emailaddress@domain.com

To set up a specific mail server:
Set up a specific mail server for use with a specific nature. For example, set-up a mail-server that will
redirect all mails to a test account.

1. In the Coupling Service, go to configuration/settings/settings.ini.

2. Find the mail server lines where you define the properties.

3. Configure the setting in the following format:
mailserver.address.nature.<system-nature-id> = <mailserver.address>

mailserver.address.nature.production=<ip-address-of-production-mail-
server>:<port>

The mailserver address specifies the default mailserver used

by the batch runtime (may be overridden specifically for batch)

as well as the "EmailOnAction" action.

This property can be specified globally, by system nature and/or shortname.

The global value can be overwritten by the system nature value which again

can be overwritten the shortname value.

If no value is specified, the system parameter MailPortAndServer will be used

The syntax is: serveraddress:portno

e.g., 172.10.8.100:25 or mailserver.trifolium.com:25

to use the mail server at IP-address: 12.10.8.100 at port 25

or the mail server at mailserver.trifolium.com at port 25 respectively.

Note: While you may have more than one system shortname database of test or dev nature,
you must have only one system assigned production nature. Additionally, assigning a system
as test ensures that, unless a background task is assigned a different nature, it will default be
assigned the test type.

mailto:email.to.nature.test=emailaddress@domain.com

Background Tasks Framework Setup

Background Tasks Guide 19

#--

mailserver.address = <mailserveraddress>:<port>

mailserver.address.nature.<system-nature-id> = <mailserver.address>

mailserver.address.<shortname> = <mailserver.address.nature.<system-nature-
id>>

#--

Third Party Integration Precaution

Set up a specific URL for test integrations so that an integration such as CRM does not inadvertently sync
from a test database. This set up assumes that you have at least two integration instances, where one is
used for testing and the other is used for production.

To set up an integration URL for a test system:
1. In the Coupling Service, go to configuration/settings/extension.ini.

2. Find the lines where you define URL properties.

3. Enter a new line to define that an integration of a test nature syncs with a pre-defined URL set up
for a test purpose.

For example (for CRM integration):
by default use the test crm installation
url.detekcrmwebservice=https://testcrm.trifolium.com/vision/visionws.asmx

for production, use this crm installation
url.deltekcrmwebservice.nature.prodcution=https://livecrm.trifolium.com/vision/
visionws.asmx

File Location Precaution

Set up file locations based on system nature if you have a set up where an external process generates
file to import or where output documents produced by background tasks need to be stored in different
locations depending on the system nature.

To set up a default file location for a test system:
1. In the Coupling Service, go to configuration/settings/extension.ini.

2. Find the lines where you define URL properties.

3. Enter a new line to define that an integration of a test nature syncs with a pre-defined URL set up
for a test purpose.

For example:

the default location for “postings” file reference
filepath.postings=c:\maconomyoutput\test\postings

for production, the location should be different
filepath.postings.nature.production=c:\maconomyoutput\postings

Note: The specific integration must have been prepared for reading specific url-names.

Background Tasks Framework Setup

Background Tasks Guide 20

Activate Background Task Rules
After you set up the system natures in the configuration files, you can assign individual background tasks
as well as individual schedule rules to a system nature in the Workspace Client. Background Tasks »
Setup » List of Schedule Rules.
See Background Task FAQs for answers to common questions.

Background Task Workspace Setup
By default, three schedule rules are set up. These rules can be deactivated, customized, or reactivated as
needed:

 Clean-Up Completed Background Tasks – The system deletes all background tasks (whether
completed or failed) that are more than one week old.

 Recalculate User Notifications – For all users that are not blocked, the system automatically
recalculates notifications at 2:00 a.m. on weekdays.

 Synchronize Employees with Revisions –The system updates all employee information daily
(after midnight). This is to capture all changes or revisions to employee information that take
effect after a specified date (for example, an employee’s transfer to a different department).

For the system administrator or consultant, use the various sections and tabs of the Background Tasks
workspace (Setup » Background Tasks workspace) to do the following:

1. Set up scheduled rules to periodically perform background tasks.

You can also set up a sequence of tasks, where the system must perform one task before
performing the next. For example, submit all unsubmitted time sheets, and then approve all
submitted but unapproved time sheets.

2. Monitor tasks that are going to be carried out, those that have been carried out, and those that
failed (that is, those that were not successfully executed because of errors encountered). Failed
tasks can be ignored, deleted, or rescheduled.

3. Manage how Maconomy logs information about successful tasks, tasks run for specific users, and
so on.

4. Stop the execution of background tasks temporarily, if needed. You can also stop execution for
individual coupling services.

5. If needed, create one-time background tasks.

Background Task and Schedule Rules Setup

Background Tasks Guide 21

Background Task and Schedule Rules Setup

Overview
As mentioned initially, the background task framework generally works with two main concepts:

 Background Tasks—A single operation that is carried out once.

 Schedule Rules—A template for the background tasks being produced, used to produce a
number of specific background tasks on a recurring basis.

Background Tasks
Background Tasks represent a single operation that is carried out once. For example, a background task
is running the action “Submit Timesheet” on a specific time sheet. Such one-off background tasks carry
out the actual processes that you want the system to run. While it is possible to manually create
background tasks from within the Background Tasks workspace (Editing section), this rarely happens.
Instead, these background tasks are made from a Schedule Rule (see below). Also, the core (or
customized) extension logic may produce individual background tasks that will help driving the business
processes in a suitable manner without directly involving the end-users.

Schedule Rules
Schedule Rules function as a template for how the system can produce a number of specific background
tasks on a recurring basis. Typically, a system administrator/system owner sets up a number of such
schedule rules representing automated processes that are carried out at specified intervals and/or points
in time.

For example, you may set-up a schedule rule that automatically submits any non-submitted time sheet on
every Friday at 10 p.m. Or more precisely, the schedule rule will generate a concrete background task for
every non-submitted time sheet every Friday at 10 p.m. In this way, the rule triggers every Friday at 10
p.m., which in turn implies that a number of specific background tasks (see above) will be created. Each
of these is instructed to run the action “Submit Timesheet” and each background task will reference one
particular time sheet that must be submitted. Once this set of background tasks is executed, all the time
sheets that were not submitted at the time when the schedule rule was triggered, will have been
submitted. Hence, the schedule rule itself does not submit time sheets, it merely ensures that individual
background tasks—each submitting a specific time sheet —are produced. The scheduled and recurring
triggering of the schedule rules implies generations of the relevant concrete background tasks on a
recurring basis, and the background task system ensures execution of these individual background tasks.

Configure a New Schedule Rule

We can think of the schedule rules as a factory that produces concrete background tasks from a recipe.

To configure a new schedule rule, you will need to specify the recipe for how to produce the concrete
background tasks. The recipe roughly consists of two things:

1. A key generator to use.
You can think of the key generator as a (sub) recipe used to identify the “stuff” that we want to
address. For example, identification of all the time sheets that are not submitted. The key
generator extracts a specified set of fields from the database needed by a template background
task (see below). For example, the key generator could extract the key fields of a time sheet:
(EmployeeNumber and PeriodStart) for all time sheets that need to be submitted.

2. A template of the concrete background tasks to produce.

Background Task and Schedule Rules Setup

Background Tasks Guide 22

For example, the template could be: Run the action “Submit Timesheet” in the container “Time
Sheets.” This template also defines how the information extracted by the key generator (see
above) is translated into specific container-key values. This example shows how information is
used to look up each individual time sheet.

Overall, a schedule rule works in the manner sketched below. In the example, the schedule rule will
produce background tasks that submit non-submitted time sheets.

First, the key generator mentioned on the schedule rule runs.

In the above case, it extracts the fields PeriodStart and EmployeeNumber from the Filter pane of the
TimeSheets container, where the value of the field Submitted is False, meaning, not submitted. This
results in a set of extracted value sets. In the example, six specific time sheets were not submitted. Each
of these value sets is then applied to the template information specified on the schedule rule, and a
concrete background task is produced for each value set. In this case, it leads to the six concrete
background tasks which all look very much alike, except they each point to a specific and unique time
sheet. Now these background tasks can be picked up for execution by the background task system. This
implies that each of these 6 time sheets will be submitted.

Next time the schedule rule runs, new time sheets that need to be submitted may have shown up (and
the time sheets that were just submitted will no longer show up since they are now submitted). In that
case, following the same recipe, concrete background tasks will be generated for those time sheets. Of
course, if the key generator results in nothing (e.g., all time sheets were already submitted) no concrete
background tasks will be produced by the schedule rule.

Use Key Generator ”UST”

Container: TimeSheets
Action: SubmitTimeSheet

Use KeyGenerator
(PeriodStart) as PeriodStart

Use KeyGenerator
(EmployeeNumber) as
EmployeeNumber

Schedule rule

1: Run Key Generator
Use Key
Generator ”UST”

From TimeSheets filter,
extract:

(PeriodStart,
EmployeeNumber)

if not submitted

2: Resulting Data set
1: (2020/11/02, Emp1)
2: (2020/11/02, Emp2)
3: (2020/11/16, Emp1)
4. (2020/11/23, Emp3)
5: (2020/11/30, Emp1)
6: (2020/11/30, Emp2)

3: For each row resulting from the key generator, combine with the
template information of the schedule rule to produce specific

background tasks

Container: TimeSheets
Action: SubmitTimeSheet

Time Sheet:
PeriodStart = 2020/11/02
EmployeeNumber = Emp1

Container: TimeSheets
Action: SubmitTimeSheet

Time Sheet:
PeriodStart = 2020/11/02
EmployeeNumber = Emp2

Container: TimeSheets
Action: SubmitTimeSheet

Time Sheet:
PeriodStart = 2020/11/16
EmployeeNumber = Emp1

Container: TimeSheets
Action: SubmitTimeSheet

Time Sheet:
PeriodStart = 2020/11/23
EmployeeNumber = Emp3

Container: TimeSheets
Action: SubmitTimeSheet

Time Sheet:
PeriodStart = 2020/11/30
EmployeeNumber = Emp2

Container: TimeSheets
Action: SubmitTimeSheet

Time Sheet:
PeriodStart = 2020/11/30
EmployeeNumber = Emp1

Key Generator

Output from Key Generator

R
esulting concrete background tasks

Background Task and Schedule Rules Setup

Background Tasks Guide 23

Key Generator Setup
The fundamental task of a key generator is to identify entities that should be in scope of a schedule rule.
Examples are:

• Identify time sheets that must be submitted

• Identify customers with overdue payments

• Identify invoices that are ready for printing

• Identify journals that are ready for posting

Setup of a key generator contains these components:

 Choose filters

 Include information fields

 Indicate rows that should be in scope of the schedule rule

Filters
A key generator is always based on a filter pane in some container. Some filter containers have intrinsic
restrictions applied. For example, the InvoiceSelection container will automatically filter away jobs that are
not invoiceable. Other containers, such as the Find_JobHeader, have no intrinsic restrictions.

Generally, if you need to generate keys for use in a specific container, you should choose the same
container’s filter for the key generator. Exceptions may apply, depending on the specific use case. For
example, if your key generator is intended for use with a schedule rule related to the InvoiceSelection
container, we recommend you use the InvoiceSelection filter as the basis for the key generator. In that
way, all the required intrinsic restrictions are automatically applied. If you used the filter of
Find_JobHeader instead, you would need a manual configuration of the key generator to filter away (for
example, jobs that are not invoiceable).

Information Fields
In addition to choosing which container to use as a filter, the key generator must know which information
fields should be passed on to the schedule rule. Typically, you will be interested in the formal key fields of
the database table, which is the basis for your key generator. When you enter a filter container,
Maconomy automatically derives these and suggests these fields under the “Extract Fields” section.

The fields that will be passed on to (and can therefore be used by) the schedule rule are:

• Fields listed under the “Extract Fields” group—Here you can list any of the fields available in
the filter container mentioned on this key generator. You don’t have to extract the key fields, but
usually it will make sense to do so. You can extract up to 10 different fields.

• Fields listed under the “Define Fields” group—Here you can define custom fields that will be
made available to the schedule rule. For each define field that you give a name, you must also
specify the value and the type of that field. The value may be defined by an expression, or it may
be a constant value. If you enter an expression, you can make use of any of the fields available in
the filter container of the key generator, you can make use of the standard functions of the
expression language (e.g., userDate() which returns the current date) as well as the standard
arithmetic operators such as addition (+), subtraction (-), multiplication (*) and division (/). A
typical use case for a define field is to specify the user name or “role instance” of a specific user
that should be used to carry out the background tasks produced by the schedule rule. Other
examples could be multiplying unit price and a quantity, or merely use the define fields to

Background Task and Schedule Rules Setup

Background Tasks Guide 24

increase the number of exported fields from 10 to 15 by setting the expression to the value of a
particular field.

Notice that the schedule rules can use these extracted fields for many different purposes, including
identifying the data entity being targeted by the container mentioned on the schedule rules. This explains
the need for exporting more than the formal key fields.

Example
To better understand how the define fields work, let us use an example:

Suppose our key generator extracts the fields: JobNumber and CustomerNumber. In addition, suppose
we have defined the following custom fields:

• RunAsUser [constant, String] = SystemUser2

• OpenMarkupPct [expression, Real] = if OpenCostpriceEnterprise = 0 then 0.0
else (OpenBillingPriceEnterprise – OpenCostpriceEnterprise) /
OpenCostPriceEnterprise * 100.0

Hence, the first, RunAsUser, is merely a constant value of type String: “SystemUser2”

The second, OpenMarkupPct, is a field of type Real defined as an expression. Essentially, it defines the
value as the ratio between the open mark-up and the open cost price (multiplied by 100%). In case the
divisor is 0, the value is set to 0.

Assume that the rows that are picked up through the filter container of the key generator are:

JobNumber CustomerNumber OpenBillingPriceEnterprise OpenCostPriceEnterprise

10251002 770-112-228 200.00 100.00

10251070 663-991-656 0.00 0.00

10252031 775-982-152 350.00 140.00

The rows generated by the key generator would be the following:

JobNumber CustomerNumber RunAsUser OpenMarkupPct

10251002 770-112-228 SystemUser2 100.00

10251070 663-991-656 SystemUser2 0.00

10252031 775-982-152 SystemUser2 150.00

This was made by extracting the “extract fields” for each row obtained by the key generator and by
computing the field OpenMarkupPct based on the values of the fields of the corresponding row. So, for
the first line, the value for OpenMarkupPct is computed as:

if 100.00 = 0 then 0.0 else (200.00 – 100.00) / 100.00 * 100.0
which evaluates to
(200.00 – 100.00) / 100.00 * 100.0
which evaluates to
100.00 / 100.00 * 100.0
which evaluates to
1.0 * 100.0

Background Task and Schedule Rules Setup

Background Tasks Guide 25

which evaluates to
100.0

The custom field RunAsUser has the same constant value (SystemUser2) on all rows.

A schedule rule based on this key generator can now use the fields: JobNumber, CustomerNumber,
RunAsUser and OpenMarkupPct.

Filter Rows
The final thing you need to take into consideration when defining a key generator is which of the rows
available in the filter container should translate to a background task.

For example, if your schedule rule is supposed to submit time sheets, it would be inefficient to create a
background task for every time sheet: we only need to identify the time sheets that are not already
submitted. And we probably don’t want to consider time sheets with a closing date in the future.

For this reason, a key generator is associated with an expression determining the rows to let through.
This condition is specified in the field Extracted Rows Match this Condition. This expression is defined
using the same kind of expressions as the ones used for defining custom fields. There are, however,
some limitations on the use of functions, including that you are not able to apply standard functions to the
field values in the database. You can, however, use functions to compute values that you compare to the
database fields.

Example
Following the example, to only include time sheets that are not submitted, you would write something like:

not Submitted

This would, however, not take into account that we only want time sheets from the past. To handle that,
we need to expand the condition by stating that the value of the field PeriodEnd must be in the past (i.e.,
before today’s date). Today’s date can be obtained through the function userDate. Our expression would
then look like:

not Submitted
and PeriodEnd < userDate()

If, additionally, we would want to only consider “recent” time sheets (for example, time sheets covering a
period no earlier than 60 days prior to today’s date), we would again make use of functions to compute
the date as it was 60 days earlier and require that the field PeriodStart must be at least that date. We can
combine the functions addDays and userDate to compute this. Our condition would become:

not Submitted
and PeriodEnd < userDate()
and PeriodStart >= addDays(userDate(), -60)

As an example, let us have a look at how the above expression would apply to a small sample data set.
Suppose the database contains the following time sheets:

EmployeeNumber PeriodStart PeriodEnd Submitted

Emp1 2020/11/02 2020/11/08 No

Emp2 2020/11/02 2020/11/08 Yes

Emp1 2020/11/16 2020/11/22 No

Emp3 2020/11/23 2020/11/29 No

Background Task and Schedule Rules Setup

Background Tasks Guide 26

EmployeeNumber PeriodStart PeriodEnd Submitted

Emp1 2020/11/30 2020/12/06 No

Emp2 2020/11/30 2020/12/06 No

Now, depending on the date the key generator/schedule rule runs, the resulting rows will differ. The only
row that would never be included is the second row, because this time sheet is already marked as
submitted.

Imagine that the key generator runs on November 28, 2020: Then the following rows would be extracted:

EmployeeNumber PeriodStart PeriodEnd Submitted

Emp1 2020/11/02 2020/11/08 No

Emp1 2020/11/16 2020/11/22 No

The reason is that the rows where the PeriodEnd has a value that is after November 28, 2020, will not be
considered, since the expression would be false for those rows.

Similarly, suppose the query was run on January 2, 2021. In that case, the result would be:

EmployeeNumber PeriodStart PeriodEnd Submitted

Emp1 2020/11/16 2020/11/22 No

Emp3 2020/11/23 2020/11/29 No

Emp1 2020/11/30 2020/12/06 No

Emp2 2020/11/30 2020/12/06 No

Now, the oldest time sheet (dating from November 02, 2020) falls beyond the 60 day rule and will not be
included. The remaining ones are all in the past and will be included.

In general, you will benefit from narrowing the number of rows generated by the key generator. In this
way, the number of background tasks produced by the corresponding schedule rule is smaller and more
specific, reducing the amount of work needed to be done by the Background Task system.

Tip
You can make a test-run of your key generator by running the Test Key Generation action. This
produces an Excel spreadsheet with the data to be extracted by the key generator if it was run now. Since
it may be difficult to get a sense of whether the data seems reasonable, you may want to include
additional fields in the test run. You can add up to 10 additional fields that will be included in the test run
output under the header “Show Fields During Test.” For example, sometimes you might want to get an
employee number, a customer name or some of the fields included in the filtering conditions, such as
Submitted. Run a test to ensure that you didn’t make an error or typo in your expression (such as writing
“or” instead of “and” or “>” instead of “<”.

Background Task and Schedule Rules Setup

Background Tasks Guide 27

Schedule Rule Setup
A schedule rule defines a template background task and describes how the fields extracted from the key
generator are used to populate the template. In addition, it also specifies when the schedule rule should
trigger.

First, let us consider the template information.

The schedule rule must specify:

• The container in which an operation should be performed—This information is fixed and cannot
vary. An example could be “TimeSheets”

• The pane in scope for the operation (e.g., card or table) —This information is fixed an cannot
vary (an example could be “Card”)

• The action to run—This information is fixed and cannot vary. An example could be
“SubmitTimeSheet” or “Update”

• How to identify the container key (e.g., a specific job, a specific time sheet, a specific customer)
—This information can vary depending on the result from the key generator

• A possible guard expression—This information can vary depending on the result from the key
generator

• How to handle possible output documents—This information can vary depending on the result
from the key generator

• How to handle possible input document requests—This information can vary depending on the
result from the key generator

• What data fields to modify as part of performing the operation (“wizard fields” for actions or field
values to update or set during creation) —This information can vary depending on the result from
the key generator

• Whether the action needs to be parameterized (may be used with Java extensions) and how—
This information can vary depending on the result from the key generator

All this information is found on one-off background tasks background tasks as well. The difference here is
that for many of these values, we can refer to the information from the key generator. In order to avoid
confusion with fields of the container related to the background tasks being produced, the information
from the key generator is referred to by the prefix “context.” So, if the key generator extracts a field
called EmployeeNumber, you refer to that field as context.EmployeeNumber in the schedule rule.

Each of the fields provided by the key generator are displayed in the schedule rule, and for each you can
choose how/if the corresponding value should be used to map into a key field on the concrete
background tasks produced. Typically, the mapping is trivial, and includes a straight-forward mapping of a
context field to the corresponding field in the container (without the context prefix).

Example

As an example, suppose our schedule rule references a key generator that extracts the fields
EmployeeNumber and PeriodStart from time sheets. Now, how do we map these fields into a specific
time sheet?

context.EmployeeNumber -> EmployeeNumber
context.PeriodStart -> PeriodStart

Background Task and Schedule Rules Setup

Background Tasks Guide 28

That is, for each row generated by the key generator: produce a background task where the keyfield
EmployeeNumber (right-hand side) gets the value from context.EmployeeNumber (the specific value
extracted as “EmployeeNumber” in the key generator). And similar for the key field PeriodStart.

The field mapping is not necessarily trivial, though. For example, suppose the key generator extracts the
field ProjectManagerNumber from jobs and that you want to use this number to identify an employee in
the Employee container on the schedule rule. The mapping would then be:

context.ProjectManagerNumber –> EmployeeNumber

In general, one background task is produced for every row extracted by the key generator. However, if
the schedule rule detects that duplicate background tasks will be generated, it will only produce one of
these. For example, if you want to run some action of every employee who is acting as a project manager
on some job, your key generator would extract the field ProjectManagerNumber from the Jobs filter. Since
a given employee could be managing many projects, this gives the potential for multiple background
tasks. Since the schedule rule automatically detects this, only one background task would be generated
for each employee.

Context Fields
For each context field, you can choose whether its value should be used to identify which user(-role) the
produced background task should be run as. You can choose that for one of the context fields by
specifying that the value should translate into a user(-role). The possible options are:

• Employee—The concrete value is interpreted as an employee number. The user to run-as will be
a user which is associated with this employee. If several user profiles are associated with the
employee one of them will be used. A non-administrator profile will be chosen over the others,
though. The background task will run as the user-role which is specified as the default
background task role of the chosen user.

• User—The concrete value is interpreted as a user name. The background task will run as the
user-role which is specified as the default background task role of that user.

• Role-Instance—The concrete value is interpreted as a user-role instance key. The background
task will run as the user-role having the specified instance key value.

If none of the context fields are marked with a “Run-as” option, the background tasks produced by this
schedule rule will run as the background task administrator user specified for your system.

The field “Record Condition” is used to specify a “guard” condition. For actions running in a table pane
where multiple records may be found, it can also be used to identify a specific (or a few) lines that are
affected by the operation. The produced background task will contain this Record Condition (expanded
with the context-values from the key generator). When the background task runs, it will perform the
specified operation on all rows where the resulting expression evaluates to true. In card panes there is
only one row, so a Record Condition on a card pane will determine whether to really apply the operation.
This is very useful in several cases.

Example
For example, assume that our schedule rule produces background tasks that submits time sheets.
Assume that the key generator extracts only time sheets that are not submitted. When the schedule rule
triggers, it will produce a number of background tasks, one for each time sheet. Later (maybe only a short
while later) the concrete background tasks will be picked up for execution. But what happens if some user
manually submitted one of these time sheets in between? If a time sheet has already been submitted, an
error “to the end user” would occur when the time sheet is attempted submitted. Instead of ending up with

Background Task and Schedule Rules Setup

Background Tasks Guide 29

background tasks that report a failure because it is no longer possible to submit a given time sheet, it is
better to instruct the background task to simply ignore running the action if a certain condition holds. For
example, we could specify the record condition:

not Submitted

When the generated background task is run, this condition is evaluated immediately before a
SubmitTimesheet is attempted. If the time sheet is already submitted at that time, the above condition
would evaluate to false, and it will not run. The exact condition can be made dependent on values from
the key generator by referring to the context.fieldname in that expression.

For table-panes, the record condition can be used to choose for which (if any) of the lines the action
should be performed. For example, suppose we want our schedule rule to delete all time sheet lines with
0 hours. The schedule rule would specify the action to be Delete on the TimeSheet (table). If we didn’t
specify any record condition, all lines would be deleted! Since that is not what we want, we would specify
as record condition:

WeekTotal = 0

With that, only lines where the WeekTotal is 0 will be deleted.

If an action specified by ta background task produces a document/file as a side-effect, the background
task system should know what to do with the document. Normally, and end-user would receive a
document and decide what to do about it. But there are no end-users involved with background tasks.
You can therefor specify what to do about such possible documents:

• Explicitly don’t care and let the document be thrown away

• Choose a file-server location where the output document is stored

• Choose an e-mail recipient for the documents; an email with the documents attached will be sent
to that recipient if the action resulted in documents

• Choose a document archive to store the output documents

You can specify several of these options depending on the file pattern. For example, you can store PDF-
files in one fileserver location, and send Excel spreadsheets to a specified e-mail address.

For the e-mail and document archive options, you can specify these as expressions. And the expressions
can reference to the values of the key generator by referencing the context.fieldname values.

For example, suppose the key generator extracts a field called ElectronicMailAddress, and assume that
this contains the email-recipient that we would want to have PDF-documents sent to.

We can then specify a file-output handler (using e-mail) as:

Handle Files Like: *.pdf
E-mail To : if context.ElectronicMailAddress = "" then
"maconomyowner@yourcompany.com" else context.ElectronicMailAddress

Hence: if the email-address that we get from the key generator is empty we choose some static internal
email address. Otherwise, we use the value extracted by the key generator. It is also possible to just
specify a static e-mail address. Maconomy will automatically figure out if the value is an expression or a
static e-mail address.

Similarly, you can specify output handlers that makes use of document archives as well as handlers for
input files, specifying a possible document archive from which to fetch requested input documents.

Adding User Input Lines
Sometimes you need to enter information when running an action. For example, the “Copy Budget” action
in the JobBudgets container lets you choose the jobnumber, budget type and revision number of the

Background Task and Schedule Rules Setup

Background Tasks Guide 30

budget you want to copy into the targeted budget. Other times, you want the generated background tasks
to make an update (i.e., changing some field values) or you want to create a new instance (e.g., a new
time sheet or a new time sheet line). In such cases, you need to tell the system what values should be
entered by the background tasks. This is done by adding lines of type “User Input” in the table underneath
the schedule rules. For each field you want to change/set, you must specify:

• The name of the field

• The value of the field, either as a constant value or as an expression. The expressions can refer
to the values of the key generator by prefixing the field with context.fieldname.

For example, suppose you want a schedule rule to generate background tasks for every non-submitted
time sheets where there are days with too few hours. In that case, you want the background task to
create a new time sheet line on a special “Missing Time Sheet” job and task, and enter the missing
number of hours on the Monday.

Assuming that the key generator has extracted the missing hours as a field, MissingHours, we can make
a schedule rule that performs a “Create” in the table. The following User Input would then be specified:

FieldName: JobNumber Value: J-MissingTime (constant)

FieldName: TaskName Value: MissingTime (constant)

FieldName: NumberDay1 Value: context.MissingHours (expression)

In a similar way, you can specify parameters (possibly used by extensions) to the background task action.
The only difference is that the line type will be “Parameter” instead of “User Input”.

The idea behind schedule rules is that they are configured to run at scheduled and recurring intervals.
This is triggered through the “Trigger Time Pattern”. It has the format of a UNIX cron pattern. Basically,
such a pattern consists of five parts:

 Minute pattern. For example “5” to mean “five minutes past”, “/5” meaning every fifth minute. The
“catch all” pattern “*” is strongly discouraged: that would make the rule run every minute when all
other patterns match.

 Hour pattern. For example “8” meaning when the hour is 8am. “20” meaning when the hour is
8pm, “8-17” meaning all hours from 8am to 5pm. The catch all pattern “*” means every hour.

 Days of month pattern. For example “1” meaning the first day of the month, “15” meaning the
fifteenth day of the month. “L” means the last day of the month, independent of the number of
days in the given month. The catch all pattern “*” means every day of the month.

 Month pattern. “1” or “jan” meaning January, “4-6” meaning april, may and june. The catch all
pattern “*” means every month.

 Days of week pattern. For example “0” or “sun” means Sunday, “3-5” or “wed-fri” means
Wednesday, Thursday and Friday, “2,6” means Tuesday and Saturday. The catch all pattern “*”
means all days of the week.

These patterns are used in combination to specify time intervals. Examples are:

• /15 8-17 * * mon-fri means: every fifteenth minute from 8am to 5pm, but only from Monday to
Friday,

• 0 22 * * * means: at 10pm every day

• * 22 * * * means: every minute from 10:00pm to 10:59pm. Not recommended! You
probably meant 0 22 * * *

• 0 22 L * * means: at 10pm on the last day of each month

In addition, you can combine several patterns by separating them by the pipe (“|”) character.

Background Task and Schedule Rules Setup

Background Tasks Guide 31

Sometimes you only want the schedule rule to run from a certain date, or in a specific date interval. You
can do that by specifying a validity date interval on the schedule rule. For example, specifying the interval
as 2021/06/01 – 2025/12/31 means that, no matter the pattern, the schedule rule will only be considered
from June 1, 2021 until December 31, 2025.

Other times you want a rule to run a few times, maybe only once. You can obtain that by specifying that
the schedule rule should only run a maximum number of times. Once you do that, you can enter the
number of runs left. Every time the schedule rule runs, the number will decrease. A value of 0 means that
it will not run again. If you wish, you can always edit this number to increase or decrease it.

Chained Tasks
By default, the concrete background tasks produced by a schedule rule will be made in a way that allows
all of them to be executed in parallel. The actual limit on how many can be executed in parallel depends
on the number of coupling services and how many background task execution threads they each have.
Sometimes the background tasks will need access to shared resources such as a specific database
record. It could by a system number series or a specific customer. This means that even if the concrete
tasks are executed in parallel, they will really just be forced into being executed in sequence: for example,
three such concreate background tasks may all need access to a shared resource. One of them gets
access first, and the other two will be held back by a database lock (but this wait will still be done by one
of the available background task execution threads). Eventually, the first one is done, and the database
lock is released. Then one of the two others will get the lock, and can continue. The last one is still
awaiting that the second one finishes and releases the lock. And the, at last, the third one can continue.
This is obviously a bad use of the background task execution threads that might as well have executed
other tasks that would not need to wait for the first. For this reason, it is possible to set the flag “Chained
Tasks” on the schedule rule. When this flag is set, the concrete background tasks will be created in a way
that enforces the background task system to only pick up one of them at a time. You can also have the
schedule rule produce a number of such sequences, depending on some value from the key generator.
For example, you could make the chaining group on context.CompanyNumber to make one such “chain”
of concrete background tasks for each associated value of the “CompanyNumber” field extracted by the
key generator.

Low Priority Tasks
Finally, you can specify that the background tasks produced by the schedule rule should be marked as
having “low priority”. Doing so implies that – with a certain probability – other background tasks that are
marked with normal priority may be picked up for execution even though its due date/time is later than
that of a low-priority background task. Low-priority background tasks will eventually be executed, but they
will not completely block other normal-priority background tasks that may have been scheduled to run at a
slightly later date/time.

Different Kinds of Schedule Rules
The above settings are those that are used to produce background tasks from a schedule rule. The type
of such schedule rules are called “Single Schedule Rule”. There are other kinds of schedule rules:

• Single Schedule Rules (as described above)

• Sub Schedule Rules—These are like the Single Schedule Rules, but they cannot be scheduled
to run at a certain time pattern. Sub rules are used together with Sequential Schedule Rules (see
below)

• Sequential Schedule Rules—Such rules can be scheduled with a time trigger pattern, but they
do not themselves produce background tasks. Instead, when such a rule triggers, it will run a
number of associated sub schedule rules (see above) in sequence: For sequential schedule

Background Task and Schedule Rules Setup

Background Tasks Guide 32

rules, you can enter an ordered list of sub schedule rules. This means that the first sub schedule
rule will be run when the sequential schedule rule triggers. Once all the concrete background
tasks of the first sub schedule rule have all been executed, the next sub schedule rule will be
triggered. And so on.

• Interleaved Schedule Rules—This kind of schedule rule is deprecated and will be removed.
This kind of schedule rule should no longer be used; use the sequential schedule rule instead.

As an example of a sequential schedule rule, suppose we want to automatically submit all time sheets
that needs to be submitted, and – once that has been done – we want to approve all time sheets that
have been submitted, but not approved.

This can be achieved by making a sequential schedule rule, which in turn lists two sub schedule rules:

1. The first sub schedule rule is configured (as explained earlier) to submit time sheets.

2. The second sub schedule rule is configured (in a similar way) to approve time sheets.

There are no requirement that the sub schedule rules must relate to the same container. It is perfectly
possible to have one sub rule relate to invoicing and a subsequent one relate to posting journals. The
only thing is that the sub rules are carried out in order, and each one is triggered immediately after the
last background task of the preceding sub rule has been carried out. It is much better to schedule
dependent schedule rules in this way than choosing “wide apart” schedules; doing so could lead to either
too much time in between the schedule rules – or in maybe too little time in between.

Background Task and Schedule Rules Setup

Background Tasks Guide 33

Using Expressions in Input Fields
E-mail (and other) fields used for document handling on rules and tasks handle as expression fields as
well as e-mail addresses. Here, you can use data from the context fields to complete these fields.

For the fields E-mail From and E-mail To, the system can automatically determine if the field contains a
valid e-mail address expression. However, for the Document Archive number and subject / body fields in
the e-mail, you must explicitly specify if it is an expression or not (using the Yes/No expression field).

Background Shading
Background shading offers at-a-glance information for a field type. Expressions are indicated via purple
background color. Without color on the field, it is an email.

This convention is used in these areas:

 Input Document Handling (Using Doc. Archives)

 Output Document Handling (Using E-mail)

 Output Document Handling (Using Doc. Archive

 Send Email on Completion (fields with Expr. column/field to the right of them).

To use expressions in Output Document Handling / Email:
1. Go to Background Tasks > Management > List of Scheduled Rules.

2. In the E-mail To field, select an expression from the Context Field Name field.

3. If this is a Document Archive number field, or subject / body field in the email notifications, then
you must set the Expr. value to Yes to explicitly say that this is an expression.

Using Extended Test Bed
The Test Bed functionality enables you to test your rule without actually activating it so that you can see
in action how it works and if it produces a result that you expect. For ease of use and versatility, the Test
Bed includes color-coded format for at-a-glance status, as well as key actions and a wizard. Additionally,
now you can test the rules before the rule is activated.

Features include:
 Origin field on a task defines the rule from which it generated. This field is also used when

checking if any pending task from a rule exists. In this column, you can select a new value called
Test Bed, so that you can filter by this type or by Manual, Schedule Rule, API, or Core Application

 If needed, generate tasks from a disabled rule.

 New Schedule Rule column in the Generated Background Tasks sub-tab enables you to see
where the background task started.

 The Generated Background Tasks sub-tab shows you the tasks that were generated when the
rule was executed.

 You can test a rule before you activate it.

To test background tasks in the Test Bed:
1. Go to Background Tasks > Setup > List of Scheduled Rules > Test Bed.

2. Click Test Schedule Rule. A wizard displays.

3. In the Max No. of Test Tasks field, enter the number of tests you would like to generate. This is
helpful if you have thousands of tasks, but for example you would like to only test 50 or so to

Background Task and Schedule Rules Setup

Background Tasks Guide 34

ensure that the rule is working correctly. Specify 0 (zero) for no limit / to generate all in the
database.

4. Select Activate Generated Test Tasks to specify whether tasks must be activated. If you do not
want the tasks activated, deselect this field.

5. Section Generate Test Tasks in the Background to continue to have access to the UI and
related functionality while background tasks run.

Test Scheduled Rule Time Pattern
In the Test Bed assistant, used for testing scheduled rules, a new Show Next Scheduled Rule action
shows the next fifty (50) execution times for the current rule. This action is beneficial for debugging, and is
used to verify that the time pattern entered for the rule results in the wanted executions. For ease of use,
you can also run / test the rule prior to activating the rule.

Note: Take into consideration the data in the No. of Runs Left field and the valid interval when
evaluating execution times.

The new functionality also enables you to test scheduled rule time patterns before you activate them.

In the Test Bed area, a new Test Schedule Rule action triggers a wizard which enables you to test
schedule rules.

Use this action to verify that the time pattern entered for the rule resolves in the needed executions.

Note the ‘No. of Runs Left” and the valid interval should also be taken into consideration when execution
times are resolved.

Low Priority Tasks
There are times where it makes sense to run tasks with a lower priority than usual. A good example of
this is a notification calculation, where a lot of time is spent on non-critical tasks, which are generated to
execute at the same time. This load can block all Background Task resources for hours and prohibit other
more critical tasks from being executed.

This is resolved by supporting tasks of two priorities (standard and lower).

In the default configuration, standard priority tasks are picked approximately twice as often by a polling
thread as low priority tasks when both standard and low priority tasks exists and are due – even though
the due time of the low priority tasks are clockwise before the standard priority tasks.

The priority ratio between standard and low priority tasks (default: 70%) can be configured, but cannot be
raised over 90%. This is done to avoid starvation of low priority tasks. On the other hand, setting a value
of 0% will make the Maconomy ignore the setting of low/standard on tasks/rules and thereby make the
system as before this feature was introduced.

For at-a-glance use, low priority tasks have a light blue foreground color status panes.

To set tasks as low priority:

1. Go to Background Tasks > Setup > List of Schedule Rules > Schedule Rule.

2. In the Background Task area, select the Low Priority check box.

To set tasks as low priority:

3. Go to Background Tasks > Setup > List of Schedule Rules > Schedule Rule.

Background Task and Schedule Rules Setup

Background Tasks Guide 35

4. In the Background Task area, select the Low Priority check box.

Hold Tasks Rule If Tasks Are Still Pending
You can hold tasks even if tasks from the previous generation are still waiting to execute. A popup field
indicates if a rule should run now, or later.

To create rule to hold tasks:
1. Go to Background Tasks > Schedule Rules.

2. In the Name field, select the name of the Schedule Rule to update.

3. In the When Last Run Not Complete field, choose:

 Run Anyway — If you choose this option then when the rule is triggered, it will run
regardless if there are tasks that have not yet finished from the previous run of this rule.

 Skip — Select this option to skip the current run of the rule if there exist tasks that have
not yet finished from the previous run of this rule. Additionally, the Next Due Date and
Time are updated as if this rule ran successfully. For example, if the rule is set up to run
every minute and the next run is at 3:01 p.m., but there are tasks from previous runs that
have not yet finished, then the rule is skipped and the Next Due Time is updated to 3:02
p.m.

 Postpone — Similar to Skip, except the Next Due Time is NOT updated. If we take the
example above then the rule will be skipped, but the Next Due Time will NOT be updated
and will stay as 3:01 PM. Select this option to skip if there are existing tasks from the
previous run, but you want to make sure the next due time is not updated, so that the rule
can be run as soon as possible.

Notes:

1. The time in the Next Due field is not updated when a rule is rejected due to existing tasks.

2. The Schedule Rule field tells the name of the rule from which each task originates. Select to
show Tasks with the reference to the rule generating them. This enables you to easily check if
un-executed tasks still exist. If the task was created manually (and not from the rule) this field is
empty

3. Do-not-generate is default for new rules created.

Requests for Pending Tasks
We have reduced the number of request for pending tasks from N times a minute (where N is the number
of background task threads) to once a minute. This reduces the load on the system and makes it possible
to configure a large number of background task threads without wasting resources in idle situations.

The following items improve efficiency:

 A queue holds all pending threads. When the poll interval is up, the queue releases a thread (X),
which will ask for a pending task.

o If no pending tasks exists, the thread X returns to the queue and new thread is released
when a new poll period is up.

Background Task and Schedule Rules Setup

Background Tasks Guide 36

o If, on the other hand, a task (A) is pending, the thread (X) signals to the queue that there
may be more pending tasks before starting to execute the task (A). This signal leads the
queue to release another thread (Y), which might pick-up another pending tasks (B) –
and release yet another thread (Z) from the queue, before execution of the tasks (B)
begins.

In this way, threads picking up tasks which lead to new active threads keep the process
running until no more tasks are pending and thereby the threads queue up again.

 If no threads are in the queue when a release signal is received, the queue counts needed
threads and a new thread is released as soon as it enters the queue. This process repeats as
long as the needed thread counter is larger than zero (0).

 There is a thread queue-instance for each short-name in a Coupling Service as short-name are
handled independently in relation to the batch framework threads.

Retry Scheduling
For efficiency in retry scheduling, and to avoid tasks scheduled at the same time, the default number of
retries is five (5) and the amount of time between retries is randomized.

The randomized time-pattern is calculated in the following way. There is a parameter defining the
rescheduling delay (default 30 seconds). A task is rescheduled a number of delays plus a random amount
of time, giving a result in the interval between the current rescheduling and the (possible) next
rescheduling.

For example:

Rescheduling
Count

1 2 3 4 5 6, 7, ...

Delay Period 1 3 5 7 9 9

Randomized
Delay %

100 - 299 300 - 499 500 - 699 700 - 899 900 - 1099 900 -1099

When a task is rescheduled, all existing log-lines are removed from the task and a single line states that
the task is rescheduled for the [number] time.

Document Archives
A Document Archive is created automatically by the system when you execute a task, if needed, for ease
of use.

On tasks and rules, callback-handlers using document archive automatically create the document archive
if it does not exist. This is similar to the functionality when using folders in the file system, as these are
also created if they do not exist.

Chained Background Tasks
At times it is necessary to specify that a number of background tasks (defined by some properties) should
be executed such that only one task from the group is executed at any time. The Chained Task
Execution field and a grouping field are introduced on rules.

Background Task and Schedule Rules Setup

Background Tasks Guide 37

If the grouping field is assigned with field name from the rule context, tasks generated by the rule are
grouped in a number of chains, where all the tasks in one chain have the same value for the context field.

For example, one group-field is CompanyNumber. If CompanyNumber is defined as the group field, all
tasks with the same context CompanyNumber generated from the current rule are chained and executed
in a sequence, in such a way that all the tasks (for a given company) are executed alone, (meaning,
without any other task from the same company being executed at the same time). If the grouping field is
not assigned (but the chained execution is enabled), all tasks generated by the rule are linked in one
chain and all these tasks are executed without overlap.

The Recalculate User Notifications rule supports this feature. If a user has multiple user roles, then
notifications for those roles are recalculated in a chain / succession.

Expressions in Background Tasks

Background Tasks Guide 38

Expressions in Background Tasks
Some of the previous chapters included several examples of using expressions in various fields in
background task related containers. It should be clear by now that the difference between a fixed value
and an expression is that a fixed value is essentially a value that is taken “as is” without the need to
evaluate it. On the other hand, an expression is something that may be evaluated at some point to
determine its final value.

The advantage of using expressions over fixed values is that they allow to encode more complex
workflows. I.e. expressions allow to produce background tasks that depend on the underlying context
they run in. For example, instead of always sending an email to a fixed email address, you might want to
send it to the underlying employee that the background task executes on.

Generally speaking, we could categorize supported expressions into 4 types:

1) Container Field References
2) Context Field References
3) Standard Functions
4) Combined Expressions

Container Field References
The simplest supported expression is a container field reference. Whenever we create a new background
task, we must always specify an underlying container the task should execute in. Once we have done
that, we will be able to reference all the underlying fields that exist in that container, including any custom
fields and variables. This is particularly useful when trying to filter out records based on some condition or
when trying to update a field based on another field in the same container.

As an example, let us assume that we want to create a single background task that will submit all the time
sheets that have not been submitted yet and belongs to the employee with number ‘11’. In this example
we will have to reference at least 2 fields on the time sheets: the “Submitted” field and the
“EmployeeNumber” field. An expression like that could look as follows in our “Record Condition” field:

 not Submitted and EmployeeNumber = '11'

When such background task runs, each timesheet is evaluated against this condition. First, the
“Submitted” and “EmployeeNumber” values are substituted with the values from the current timesheet
and then the expression is evaluated. If the expression evaluates to true, the timesheet is submitted and
otherwise it is not, i.e. the timesheet is skipped and no action is performed on it.

As another example, let us say that we (for some valid reason) would like to transfer the value from
“EmployeeNumber” field to “Remark3” field and the value from “Name1” field to “Remark4” field in our
Employees container. As shown in the table below, setting this up is fairly straightforward. The key thing
to remember here is that you must explicitly mark the “Expr.” field to indicate that the specified value
should be interpreted as an expression and not as a fixed value. If we had not marked the expression
field then the “Remark3” and “Remark4” fields would have simply been set to textual values
“EmployeeNumber” and “Name1” respectively, and not evaluated against the underlying employee in
order to extract the values from these fields.

Line Type Field/Parameter Name Value Expr.

User Input Remark3 EmployeeNumber Yes

User Input Remark4 Name1 Yes

Expressions in Background Tasks

Background Tasks Guide 39

In general, most fields that support expressions allow to reference container fields. As shown in the first
example you may reference multiple container fields in an expression or a single container field in an
expression as shown in the second example.

Context Field References
Context fields are fields that are extracted from “Key Generators” and made available on “Schedule
Rules”. As it was mentioned in previous chapters, key generators can extract fields from the chosen
container. Moreover, it allows you to define your own five custom fields with your chosen name, field type,
and value. Both, extracted fields and defined fields can be referenced in expressions on your schedule
rule. Context fields can be recognized easily as they must always be prefixed with the “context.” prefix.

As an example, let us assume that our key generator extracts a list of employees, including their name
and email address, that are missing to submit their timesheets. The schedule rule then creates a
background task for each employee that will send an email, which will remind the employee to submit
their time sheets.

To achieve this, we could utilize the “Send Email on Completion” functionality on our schedule rule, since
all of the fields support expressions. It would look as follows:

Field Value Expr.

To context.ElectronicMailAddress Yes

Subject Please submit your timesheet No

Body 'Dear ' +
context.EmployeeName + ' you
are missing to submit your
timesheet.'

Yes

As you can see the fields “To” and “Body” are marked as expressions, meaning that any references to the
“context.” fields will be evaluated and substituted with the value of the underlying employee.

An important difference between container field references and context fields references is that container
field references are only evaluated when the background task is executed, while the context field
references are evaluated when the schedule rule runs. In this particular example it means that in the
tasks created from this schedule rule the references to “context.ElectronicMailAddress” and
“context.EmployeeName” will already be substituted with the correct values.

Standard Functions
Standard functions are a collection of useful Maconomy built-in functions that can be used in the fields
that support expressions in key generators, schedule rules, and background task containers.

As an example, let us assume that we want to delete all the employees that are blocked and have not
been changed for 2 or more years. One way to achieve this is to compute the difference between the
changed date on employee and the current date. If we assume that our background task is set up to run
the “Delete” action in the Employees container, then our “Record Condition” might look as follows:

 Blocked and yearsBetween(ChangedDate, currentDate()) >= 2

“Blocked” and “ChangedDate” are field references in the underlying Employees container.
yearsBetween() is standard function that returns the number of years between the two given dates, while
currentDate() is a standard function that returns today’s date.

Expressions in Background Tasks

Background Tasks Guide 40

Maconomy supports a lot of standard functions for working with dates, times, strings, numeric types (i.e.
amounts, reals, integer), and much more. A comprehensive list of all the available standard functions with
their descriptions and examples of how to use them is provided in the “Supported Standard Functions”
chapter.

Combined Expressions
Combined Expressions in itself is not a special type of expression category, but rather an attempt to
clarify that all of the previously mentioned expression types (i.e. container field references, context field
references, and standard functions) can be combined and used in a single expression in certain fields. As
a rule of thumb, if a field supports referencing container fields and/or context fields, it is very likely that it
also supports standard functions. We have already seen an example of this in the previous chapter,
where we referenced both, container fields and standard functions, in our record condition.

In fact, in the Schedule Rules container, certain fields even support referencing container fields, context
fields, and standard functions in the same expression! For example, perhaps one day you might need to
specify the following restriction on your Schedule Rule:

not isAdministrator() and not contains(uppercase(NameOfUser), 'PATRICK') and
yearsBetween(ChangedDate, currentDate()) >= context.MaxInactivityYears

The parts highlighted with red color are standard functions; the green parts are container field references;
and the blue part is a context field reference.

Expressions Supported in Different Containers
The tables below describe which fields in different containers support expressions and what type of
expressions.

Key Generators

 Supported Expressions

Internal Field Name External Field Name Standard
Functions

Container Field
References

Combined
Expressions

SemanticFieldName1 Extract Field Name
1

✖ ✔ ✖

SemanticFieldName2 Extract Field Name
2

✖ ✔ ✖

SemanticFieldName3 Extract Field Name
3

✖ ✔ ✖

SemanticFieldName4 Extract Field Name
4

✖ ✔ ✖

SemanticFieldName5 Extract Field Name
5

✖ ✔ ✖

SemanticFieldName6 Extract Field Name
6

✖ ✔ ✖

Expressions in Background Tasks

Background Tasks Guide 41

 Supported Expressions

SemanticFieldName7 Extract Field Name
7

✖ ✔ ✖

SemanticFieldName8 Extract Field Name
8

✖ ✔ ✖

SemanticFieldName9 Extract Field Name
9

✖ ✔ ✖

SemanticFieldName10 Extract Field Name
10

✖ ✔ ✖

DefinedFieldValue1Var Defined Field Value
1

✔* ✔* ✔*

DefinedFieldValue2Var Defined Field Value
2

✔* ✔* ✔*

DefinedFieldValue3Var Defined Field Value
3

✔* ✔* ✔*

DefinedFieldValue4Var Defined Field Value
4

✔* ✔* ✔*

DefinedFieldValue5Var Defined Field Value
5

✔* ✔* ✔*

InfoSourceField1Name Information Field 1 ✖ ✔ ✖

InfoSourceField2Name Information Field 2 ✖ ✔ ✖

InfoSourceField3Name Information Field 3 ✖ ✔ ✖

InfoSourceField4Name Information Field 4 ✖ ✔ ✖

InfoSourceField5Name Information Field 5 ✖ ✔ ✖

InfoSourceField6Name Information Field 6 ✖ ✔ ✖

InfoSourceField7Name Information Field 7 ✖ ✔ ✖

InfoSourceField8Name Information Field 8 ✖ ✔ ✖

InfoSourceField9Name Information Field 9 ✖ ✔ ✖

Expressions in Background Tasks

Background Tasks Guide 42

 Supported Expressions

InfoSourceField10Name Information Field 10 ✖ ✔ ✖

Restriction Extracted Rows
Match This
Condition

✔ ✔ ✔

* Values entered in these fields will only be interpreted as expressions when the “Expr.” field is set to Yes.

Schedule Rules

 Supported Expressions

Internal Field Name External
Field Name

Standard
Functions

Context Field
References

Container
Field
References

Combined
Expressions

LinkToContainerKeyField1Va
r

Link To
Container
Key Field 1

✖ ✖ ✔ ✖

LinkToContainerKeyField2Va
r

Link To
Container
Key Field 2

✖ ✖ ✔ ✖

LinkToContainerKeyField3Va
r

Link To
Container
Key Field 3

✖ ✖ ✔ ✖

LinkToContainerKeyField4Va
r

Link To
Container
Key Field 4

✖ ✖ ✔ ✖

LinkToContainerKeyField5Va
r

Link To
Container
Key Field 5

✖ ✖ ✔ ✖

LinkToContainerKeyField6Va
r

Link To
Container
Key Field 6

✖ ✖ ✔ ✖

LinkToContainerKeyField7Va
r

Link To
Container
Key Field 7

✖ ✖ ✔ ✖

Expressions in Background Tasks

Background Tasks Guide 43

 Supported Expressions

LinkToContainerKeyField8Va
r

Link To
Container
Key Field 8

✖ ✖ ✔ ✖

LinkToContainerKeyField9Va
r

Link To
Container
Key Field 9

✖ ✖ ✔ ✖

LinkToContainerKeyField10V
ar

Link To
Container
Key Field
10

✖ ✖ ✔ ✖

LinkToContainerKeyField11V
ar

Link To
Container
Key Field
11

✖ ✖ ✔ ✖

LinkToContainerKeyField12V
ar

Link To
Container
Key Field
12

✖ ✖ ✔ ✖

LinkToContainerKeyField13V
ar

Link To
Container
Key Field
13

✖ ✖ ✔ ✖

LinkToContainerKeyField14V
ar

Link To
Container
Key Field
14

✖ ✖ ✔ ✖

LinkToContainerKeyField15V
ar

Link To
Container
Key Field
15

✖ ✖ ✔ ✖

RecordConditionExpr Record
Condition

✔ ✔ ✔ ✔

OutputEmailTo1 Output E-
Mail To 1

✔** ✔** ✖ ✔**

OutputEmailFrom1 Output E-
Mail From 1

✔** ✔** ✖ ✔**

Expressions in Background Tasks

Background Tasks Guide 44

 Supported Expressions

OutputEmailTo2 OutputEmai
lFrom2

✔** ✔** ✖ ✔**

OutputDocArchNumber1 Output
Doc. Arch.
No. 1

✔* ✔* ✖ ✔*

OutputDocArchNumber2 Output
Doc. Arch.
No. 1

✔* ✔* ✖ ✔*

InputDocArchNumber1 Input Doc.
Arch
Number 1

✔* ✔* ✖ ✔*

EmailToOnCompletion Email To ✔** ✔** ✖ ✔**

EmailFromOnCompletion Email From ✔** ✔** ✖ ✔**

EmailSubjectOnCompletion Email
Subject

✔* ✔* ✖ ✔*

EmailBodyOnCompletion Email Body ✔* ✔* ✖ ✔*

GroupByContextFieldName Group By
Context
Field Name

✖ ✔ ✖ ✖

Table Pane

ParameterValueVar Value ✔* ✔* ✔* ✔*

* Values entered in these fields will only be interpreted as expressions when the “Expr.” field is set to Yes.

** Values entered in these fields will only be interpreted as expressions if the entered value is not a valid email
address(-es).

Background Tasks

 Supported Expressions

Internal Field Name External Field Name Standard
Functions

Container Field
References

Combined
Expressions

KeyField1Name Key Field 1 Name ✖ ✔ ✖

Expressions in Background Tasks

Background Tasks Guide 45

 Supported Expressions

KeyField2Name Key Field 2 Name ✖ ✔ ✖

KeyField3Name Key Field 3 Name ✖ ✔ ✖

KeyField4Name Key Field 4 Name ✖ ✔ ✖

Table Pane

ParameterValueVar Value ✔* ✔* ✔*

* Values entered in these fields will only be interpreted as expressions when the “Expr.” field is set to Yes.

Supported Standard Functions
In this chapter we described all the different type of standard functions that are supported in expression
fields. Note that all of these functions are also supported in the MDML language.

Date and Time Functions
The table below describes date and time functions for manipulating Maconomy’s Date and Time values.
Note that operations that take Date or Time might throw an exception if an empty date or time is provided
i.e. NullDate or NullTime.

Function Description Examples

currentTime(): Time Returns the current server time. currentTime() = time(12,58,18)

currentDate(): Date Returns the current server date. currentDate() = date(2020,12,11)

userTime(): Time Returns the current time on the
client. Note that the userTime()
and currentTime() will give the
same results when using them
in background task expression
fields, since background tasks
are always run on the server
side.

userTime() = time(12,58,18)

userDate(): Date Returns the current date on the
client. Note that the userDate()
and currentDate() will give the
same results when using them
in background task expression
fields, since background tasks

userDate() = date(2020,12,11)

Expressions in Background Tasks

Background Tasks Guide 46

Function Description Examples
are always run on the server
side.

NullDate: Date Returns a date that is smaller
than any other date. This
function can be used to check
whether a date field is empty.

NullDate < date(1200, 1, 1) = true

NullTime: Time Returns a time that is smaller
than any other time. This
function can be used to check
whether a time field is empty.

NullTime < time(3,20,55) = true

date(year: Integer, month:
Integer, day: Integer): Date

Constructs a new date from the
given year, month and day and
returns it.

date(2015,11,7) = 2015-11-07

date(98,5,16) = 1998-05-16

year(date: Date): Integer Returns the year part of the
given date.

year(date(2015,11,7)) = 2015

year(date(98,5,16)) = 98

month(date: Date): Integer Returns the month part of the
given date.

month(date(2015,11,7)) = 11

day(date: Date): Integer Returns the day part of the
given date.

day(date(2015,11,7)) = 7

week(date: Date): Integer Returns the week number of the
given date.

week(date(2017,12,31)) = 52

week(date(2020,12,31)) = 53

intWeekday(date: Date):
Integer

Returns the week day (as an
Integer) of the given date.

intWeekday(date(2015,11,7)) = 6

stringWeekday(date: Date):
String

Returns the week day (as a
String) of the given date.

stringWeekday(date(2015,11,7)) =
Saturday

yearsBetween(date1: Date,
date2: Date): Integer

Returns the number of years
between two dates.

yearsBetween(date(1998,5,16),
date(2015,11,07)) = 17

yearsBetween(date(2015,11,07),
date(1998,5,16)) = -17

yearsBetween(date(2015,11,07),
date(2015,05,11)) = 0

monthsBetween(date1:
Date, date2: Date): Integer

Returns the number of months
between two dates.

monthsBetween(date(2015,05,11),
date(2015,11,07)) = 5

daysBetween(date1: Date,
date2: Date): Integer

Returns the number of days
between two dates.

daysBetween(date(2015,10,30),
date(2015,11,07)) = 8

Expressions in Background Tasks

Background Tasks Guide 47

Function Description Examples
daysBetween(date(2015,11,11),
date(2015,11,07)) = -4

addYears(date: Date,
years: Integer): Date

Adds years to the given date
and returns the resulting date.

addYears(date(98,5,16), 2) =
2000-05-16

addYears(date(2000,11,08), -5) =
1995-11-08

addMonths(date: Date,
months: Integer): Date

Adds months to the given date
and returns the resulting date.

addMonths(date(98,5,16), 8) =
1999-01-16

addDays(date: Date, days:
Integer): Date

Adds days to the given date and
returns the resulting date.

addDays(date(98,5,16), 17) =
1998-06-02

addPeriod(date: Date,
years: Integer, months:
Integer, days: Integer):
Date

Adds the given years, months,
and days to the given date and
returns the resulting date.

addPeriod(date(2012, 05, 10), 2,
4, 16) = date(2014,09,26)

time(hour: Integer, minute:
Integer, second: Integer):
Time

Constructs a new time from the
given hour, minute and second
and returns it.

time(22,5,15) = 22:05:15

time(3,20,55) = 03:20:55

time(hour: Integer, minute:
Integer): Time

Constructs a new time from the
given hour and minute and
returns it.

time(23,15) = 23:15:00

hour(time: Time): Integer Returns the hour part of the
given time.

hour(time(22,5,15)) = 22

minute(time: Time): Integer Returns the minute part of the
given time.

minute(time(22,5,15)) = 5

second(time: Time): Integer Returns the seconds part of the
given time.

second(time(22,5,15)) = 15

addHours(time: Time,
hours: Integer): Time

Adds hours to the given time
and returns the resulting time.

addHours(time(22,5,15), 3) =
01:05:15

addHours(time(22,5,15), -4) =
18:05:15

addMinutes(time: Time,
minutes: Integer): Time

Adds minutes to the given time
and returns the resulting time.

addMinutes(time(22,5,15), 25) =
22:30:15

addMinutes(time(22,5,15), -10) =
21:55:15

addSeconds(time: Time,
seconds: Integer): Time

Adds seconds to the given time
and returns the resulting time.

addSeconds(time(22,5,15), 45) =
22:06:00

Expressions in Background Tasks

Background Tasks Guide 48

Function Description Examples
addSeconds(time(22,5,15), -14) =
22:05:01

String Functions
String functions provide a number of helpful functions for manipulating strings.

Function Description Examples

length(str: String): Integer Function that returns the
length of the given string
str.

length('Hello World!') = 12

startsWith(str1: String,
str2: String): Boolean

Function that returns true if
the given string str1 starts
with string str2 and false
otherwise.

startsWith('Hello World!',
'Hell') = true

startsWith('Hello World!',
'World') = false

endsWith(str1: String,
str2: String): Boolean

Function that returns true if
the given string str1 ends
with string str2 and false
otherwise.

endsWith('Hello World!',
'World!') = true

endsWith('Hello World!', 'Hello')
= false

firstIndexOf(str1: String,
str2: String): Integer

Function that returns the
index of the first
occurrence of string str2 in
string str1. Returns -1 if
str2 does not occur in str1.

firstIndexOf('No former performer
performed this performance',
'for') = 3

firstIndexOf('No former performer
performed this performance',
'of') = -1

lastIndexOf(str1: String,
str2: String): Integer

Function that returns the
index of the last
occurrence of string str2 in
string str1. Returns -1 if
str2 does not occur in str1.

lastIndexOf('No former performer
performed this performance',
'for') = 38

lastIndexOf('No former performer
performed this performance',
'of') = -1

indexOf(str1: String, str2:
String, fromIndex:
Integer): Integer

Function that returns the
index of the first
occurrence of string str2 in
string str1 starting from
position specified by the
fromIndex. Returns -1 if
str2 does not occur in str1.

indexOf('No former performer
performed this performance',
'for', 4) = 13

charAt(str: String, index:
Integer): String

Function that returns the
character at position
specified by the given
index in string str.

charAt('hello', 4) = 'o'

charAt('hello', 10) = ''

Expressions in Background Tasks

Background Tasks Guide 49

Function Description Examples

contains(str1: String, str2:
String): Boolean

Function that returns true if
str1 contains str2 and false
otherwise.

contains('No former performer
performed this performance',
'former') = true

contains('No former performer
performed this performance',
'hello') = false

substring(str: String,
startIndex: Integer): String

Function that returns a
new string containing the
substring of the given
string str from the specified
index startIndex
(inclusive).

substring('Hello World!', 6) =
'World! '

substring('Hello World!', 12) =
''

substring(str: String,
startIndex: Integer,
endIndex: Integer): String

Function that returns a
new string containing the
substring of the given
string str from the specified
startIndex (inclusive) to the
specified endIndex (non-
inclusive).

substring('Hello World!', 6, 8) =
'Wo'

trim(str: String): String Function that returns a
new string by trimming the
trailing and leading
spaces, tabs, and new
lines from the given string
str.

trim(' Hello World ! ') =
'Hello World!'

uppercase(str: String):
String

Function that returns a
new string by uppercasing
the given string str.

uppercase('Hello World!') =
'HELLO WORLD!'

lowercase(str: String):
String

Function that returns a
new string by lowercasing
the given string str.

lowercase('Hello World!') =
'hello world!'

replaceFirst(str: String,
replace: String,
replaceWith: String):
String

Function that returns a
new string by replacing the
first occurrence of the
replace text with
replaceWith in the given
string str.

replaceFirst('No former performer
performed this performance',
'form', 'corni') = 'No cornier
performer performed this
performance'

replaceAll(str: String,
replace: String,
replaceWith: String):
String

Function that returns a
new string by replacing all
occurrences of the replace
text with replaceWith in
the given string str.

replaceAll('No former performer
performed this performance',
'form', 'corni') = 'No cornier
percornier percornied this
percorniance'

Expressions in Background Tasks

Background Tasks Guide 50

Function Description Examples

replaceFirstRegEx(str:
String, regex: String,
replaceWith: String):
String

Function that returns a
new string by replacing the
first occurrence matched
by the given regex with the
replaceWith.

replaceFirstRegEx('No former
performer performed this
performance', ' ([a-z]{3})', '
$1$1') = 'No forformer performer
performed this performance'

replaceAllRegEx(str:
String, regex: String,
replaceWith: String):
String

Function that returns a
new string by replacing all
occurrences matched by
the given regex with the
replaceWith.

replaceAllRegEx('No former
performer performed this
performance', ' ([a-z]{3})', '
$1$1') = 'No forformer
perperformer perperformed thithis
perperformance'

matchRegEx(str: String,
regEx: String): Boolean

Function that returns true if
the given regEx matches
the given string str and
false otherwise.

matchRegEx('555-2368', '\\d{3}-
\\d{4}') = true

matchRegEx('5555-2368', '\\d{3}-
\\d{4}') = false

asReal(str: String): Real Function that converts the
given string str to a real.
Throws an exception if the
given string cannot be
converted to real.

asReal('3.14159265359') =
3.14159265359

asReal('1.000.000,25') =
1000000.25

asReal('1\'000\'000.30') =
1000000.3

stringToInteger(str:
String): Integer

Function that converts the
given string str to an
integer. Throws an
exception if the given
string cannot be converted
to integer.

stringToInteger('123') = 123

stringToReal(str: String):
Real

Function that converts the
given string str to real.
Throws an exception if the
given string cannot be
converted to real

stringToReal('3.14159265359') =
3.14159265359

Popup Functions
Popup functions provide a number of functions for working with popups.

Function Description Examples

popupTitle(popup:
Popup): String

Function that
returns the

popupTitle(JournalTypeType'Time_Sheet) =
'Time Sheet'

Expressions in Background Tasks

Background Tasks Guide 51

Function Description Examples
title of the
given popup.

popupTitle(JournalTypeType'nil) = ''

popupLiteralName(popup:
Popup): String

Function that
returns the
popup literal
name of the
given popup.

popupLiteralName(JournalTypeType'Time_Sheet)
= 'Time_Sheet'

popupLiteralName(JournalTypeType'nil) =
'nil'

popupOrdinal(popup:
Popup): String

Function that
returns the
ordinal value
of the given
popup.

popupOrdinal(JournalTypeType'Time_Sheet) = 4

popup(popupType: String,
literalName: String,
ordinalValue: Integer):
Popup

Function that
constructs
and returns a
popup based
on the given
type name,
literal name,
and ordinal
value.

popup('JournalTypeType', 'Time_Sheet', 4) =
JournalTypeType'Time_Sheet

Numeric Type Conversion and Formatting Functions
These functions provide the ability to convert between different Maconomy numeric types, i.e. Integers,
Reals, and Amounts, as well as print them out using custom formatting rules.

Function Description Examples

toInteger(number: (Integer
| Real | Amount)): Integer

Function that converts the
given number to integer.
Will throw an exception if
the given number is too
large or too small to fit into
integer.

toInteger(amount(1.13)) = 1

toInteger(3.14159265359) = 3

toInteger(4.9) = 4

toAmount(number:
(Integer | Real | Amount)):
Amount

Function that converts the
given number to amount.
Will throw an exception if
the given number cannot
be converted to amount.

toAmount(2) = amount(2.00)

toAmount(3.14159265359) =
amount(3.14)

toAmount(13.349) = amount(13.34)

toReal(number: (Integer |
Real | Amount)): Real

Function that converts the
given number to real. Will
throw an exception if the

toReal(2) = 3.0

toReal(amount(12.49)) = 12.49

Expressions in Background Tasks

Background Tasks Guide 52

Function Description Examples
given number cannot be
converted to real.

formatNumber(number:
(Integer | Real | Amount),
format: String): String

Function that formats the
given number according to
the given format.

formatNumber(123456, "#,##0.00")
= '123,456.00'

formatNumber(123456, "#,##0") =
'123,456'

formatNumber(amount(25), '#.00
USD') = '25.00 USD'

formatNumber(number:
(Integer | Real | Amount),
format: String,
groupingSep: String):
String

Function that formats the
given number according to
the given format and the
grouping separator.

formatNumber(123456, "#,##0", "
") = '123 456'

formatNumber(123456, "#,##0", "-
") = '123-456'

formatNumber(number:
(Integer | Real | Amount),
format: String,
groupingSep: String,
decimalSep: String):
String

Function that formats the
given number according to
the given format, the
grouping separator, and
decimal separator.

formatNumber(1234, "#,##0.00", "
", "^") = '1 234^00'

formatNumber(1234567.12,
"#,##0.00", "-", "/") = '1-234-
567/12'

Math Functions
Math functions provide a number of helpful functions for working with Maconomy numbers, i.e. Integers,
Reals, and Amounts. Besides the functions described below, you may also use regular mathematical
operators (+, -, *, /) in your expressions.

Function Description Examples

min(numbers: (Integer |
Real | Amount)*): (Integer
| Real | Amount)

Function that returns the
smallest number out of all
the numbers provided.

min(2, 10, 25, 1, 8, 3) = 1

min(-2, 5, 10, amount(-7.13),
asReal('20.14159')) = amount(-
7.13)

max(numbers: (Integer |
Real | Amount)*): (Integer
| Real | Amount)

Function that returns the
largest number out of all
the numbers provided.

max(2, 10, 25, 1, 8, 3) = 25

max(-2, 5, 10, amount(-7.13),
asReal('20.14159')) = 20.14159

abs(number: (Integer |
Real | Amount): (Integer |
Real | Amount)

Function that returns the
absolute value of the given
number.

abs(-123) = 123

abs(amount(-7.13)) = amount(7.13)

abs(asReal('-3.14159265359')) =

3.14159265359

Expressions in Background Tasks

Background Tasks Guide 53

Function Description Examples

sign(number: (Integer |
Real | Amount): Integer

Function that returns 1 if
the given number is
positive, -1 if the given
number is negative and 0 if
the number is 0.

sign(-3) = -1

sign(3.13) = 1

sign(0) = 0

round(number: (Integer |
Real | Amount): (Integer |
Amount)

Function that rounds the
given number to the
nearest value.

round(10.49) = 10

round(10.51) = 11

round(amount(-10.51)) = amount(-
11.00)

round(asReal('-11.56')) = -12

floor(number: (Integer |
Real | Amount): (Integer |
Amount)

Function that returns the
largest value that is less
than or equal to the given
number.

floor(10.99) = 10

floor(amount(-13.49)) = amount(-
14.00)

floor(asReal('3.14159')) = 3

ceiling(number: (Integer |
Real | Amount): (Integer |
Amount)

Function that returns the
smallest value that is
greater than or equal to the
given number.

ceiling(10.99) = 11

ceiling(amount(-13.49)) =
amount(-13.00)

ceiling(asReal('3.14159')) = 4

User Functions
Similar to previously mentioned functions, user functions are standard functions that can be used in
expression fields. However, unlike previous functions, in most cases these functions would only produce
a useful output when using them on background tasks that run as a specific user. This is the case
because these functions return information about the current user. If these functions are used on
background tasks where “Run As User” is not specified then they will run in the context of the default
batch administrator user specified in the settings.ini file.

Full list of user functions can be seen in the table below.

Function Description Examples

username(): String Returns the username
of the current user.

if username() = 'John' then 'Hi
John!' else 'You are not John!'

isAdministrator():
Boolean

Returns true if the
current user is an
administrator and false
otherwise.

if isAdministrator() then 'Access
allowed' else 'Access forbidden'

Expressions in Background Tasks

Background Tasks Guide 54

Function Description Examples

hasRole(groupName:
String): Boolean

Returns true if the
current user has the
given group
groupName (a String)
assigned and false
otherwise.

if hasRole('ProjectManager') then
'Hello Project Manager!' else
'Hello!'

hasRole(groupName:
GroupNameType):
Boolean

Returns true if the
current user has the
given group
groupName (a Popup)
assigned and false
otherwise.

if
hasRole(GroupNameType'ProjectManager)
then 'Hello Project Manager!' else
'Hello!'

userEmployeeNumber():
String

Returns the employee
number assigned to
the current user.*

if userEmployeeNumber() = ' ' then
'No employee assigned to this user!'
else 'Hello ' + userEmployeeNumber()
+ '!'

userRole(): String Returns the user role
of the current user.

if userRole() = 'Standard' then
'Standard Role' else 'Non-standard
Role'

companyNumber(): String Returns the company
number on the
employee assigned to
the current user.*

if companyNumber() = '1' then
'Company 1' else 'Another company'

accountNumber():String Returns the account
number on the
employee assigned to
the current user.*

if accountNumber() = '2110' then
'P&L' else 'Balance Sheet'

locationName(): String Returns the location
name on the employee
assigned to the current
user.*

if locationName() = 'France' then
'Bonjour!' else if locationName =
'Germany' then 'Guten Tag!' else
'Hello!'

entityName(): String Returns the entity
name on the employee
assigned to the current
user.*

if entityName() = 'E1' then 'Entity
1' else 'Another entity'

projectName(): String Returns the project
name on the employee
assigned to the current
user.*

if projectName() = 'P1' then 'Project
1' else 'Another project'

purposeName(): String Returns the purpose
name on the employee

if purposeName() = 'P1' then 'Purpose
1' else 'Another purpose'

Expressions in Background Tasks

Background Tasks Guide 55

Function Description Examples
assigned to the current
user.*

specification1Name():
String

Returns the
specification 1 name
on the employee
assigned to the current
user.*

if specification1Name() = 'Spec1'
then 'Specification 1' else 'Another
specification'

specification2Name():
String

Returns the
specification 2 name
on the employee
assigned to the current
user.*

if specification2Name() = 'Spec2'
then 'Specification 2' else 'Another
specification'

specification3Name():
String

Returns the
specification 3 name
on the employee
assigned to the current
user.*

if specification3Name() = 'Spec3'
then 'Specification 3' else 'Another
specification'

localSpec1Name(): String Returns the local
specification 1 name
on the employee
assigned to the current
user.*

if localSpec1Name() = 'LocalSpec1'
then 'Local Specification 1' else
'Another local specification'

localSpec2Name(): String Returns the local
specification 2 name
on the employee
assigned to the current
user.*

if localSpec2Name() = 'LocalSpec2'
then 'Local Specification 2' else
'Another local specification'

localSpec3Name(): String Returns the local
specification 3 name
on the employee
assigned to the current
user.*

if localSpec3Name() = 'LocalSpec3'
then 'Local Specification 3' else
'Another local specification'

* NOTE: the output will be an empty string if no employee has been assigned to the current user.

System Table and Environment Functions
Maconomy has two tables for storing system-wide information, namely System Information and System
Parameters. Sometimes it is useful to acquire the information from these tables and use it on a
background task. Maconomy provides a number of helpful functions that can ease this task. For these
functions to work correctly the CouplingConfiguration.mcsl.xml file must be updated correspondingly.

To be able to reference fields from the System Information table you must add them to the
“SystemInformation” entity binding in the CouplingConfiguration file. E.g. if you would like to be able to get
the value of the field “YearEndResultAccount” then you would modify your coupling configuration as
follows:

Expressions in Background Tasks

Background Tasks Guide 56

 <Binding entity="SystemInformation" namespace="system:info">

 <Fields>

 <Field source="YearEndResultAccount" />

 </Fields>

 </Binding>

Similarly, to be able to reference fields from the System Parameter table you must add them to the
“SystemParameter” entity binding in the CouplingConfiguration file. E.g. if you would like to be able to get
the values of the fields “BPMServerURL” and “UseVATSubLevels” then you would modify your coupling
configuration as follows:

 <Binding entity="SystemParameter"
namespace="system:parameters:^{envVar('InternalName')}">

 <Restriction condition="InternalName = 'BPMServerURL' or

 InternalName = 'UseVATSubLevels'" />

 <Fields>

 <Fields ref="CommonSystemParameters" />

 <Field source="TheGroup" />

 <Field source="Description" />

 <Field source="Format" />

 <Field source="AllowCompanyParameter" />

 </Fields>

 </Binding>

Making these changes will require the restart of the Coupling Service.

The supported functions are documented in the table below.

Function Description Examples

sysInfo(fieldName: String): T Function that
returns a
system
information
value of type T
for the given
fieldName.
Type T
depends on the
type of the field
name.

if sysInfo('MarkUpPercentage') >= 2 then
'Markup Percentage is 2 or higher' else
'Markup percentage is less than 2'

if
sysInfo('CreateNewOrderAtJobAssignment')
then 'New Ord. when Transf. to Sales'
else 'No new orders'

amountSysInfo(fieldName:
String): Amount

Function that
returns a
system
information
value of type
amount for the

There are currently no fields of type
Amount on the System Information table.

amountSysInfo('SomeAmountField')

Expressions in Background Tasks

Background Tasks Guide 57

Function Description Examples
given
fieldName.

booleanSysInfo(fieldName:
String): Amount

Function that
returns a
system
information
value of type
boolean for the
given
fieldName.

if
booleanSysInfo('CreateNewOrderAtJobAssign
ment') then 'New Ord. when Transf. to
Sales' else 'No new orders'

dateSysInfo(fieldName:
String): Date

Function that
returns a
system
information
value of type
date for the
given
fieldName.

dateSysInfo('CreatedDate')

decimalSysInfo(fieldName:
String): Real

Function that
returns a
system
information
value of type
real for the
given
fieldName.

decimalSysInfo('MarkUpPercentage')

integerSysInfo(fieldName:
String): Integer

Function that
returns a
system
information
value of type
integer for the
given
fieldName.

integerSysInfo('MaximumFileSize')

popupSysInfo(fieldName:
String): Popup

Function that
returns a
system
information
value of type
popup for the
given
fieldName.

popupSysInfo('EnterpriseExchangeRateTable
')

Expressions in Background Tasks

Background Tasks Guide 58

Function Description Examples

stringSysInfo(fieldName:
String): String

Function that
returns a
system
information
value of type
string for the
given
fieldName.

stringSysInfo('StandardVATCode')

timeSysInfo(fieldName:
String): Time

Function that
returns a
system
information
value of type
time for the
given
fieldName.

There are currently no fields of type
Time on the System Information table.

timeSysInfo('SomeTimeField')

sysPar(systemParameter:
String): T

Function that
returns a
system
parameter
value of type T
for the given
systemParamet
er. Type T
depends on the
type of the
system
parameter.

if sysPar('BPMServerURL') = ' ' then 'No
BPM server defined' else
sysPar('BPMServerURL')

if sysPar('UseVATSubLevels') then 'Using
VAT Sub Levels' else 'Not using VAT Sub
Levels'

amountSysPar(systemParam
eter: String): Amount

Function that
returns a
system
parameter
value of type
amount for the
given
systemParamet
er.

There are currently no system parameters
of type amount.

amountSysPar('SomeAmountParameter')

booleanSysPar(systemParam
eter: String): Boolean

Function that
returns a
system
parameter
value of type
boolean for the

booleanSysPar('UseVATSubLevels')

Expressions in Background Tasks

Background Tasks Guide 59

Function Description Examples
given
systemParamet
er.

dateSysPar(systemParameter
: String): Date

Function that
returns a
system
parameter
value of type
date for the
given
systemParamet
er.

There are currently no system parameters
of type date.

dateSysPar('SomeDateParameter')

decimalSysPar(systemParam
eter: String): Real

Function that
returns a
system
parameter
value of type
real for the
given
systemParamet
er.

decimalSysPar('NumberOfHoursPerManDay')

integerSysPar(systemParame
ter: String): Integer

Function that
returns a
system
parameter
value of type
integer for the
given
systemParamet
er.

integerSysPar('MaxNumberOfEntriesJobJourn
als')

popupSysPar(systemParamet
er: String): Popup

Function that
returns a
system
parameter
value of type
popup for the
given
systemParamet
er.

There are currently no system parameters
of type popup.

dateSysPar('SomePopupParameter')

stringSysPar(systemParamet
er: String): String

Function that
returns a
system
parameter

stringSysPar('BPMServerURL')

Expressions in Background Tasks

Background Tasks Guide 60

Function Description Examples
value of type
string for the
given
systemParamet
er.

timeSysPar(systemParameter
: String): Time

Function that
returns a
system
parameter
value of type
time for the
given
systemParamet
er.

There are currently no system parameters
of type time.

timeSysPar('SomeTimeParameter')

As an alternative to system information and system parameter functions there also exist environment
functions. In fact, system information and system parameter functions are simply wrappers around the
environment functions. You can achieve exactly the same result using environment functions with only
difference being that environment functions take a fully qualified name (namespace + field name) of the
field name. Moreover, environment functions are not restricted to only system information fields and
system parameters and can be invoked on any field from any binding defined in the coupling
configuration file.

As an example, let us assume that we want to define a new, custom binding with a Boolean field
“UseLocalAccounts”. To do this we would define a new binding in the coupling configuration file as
follows:

 <Binding namespace="our.custom.binding">

 <Fields>

 <Field name="UseLocalAccounts" value="true" />

 </Fields>

 </Binding>

After the restart of the coupling service, we should now be able to reference the value of this field via the
following expression:

booleanEnvVar('our.custom.binding.UseLocalAccounts')

The complete list of environment functions is provided in the table below.

Expressions in Background Tasks

Background Tasks Guide 61

Function Descripti
on

Examples

envVar(fieldName:
String): T

Function
that
returns an
environme
nt value of
type T for
the given
fieldName
. Type T
depends
on the
type of the
field
name.

if envVar('system.info.MarkUpPercentage') >= 2
then 'Markup Percentage is 2 or higher' else
'Markup percentage is less than 2'

if
envVar('system.info.CreateNewOrderAtJobAssignment'
) then 'New Ord. when Transf. to Sales' else 'No
new orders'

isEnvVarDefined(fieldN
ame: String): Boolean

Returns
true if the
given
environme
nt variable
is defined
and false
otherwise.

isEnvVarDefined('user.info.AccessToAllTimeSheets')
= true

isEnvVarDefined('custom.binding.AbcField') = false

amountEnvVar(fieldNa
me: String): Amount

Function
that
returns an
environme
nt value of
type
amount
for the
given
fieldName
.

amountEnvVar('custom.binding.SomeAmountField')

booleanEnvVar(fieldNa
me: String): Boolean

Function
that
returns an
environme
nt value of
type
boolean
for the
given

booleanEnvVar('system.parameters.UseVATSubLevels.B
oolean1')

booleanEnvVar('user.info.AccessToAllTimeSheets')

Expressions in Background Tasks

Background Tasks Guide 62

Function Descripti
on

Examples

fieldName
.

dateEnvVar(fieldName:
String): Date

Function
that
returns an
environme
nt value of
type date
for the
given
fieldName
.

dateEnvVar('custom.binding.SomeDateField')

decimalEnvVar(fieldNa
me: String): Real

Function
that
returns an
environme
nt value of
type real
for the
given
fieldName
.

decimalEnvVar('custom.binding.SomeRealField')

integerEnvVar(fieldNam
e: String): Integer

Function
that
returns an
environme
nt value of
type
integer for
the given
fieldName
.

decimalEnvVar('custom.binding.SomeIntegerField')

popupEnvVar(fieldNam
e: String): Popup

Function
that
returns an
environme
nt value of
type
popup for
the given
fieldName
.

popupEnvVar('custom.binding.SomePopupField')

Expressions in Background Tasks

Background Tasks Guide 63

Function Descripti
on

Examples

stringEnvVar(fieldName
: String): String

Function
that
returns an
environme
nt value of
type string
for the
given
fieldName
.

stringEnvVar('system.parameters.BPMServerURL.Strin
g1')

stringEnvVar('user.roles.NameOfRole')

stringEnvVar('user.info.Specification8Name')

timeEnvVar(fieldName:
String): Time

Function
that
returns an
environme
nt value of
type time
for the
given
fieldName
.

timeEnvVar('custom.binding.SomeTimeField')

Other Functions
A number of additional functions that can be used for various purposes.

Function Description Examples

shortName(): String Function
that returns
the
shortname
of the
current
system.

shortName() = 'mac210test'

isNullOrEmpty(value:
T): Boolean

Function
that returns
true if the
given
Maconomy
type value is
null or
empty and

isNullOrEmpty(NullDate)) = true

isNullOrEmpty(NullTime) = true

isNullOrEmpty(date(2012,10,02)) = false

isNullOrEmpty(GRPType'nil) = true

isNullOrEmpty('') = true

Expressions in Background Tasks

Background Tasks Guide 64

Function Description Examples
false
otherwise.

hasAddon(addonNo:
Integer): Boolean

Function
that returns
true if the
given addon
is installed
on the
current
system and
false
otherwise.

hasAddon(3) = true

hasAddon(131) = false

urlEncode(str: String):
String

Function
that
encodes the
given string
so that it can
be used in
URL.

'https://somesite.com?q=' + urlEncode('String
with spaces') =
'https://somesite.com?q=String%20with%20spaces'

format(maconomyType:
T, formatting: String):
String

Function
that can
format
various
Maconomy
types
according to
the specified
formatting.

format(date(2010, 03, 15), 'dd.MM.yyyy') =
'15.03.2010'

format(date(2010, 03, 15), 'E, dd MMM yyyy
HH:mm:ss zzzz') = 'Mon, 15 Mar 2010 00:00:00
Central European Time'

format(2010, '#,###,###.00') = '2.010,00'

format(time(13, 46), 'HH:mm:ss a') = '13:46:00
PM'

format(10.1234, '#.###') = '10,123'

Fields and Actions

Background Tasks Guide 65

Fields and Actions
Note: The information in this section is in DRAFT form and is not yet updated to reflect 2.5.2.

Fields
Setup » Background Tasks workspace » Editing section » Background Task tab
Background Task island

Field Description

Id This field displays the unique ID of the task.

When you click the New Background Task action, Maconomy
automatically assigns an ID number to the created task.

Container In this field, enter the internal name of the container that hosts the
task to be carried out. For example: “maconomy:TimeSheets” or
“TimeSheets” (since the name space “maconomy:” is assumed by
default).

Pane Type In this field, specify the pane type that contains the action. Select one
of the following values from the drop-down list:

 Filter

 Card

 Table

The default value is Card.

Action Name In this field, enter the internal name of the named action that this
background task should carry out. You can also specify the internal
name of a standard action. To do this, enter a value in the Standard
Action field.

Standard Action In this field, you can specify the standard action to be carried out.

If you leave this blank, it means the action to be carried out is a
named action.

If you select a value from the drop-down list, the Action Name field
automatically assumes the corresponding internal name of the
standard action.

The available values are:

 Create – Select to create exactly one record.

 Update
 Delete
 Print

Fields and Actions

Background Tasks Guide 66

Task Properties island

Field Description

Activation This field displays either of two values: “Active” or “Inactive”,
depending on whether the task is currently active. Maconomy
obtains this value from the Active check box which is not part of
the default layout, and which changes its own value when the user
clicks the Activate or Deactivate action for the task.

Active tasks can be picked up for execution once the due date and
the due time have passed and there are no unfinished background
tasks belonging to the collection ID indicated in the Awaits
Collection ID field.

You can only edit inactive tasks.

Task Description In this field, enter a description of the task.

Access Level In this field, specify an access level for the task.

Collection Id In this field, you can specify a Collection ID. This is optional.

By default, Maconomy sets the collection ID to a value
corresponding to the ID of this task, thereby making the task the
only member of the collection.

Tasks with the same collection ID belong to the same collection. If
at least one of these tasks is pending or running, any task that
depends on that collection ID cannot be picked up for execution.

Identification In this field, enter identifying information to indicate the purpose of
the task.

For example, you can enter the ID of the programmatic extension
or task generator that initiates this background task on behalf of
the user.

System Task If the task is a system task, this field displays a Yes value. System
tasks are those created and maintained by Maconomy to keep the
processing of background tasks active. You cannot delete or
deactivate pending system tasks.

If the task is not a system task, this field is left blank.

System Nature In this field, you can specify a system nature. System natures are
defined in the configuration file settings.ini file on the Maconomy
Server.

If you fill out this field, Maconomy only carries out the background
task on database short names that belong to the specified system
nature.

This is useful when data from a production database is copied to
test-database environments, and vice versa. In cases like this, the
background tasks and schedule rules for generating background
tasks are also copied. By specifying a system nature, you ensure

Fields and Actions

Background Tasks Guide 67

Field Description
that production tasks are carried out in production environments
only, and test tasks in test environments only.

Max. Duration In this field, you can specify the maximum duration of the
background task. This is used to compute the length of time that
should pass before the execution thread running the task times
out.

Even if you filled out the Default Max. Task Duration field for the
execution thread, you can fill out the Max. Duration field for
specific tasks in the thread. This allows you to specify a longer
time duration for a long-running task, preventing Maconomy from
timing out and prematurely aborting the task.

Note that you can also specify the maximum duration for tasks
generated by a background task generator.

Require Execution Select this check box if you want Maconomy to consider the task
as “failed” if it is unable to carry out the specified action for at least
one record.

For example:

You have a background task that is supposed to post a journal
marked with a special remark. If such a journal does not exist
when the task is picked up for execution and you have this check
box selected, Maconomy marks the tasks as “failed”, thereby
bringing it to the attention of the one in charge of monitoring
background tasks.

By default, this check box is not selected. This means that if there
are no records on which the action is performed, Maconomy simply
marks the task as successfully run.

Delete Automatically Select this check box if you want Maconomy to automatically
delete the background task after successful execution.

Note that if the task is either failed or partially successful (with an
“Incomplete” status), it is not deleted. The one in charge of
monitoring can still investigate why the task was not completed
successfully.

Run As island

Field Description

User Name In this field, you can specify the user on whose behalf Maconomy
will carry out the background task. You can only specify a user with
administrator credentials.

If a non-administrator user creates a background task, that task
assumes the user name specified in this field. Note that ordinary

Fields and Actions

Background Tasks Guide 68

Field Description
users cannot create a background task for an operation they cannot
perform manually.

If you leave this field blank, Maconomy carries out the task on
behalf of the background task user configured for the system.

Empl. No. In this field, you can enter the employee number on whose behalf
Maconomy will carry out the background task. If you fill out this field,
Maconomy automatically updates the User Name field with the
corresponding user and then clears this field.

If several users are associated with the specified employee,
Maconomy either selects the non-administrator user or (if all users
are administrators) selects one of the users arbitrarily.

Role Name In this field, you can specify the role name of the user on whose
behalf Maconomy will carry out the background task.

Note that several roles can be assigned to or associated with a
user.

If you leave this field blank, Maconomy carries out the task on
behalf of whichever role is specified as the “Default for background
tasks” for the user.

Login Name In this field, you can specify the login name of the user/role on
whose behalf Maconomy will carry out the background task.

Due island

Field Description

Due Date Click the down arrow, and select a due date from the calendar.
Maconomy will generate a background task which will only be carried
out after the specified date.

If you leave this blank, Maconomy interprets the task as due
immediately.

Due Time In this field, enter a specific time of day following the HH:mm:ss 24-
hour clock format.

If you specify a date in the Due Date field, you must also fill out this
field. Maconomy will generate a background task which will only be
carried out after the specified time on the specified due date.

If you leave the Due Date field blank, leave this field blank as well.

Await Collection Id In this field, enter a collection ID if you want Maconomy to not
consider the task as due when there are scheduled or running tasks
associated with the specified collection ID.

Fields and Actions

Background Tasks Guide 69

Re-Attempts on Data Busy island

Field Description

Max. Execution Re-
Attempts

In this field, you can specify the number of times the system is
allowed to re-attempt a task if execution fails because data is locked
to another user. For example, a background task will fail if another
user is editing the record that the task needs. If you specify a value of
3 in this field and the first attempt to carry out the task fails, the
system automatically reschedules a second attempt, and a third if
needed. If the third attempt still fails, the task is marked as failed.

If you specify a value of 0, the system does not reattempt the task at
all.

If you want to specify default values for an entire execution thread, fill
out the Default Max. Exec. Re-Attempts field for that thread.

Secs. Between Re-
Attempts

In this field, you can specify the number of seconds between system
re-attempts to carry out a task. For example, if you specify a value of
10, the system reattempts the task ten seconds after the preceding
attempt.

The value must fall within the range of 0 – 3600 seconds (or one
hour).

If you want to specify default values for an entire execution thread, fill
out the Default Secs. Between Re-Attempts field for that thread.

Container Key island

Field Description

Match Any Select this check box if you want the task to apply to all possible
keys. For example, if you specified the Employees container,
selecting this check box means the action will apply to all
employees.

Always select this check box for singletons (for example: Import,
Print, and some selection criterion containers).

Do not select this check box if:

 You specified one or more key field value constraints.

 The specific background task invokes the Create action in a
Card pane.

 The specific background task invokes the Create action in a
Table pane, unless you want to create lines for all table sets
(that is, tables belonging to all Card pane keys). For example,
specifying the Create action and selecting this check box for
Time sheet tables means Maconomy will create a time sheet
line in all existing time sheets.

When you select this check box, Maconomy displays a warning
message since this is not usually a preferred setting.

Fields and Actions

Background Tasks Guide 70

Field Description

Key Field 1 Name In this field, enter the name of the first key field of the container. In
principle, you can specify any field. It does not have to be a formal
key field of the container. If you do not use any of the formal key
fields when specifying the key value, Maconomy derives the set of
formal key fields when applying the field/value restriction to the
filter list of the container.

You do not need to specify key field constraints if:

 You specified singletons.

 The specific background task invokes the Create action in a
Card pane.

 The specific background task invokes the Create action in a
Table pane, and you want to create lines for all table sets (that
is, tables belonging to all Card pane keys).If this is the case,
specify the Create action and select the Match Any check
box, but do not specify key field constraints.

Key Field 1 Type In this field, specify the key field type. You can specify any of the
following values:

 Amount

 Boolean

 Integer

 Real

 String

 Date

 Time

 Enumeration (or popup)

Key Field 1 Value In this field, enter the value of the first key field of the container.
You enter the value as a string, then the system interprets it
relative to the type you specify. The only exceptions are:

 Enumeration-type fields – Enter the value using the format
TypeName’literalValue. For example:
CountryType’United Kingdom or OrderTypeType’Sales
Order.

 Boolean-type fields – Enter the value as true/false or
Yes/No.

Key Field 2 Name This field is similar to Key Field 1 Name, but you use this for the
second key field for containers with two or more key fields.

Key Field 2 Type This field is similar to Key Field 1 Type, but you use this for the
second key field for containers with two or more key fields.

Fields and Actions

Background Tasks Guide 71

Field Description

Key Field 2 Value This field is similar to Key Field 1 Value, but you use this for the
second key field for containers with two or more key fields.

Key Field 3 Name This field is similar to Key Field 1 Name, but you use this for the
third key field for containers with three or more key fields.

Key Field 3 Type This field is similar to Key Field 1 Type, but you use this for the
third key field for containers with three or more key fields.

Key Field 3 Value This field is similar to Key Field 1 Value, but you use this for the
third key field for containers with three or more key fields.

Key Field 4 Name This field is similar to Key Field 1 Name, but you use this for the
fourth key field for containers with four key fields.

Key Field 4 Type This field is similar to Key Field 1 Type, but you use this for the
fourth key field for containers with four key fields.

Key Field 4 Value This field is similar to Key Field 1 Value, but you use this for the
fourth key field for containers with four key fields.

Record Conditions island

Field Description

Rec. Cond. Expr. Use this field to specify the condition. You can express the
condition based on the fields available in the pane. If the pane is of
the Table type, you may refer to values in the corresponding Card
part by prefixing “card” to the Card field names.

Ignore Disabled Action Select this check box if you want Maconomy to treat this record-
condition expression as false when the background task’s action is
disabled.

You can enable this if you do not need to know the actual
conditions under which the action is disabled. For example: you
have a background task for approving a specific time sheet. If this
time sheet has not yet been submitted or has already been
approved, Maconomy disables the Approve Time Sheet action.
When the background task attempts to approve the time sheet
using this action, an error occurs. However, if you selected this
check box during setup, Maconomy disregards the disabled action.

Some actions are preceded by an update. In such cases,
Maconomy ignores the operation if either the update or the actual
action is disabled.

Note that in cases where several container keys fall within the
scope of the background task, selecting this check box results in
the task failing. This happens because the system cannot take
such situations into account when multiple records/container keys
are involved.

Fields and Actions

Background Tasks Guide 72

User island

Field Description

Created

This field displays the date the background task was created, as
well as the name of the user who created it.

This information is mainly used for tracking purposes. Background
tasks are most often created programmatically rather than directly
by a user. The user specified in this field is rarely aware of the task
creation.

Changed This field displays the date the background task was last updated,
as well as the name of the user who made these updates.

Version This field displays the number of times the background task has
been edited.

Output Document Handling (Using Files) island

Field Description

Handle Files Like (Option
1)

If your background task involves document creation or generation,
use this field to specify the filter for the output documents that
Maconomy should handle using option 1.

Use simple wild-card notation.

 An asterisk (*) means zero or more characters.

 A question mark (?) means exactly one character.

 For example: Enter the value *.pdf to match all output
files that end in “.pdf”. Enter p_invoice.pdf to match
files named “p_invoice.pdf”. Enter an * to match all files.
If you do not specify a value, no output files are filtered
and saved in your specified location.

File Location Ref. (Option
1)

In this field, specify a named reference to the file directory where
you want to store the output file.

To configure the actual directory, use the settings.ini file on the
Maconomy server. For example, you can specify different output
locations for production and test systems. When data is copied from
the production system into the test system, the background tasks
store output data in different locations (depending on whether the
tasks are run by the production system, or the test system).

File Location (Option 1) In this field, specify the base-file location (for example, a file server)
where Maconomy should place the output documents that match
the specified filter. The actual documents can be stored in a sub-
directory.

Handle Files Like (Option
2)

This field is similar to Handle Files Like (Option 1), but this allows
you to specify a different filter for output documents.

Fields and Actions

Background Tasks Guide 73

Field Description

File Location Ref. (Option
2)

This field is similar to File Location Ref. (Option 1), but this allows
you to specify a named reference to a different file directory.

File Location (Option 2) This field is similar to File Location (Option 1), but this allows you
to specify a different base-file location.

Output Document Handling (Using E-mail) island

Field Description

Handle Files Like (Option
1)

This field is similar to the Handle Files Like (Option 1) field in the
Output Document Handling (Using Files) island, but files that match
the filter you specify here are e-mailed.

Files that match both a file-handler and an e-mail handler are
handled by both (that is, saved in a file directory and sent via e-
mail).

E-mail To (Option 1) In this field, specify the e-mail address (for example, a mailbox or
administrator user) to which Maconomy should send the output
files.

E-mail From (Option 1) In this field, specify the e-mail address of the sender, as it will
appear in the e-mail that Maconomy sends out. You do not have to
specify a real e-mail address. For example: maconomy-
background-tasks@yourorg.com.

If you set up a default reply-to address using the
email.from.default property in the settings.ini file, you do not
need to specify an address here. Maconomy uses the default
address you specified in the settings.ini file.

If you enter an address in this field, Maconomy uses this value
instead of the default address in the settings.ini file.

Handle Files Like (Option
2)

This field is similar to Handle Files Like (Option 1), but this allows
you to specify a different filter for output documents.

E-mail To (Option 2) This field is similar to E-mail To (Option 1), but this allows you to
specify a different recipient e-mail.

E-mail From (Option 2) This field is similar to E-mail From (Option 1), but this allows you
to specify a different sender e-mail.

Input Document Handling (Using Files) island

Field Description

Input Files Like (Option
1)

If your background task runs an action that requires document
input, use this field to specify the filter for the files that Maconomy
should use for the action.

mailto:maconomy-background-tasks@yourorg.com
mailto:maconomy-background-tasks@yourorg.com

Fields and Actions

Background Tasks Guide 74

Field Description
Use simple wild-card notation. All files that match your specified
filter (and are found at the specified file location) will be used as
input. If you do not specify a value, no files are filtered and used as
input.

Input File Location Ref.
(Option 1)

In this field, specify a named reference to the file directory from
which Maconomy should get the input files.

To configure the actual directory, use the settings.ini file on the
Maconomy server. For example, you can specify different input file
locations for production and test systems. When data is copied from
the production system into the test system, the two systems carry
out similar background tasks differently by picking up input files
from different locations.

Input File Location
(Option 1)

In this field, specify the base-file location (for example, a file server)
where Maconomy should search for input files.

Store Output Files Like
(Option 1)

If the background task using input files also generates output files,
you can choose to store both file types in the same directory.

Use this field to specify the filter that Maconomy should use for the
output files.

Use simple wild-card notation. For example: Enter the value *.log to
match all files that end in “.log”. These filtered output files are then
stored in the same directory as the input files used for the task.

Remarks island

Field Description

Remarks You can use this field to enter remarks about
the task.

Action Description

New Background Task Click this action to start creating a background task.

Delete Background
Task

After selecting a background task from the filter list, click this action to
delete that task.

Note that you cannot delete running tasks or pending system tasks.

Deactivate After selecting a background task from the filter list, click this action to
deactivate that task. This prevents the system from picking up the task
for execution.

You can then edit the deactivated task.

Fields and Actions

Background Tasks Guide 75

Action Description

Activate After selecting a background task from the filter list, click this action to
activate that task. Once you activate a task, the system may pick it up
for execution.

You cannot edit active tasks. However, you can edit the Remarks field
of an active background task if you navigate to Background Tasks
workspace » Status section » Background Task tab.

Copy as Template After selecting a background task from the filter list, click this action to
use the selected task as a template for a new task.

The new task is marked as deactivated, and is therefore editable.

Setup » Background Tasks workspace » Editing section » Background Task tab » Parameter/Field
sub-tab
In this sub-tab, enter information about parameters and user-changes that are associated with the action
of the background task. Each line represents either a field edit or a parameter with an associated value.
For example, if the background task represents an update to a record, the sub-tab indicates the fields to
be updated. Another example is when the action uses parameters to indicate e-mail settings and the like;
the parameter values are stated in the sub-tab.

If you specify user-input parameters for actions that do not take user-changes, this means that the system
should perform an update (with those changes) before performing the actual action. For example, before
the system performs the Copy Budget action in the Job Budgets container, it may be necessary to set
the source budget type, and so on. This is done by an update, and can therefore be specified by
providing user-inputs for such an action.

Field Description

Line Type In this field, select one of three available values:

 Parameter – The line represents a parameter used by the
action.

 User Input – The line represents a field that is edited as part of a
Create or Update action.

 Read Parameter – The line represents a parameter passed to
the READ event of the container, which takes place before
performing the action.

The default value of this field is User Input.

Field/Parameter Name In this field, enter the name of the field/parameter that the line
represents.

Type In this field, specify the field/parameter type. For example, the field
type of “JobNumber” in the Time Sheets container (sub-tab) is
String, while the field type of “PermanentLine” in the same container
is Boolean.

Fields and Actions

Background Tasks Guide 76

Field Description

Expr. Select this check box if the field value is entered as an expression.
Expression values are resolved at execution time and may depend
on the data in the current record.

If you do not select this check box, the field value must represent a
constant value of the appropriate type.

Value In this field, enter the value of the field/parameter. This is
independent of the actual type.

The value you enter should be a String representation of the actual
value. For example: Use true or false values for Booleans, and enter
Strings as is.

If you select the Expr. check box, enter a value as an expression
with the result type you specified in the Type field.

If the value you enter represents an expression, you may refer to
fields in the record (that is, a record in the pane related to the
background task) by their names. If that pane is of the Table type,
you can refer to values of the fields in the corresponding Card pane
by prefixing “card” to the Card field names.

If you need to specify a value for each type, you can add the fields
for these to the default layout.

Action Description

Add Parameter/Field Click this action to add a line for a parameter/field.

Insert Parameter/Field Click this action to add a line for a parameter/field between existing
lines.

Delete Parameter/Field After selecting a parameter/field line, click this action to delete that
line.

Move Parameter/Field
Up

After selecting a parameter/field line, click this action to move that
line up.

Move Parameter/Field
Down

After selecting a parameter/field line, click this action to move that
line down.

Setup » Background Tasks workspace » Setup section » List of Key Generators tab

Action Description

New Key Generator Click this action to create a key generator.

Fields and Actions

Background Tasks Guide 77

Setup » Background Tasks workspace » Setup section » List of Key Generators tab » Key
Generator sub-tab
Key Generator island

Field Description

Name In this field, enter the name of the key generator.

Description In this field, you can enter an optional description for the key
generator.

Container Name In this field, specify the name of the container which will provide key
information. This container must contain a filter list. Each record read
through this container’s filter list corresponds to one container key.
When the system reads these records, it applies the restrictions
specified in the Extracted Rows Match This Condition field.

Pane Name In this field, specify the name of a pane in the container. Since the
pane type is always “Filter”, the default pane name is generally
“Filter” as well. In case the filter pane is named differently, specify
that name here.

Extract Fields island

Field Description

Extract Field Name 1-10 In these fields, you can specify up to 10 field names for extraction
from the filter that the key generator addresses.

Maconomy uses the extracted field/s to map to container keys,
record conditions, and/or run-as information in background task
generators associated with this key generator.

Extracted Rows Match This Condition island

Field Description

Extracted Rows Match
This Condition

In this field, specify a Boolean expression for Maconomy to apply
when reading keys. This is a required field.

If you want all rows to match the condition, enter the value true.
You may use simple functions such as userDate() (to access the
current date), addDays(), and so on. However, you should only
specify functions that can resolve a value independently of data.
This means you cannot apply functions to field values in the
container. For example: addDays(SomeField, 2) is not valid, while
addDays(userDate(), 2) is valid since it can be computed without
reference to any field values from the underlying container.

You can also refer to field values directly (that is, not using function
invocations). For example, you can refer to time sheets that are
submitted but not yet approved by specifying the following
condition: submitted and not approved.

Fields and Actions

Background Tasks Guide 78

Show Fields During Test island

Field Description

Field Names In these fields, you can specify up to 10 additional field values for
extraction during testing.

While these fields are optional, they are useful for providing the key
generation with a meaningful context. For example: If you have a
key generator that extracts information about customers with certain
properties, you will most likely specify CustomerNumber in one of
the fields in the Extract Fields island. While you may not need to
extract actual customer names, extracting names (and other fields)
helps you verify that your test is working.

Remarks island

Field Description

Remarks You can use this field to enter remarks about the key generator.

User island

Field Description

Created This field displays the date the key generator was created, as well as
the name of the user who created it.

Changed This field displays the date the key generator was last updated, as
well as the name of the user who made these updates.

Version No. This field displays the number of times the key generator has need
edited.

Action Description

New Key Generator Click this action to create a key generator.

Delete Key Generator After selecting a key generator from the filter list, click this action to
delete that key generator.

If you select and try to delete a key generator currently in use,
Maconomy displays an error message.

Test Key Generation Click this action to generate an Excel file containing the following
information:

 All keys generated by the rule at the time you run the action

 Data extracted from fields specified in the Extracted Fields island

Fields and Actions

Background Tasks Guide 79

Action Description
 Data extracted from fields specified in the Show Fields During

Test island

 When running this action, you can limit the number of
rows extracted. For example, you can limit the output to
show only the first 500 rows extracted.

Setup » Background Tasks workspace » Setup section » List of Schedule Rules tab

Action Description

New Background Task
Generator

Click this action to create a background task generator.

Import Click this action to launch the wizard that allows you to import key
generators and background task generators using the Import
Background Task Generators import program.

Setup » Background Tasks workspace » Setup section » List of Schedule Rules tab » Generate
Default Rules sliding panel
If the default rules are deleted or heavily modified, the system administrator may lose track of the rules’
original specifications. In such instances, use this sliding panel to regenerate and revert to the standard
rules.

Field Description

Title This field displays the name of the default rule corresponding to the
current line.

Description This field displays a brief description of the default rule.

Marked for Gen. If you select this check box and then click Generate Marked
Default Rules, Maconomy generates the rule represented by the
line.

New Key Generator
Name

In this field, enter the name of the key generator that is used for the
rule. This name should not match that of any current key
generators.

New Task Generator
Name

In this field, enter the name of the task generator. This name should
not match that of any current task generators.

Generated By This field displays the name of the user who last invoked rule
generation from the line.

Generated On This field displays the date when the user last invoked rule
generation from the line.

Fields and Actions

Background Tasks Guide 80

Action Description

Mark All Click this action to select the Marked for Gen.
check box on all lines.

Unmark All Click this action to clear the Marked for Gen.
check box on all lines.

Generate Marked Default Rules Click this action to generate task generators
and corresponding key generators for all the
lines that are selected for generation.

After clicking this action, Maconomy clears the
Marked for Gen. check box on all lines.

Maconomy does not automatically activate the
new task generators. The designated user or
system administrator has to activate them
manually.

Setup » Background Tasks workspace » Setup section » List of Schedule Rules tab » Schedule
Rule sub-tab
Generator island

Field Description

Name This field displays the name of the task generator, or the
name you entered in the New Schedule Rule wizard.

Description In this field, you can enter a description of the task generator.

Access Level In this field, specify an access level.

Maconomy applies this access level to all generated tasks.

Type In this field, specify a task generator type. Select one of the
following values from the drop-down list:

 Single Task – The task generator generates a single
task type. Such task generators specify an action that is
carried out in a specific container, along with a trigger
time pattern that dictates when this action is performed.

 This is the default value.

 Sub Task – The task generator generates a single task
type. However, you do not specify a trigger time pattern,
since sub tasks are meant to be referenced by sequential
and interleaved tasks.

Fields and Actions

Background Tasks Guide 81

 Sequential Tasks – The task generator serves as an
umbrella for other task generators (of the Sub Task type)
which are invoked when this generator is triggered.

 Maconomy generates the corresponding tasks such
that each task type is carried out in sequential order
(that is: Maconomy generates all tasks related to task
generator 1, then all tasks related to task generator 2,
and so on). This means Maconomy does not
generate tasks related to generator 2 until after it
completes all tasks related to generator 1.

 Interleaved Tasks – This is similar to sequential
tasks, but Maconomy carries out the tasks in an
interleaved manner rather than in a sequential one.
That is, Maconomy:

1. Invokes generator 1 and carries out its
first task

2. Invokes generator 2 and carries out all
resulting tasks

3. Carries out generator 1’s second task

4. Invokes generator 2 and carries out all
resulting tasks, and so on.

 Note: Interleaved tasks have a greater
overhead than sequential tasks, and may lead to
situations where the same operation is produced
multiple times. Therefore, unless you have very
specific reasons for using interleaved task
execution, consider using sequential task
execution whenever possible.
 In addition, interleaving of tasks is not strict.
Several background processes can work in parallel.
That is, Maconomy can execute several tasks from
the generator 1 before carrying out subsequent tasks
from generator 2.

Trigger Time Pattern In this field, specify the time pattern that Maconomy should
use for triggering the task generator. The syntax for this
pattern is similar to that of cron jobs.

Some examples:

10 * * * * triggers the task on the 10th minute of each
hour daily. That is: 00:10, 01:10, 02:10, 03:10, and so on.

*/15 * * * * triggers the task on the 15th minute of each
hour daily. That is: 00:00, 00:15, 00:30, 00:45, 01:00, 01:15,
and so on.

20 15 * * * triggers the task at 20 minutes past 15:00
daily. That is: 3:20 P.M.

20 15 * * Tue triggers the task at 20 minutes past 15:00
on Tuesdays. That is: 3:20 P.M. on Tuesdays.

Fields and Actions

Background Tasks Guide 82

20 15 * * Mon-Fri triggers the task at 20 minutes past
15:00 on weekdays. That is: 3:20 P.M. on Mondays through
Fridays.

*/15 9-17 * * * triggers the task every 15 minutes from
9:00 to 17:00 daily. That is: 09:00 A.M., 09:15, 09:30, 09:45,
10:00, 10:15, … 5:45 P.M.

*/15 9-10,16-17 * * * triggers the task every 15 minutes
from 9:00 to 10:00 and from 16:00 to 17:00 daily. That is:
09:00 A.M., 09:15, 09:30, 09:45, 10:00, 10:15, … 10:45, …
4:00 P.M., 4:15, …5:45 P.M.

0 6 1 * * triggers the task at 6:00 A.M. on the first day of
each month.

0 23 L * * triggers the task at 23:00 on the last day of
each month. That is: 11:00 P.M. on January 31, February 28
(or 29 during a leap year), March 31, April 30, …December
31.

0 8 * * * | 0 18 * * * triggers the task at 8:00 A.M.
and 18:00 (6:00 P.M.) daily. Patterns can be separated by a |.

Leave this field blank only when the schedule rule is of the
Sub Task type.

For more information about trigger time patterns, refer to
http://www.sauronsoftware.it/projects/cron4j/manual.php#p02.

Last Run This field displays the date and time that Maconomy last ran
the task generator.

Next Due This field displays the date and time this task generator is
next due. This field takes the specified Trigger Time Pattern
into account.

Valid In these fields, you can specify a validity date interval.

If you fill out both fields, Maconomy only invokes the task
generator within this date range (regardless of the specified
Trigger Time Pattern).

If you leave the first field blank, this means you do not want to
specify a start date. If you leave the second field blank, this
means you do not want to specify an end date.

Run a Max. Number of Times Select this check box if you want Maconomy to run the
schedule rule a maximum number of times. By default, this
check box is not selected.

No. Runs Left When you select the Run a Max. Number of Times check
box, Maconomy automatically displays this field.

Here you can specify the maximum number of times
Maconomy should run the schedule rule.

Every time Maconomy triggers the rule, this number is
decreased.

http://www.sauronsoftware.it/projects/cron4j/manual.php#p02

Fields and Actions

Background Tasks Guide 83

Background Task island
The fields in this island are only applicable to Single Task and Sub Task types.

Field Description

Container Name In this field, specify the internal name of the
container that hosts the task to be carried out.
For example: “maconomy:TimeSheets” or
simply “TimeSheets”, since the namespace
“maconomy” is the default value.

Singleton Container This field indicates whether the specified
container is a singleton container (or one that
cannot be referenced by a specific container
key).

Pane Type In this field, select the type of pane where
Maconomy invokes the background task.

If you fill out this field, you can leave the Pane
field blank. Maconomy then automatically fills
out that field with the default name for the pane
type you specify here.

Pane This field shows the internal name of the pane
that hosts the task to be carried out.

This field is not displayed by default, but you
can add it to a custom layout.

Action Name In this field, specify the internal name of the
named action that the background task is
meant to carry out.

If the action is a Standard action, leave this
field blank.

Standard Action In this field, select the standard action that the
background task is meant to carry out.

You can select one of the following values from
the drop-down list:

 Create

 Update

 Delete

 Print

If the action is a named action, leave this field
blank.

System Nature This field is similar to the System Nature field
found in the Task Properties island of the

Fields and Actions

Background Tasks Guide 84

Background Task tab (Setup » Background
Tasks workspace » Editing section »
Background Task tab).

Max. Duration This field is similar to the Max. Duration field
found in the Task Properties island of the
Background Task tab (Setup » Background
Tasks workspace » Editing section »
Background Task tab).

Tasks Require Execution Select this check box if you want Maconomy to
consider it an error whenever an action cannot
be carried out on a record. This applies in the
case of an unfulfilled record condition or when
you select the Ignore Disabled Action check
box.

By default, this check box is not selected.

Container Keys island

Field Description

Container-Key Generator Use these fields to specify the generator you
want to use for generating container keys and
additional information. You can specify either
the name or the number of the container key
generator.

When the task generator is triggered,
Maconomy runs this container key generator.
For each of the generated entries, Maconomy
also generates a task with the properties
specified in the Background Task island
(depending on how you define the mapping to
container key fields).

The following fields in this island are structured as a “grid” composed of up to 10 rows: one for each of the
fields extracted by the specified Container-Key Generator. If only one field is extracted, only one row is
displayed; if two fields are extracted, two rows are shown; and so on. While all the Source Field names
extracted by the Key Generator are listed in these rows, you are not required to use all of them for
mapping.

Field Description

Context Field Name This field displays the value of the extracted
field.

Run As This field displays additional information about
the value of the Context Field Name field.

Specifically, this field displays one of the
following values:

Fields and Actions

Background Tasks Guide 85

 <Blank> - The Context Field Name field
does not indicate the user on whose
behalf Maconomy runs the task. The
system runs the task on behalf of whoever
is specified as the background user.
Ideally, this background user should have
Administrator rights. Otherwise, “Run As”
information is disregarded, and Maconomy
runs all generated tasks as the
background task administrator user
(specified in the settings.ini file).

 User - The value of the Context Field
Name field represents a user name. The
system runs the generated background
task on behalf of this user.

 Employee Number - The value of the
Context Field Name field represents an
employee number. The system runs the
generated background task on behalf of
the user (or one of the users) associated
with this employee number.

 Role Instance – The value of the Context
Field Name field represents the internal
identification (instance key) of the user
role on whose behalf this task should be
run.

Only one row should have a value for this field.
If you try to fill out this field in another row,
Maconomy deletes the first value you entered.

Record Condition island

Field Description

Record Condition In this field, enter an expression for Maconomy
to apply as a record condition to each of the
generated tasks.

For example: You specify a rule for approving
all submitted time sheets. If a user approves a
submitted time sheet after the system
generates the background task and before the
system picks up this same task for execution,
you could receive an error report. This is
because Maconomy cannot approve a time
sheet that is already approved. To avoid
getting an error, you could specify a record
condition of “Submitted and Not Approved”. If
you do this, the system picks up the task for
execution and carries out the approval action
only for time sheets that are submitted but not
yet approved.

Fields and Actions

Background Tasks Guide 86

The record condition you specify here can also
refer to context field names (for example, to
specify actions that should take place on
specific lines in a sub-tab). In this case, refer to
the value of the context field names using the
context.-prefix indicated in the Context Field
Name field for the row.

Ignore Disabled Action This check box is similar to the Ignore
Disabled Action check box found in the
Record Conditions island of the Background
Task tab (Setup » Background Tasks
workspace » Editing section » Background
Task tab).

Output Document Handling (Using Files) island

Field Description

Handle Files Like (Option 1) This field is similar to the Handle Files Like
(Option 1) field in the Output Document
Handling (Using Files) island of the
Background Task tab (Setup » Background
Tasks workspace » Editing section »
Background Task tab).

The system copies this information to each
background task generated by the task
generator.

File Location Ref. (Option 1) This field is similar to the File Location Ref.
(Option 1) field in the Output Document
Handling (Using Files) island of the
Background Task tab (Setup » Background
Tasks workspace » Editing section »
Background Task tab).

The system copies this information to each
background task generated by the task
generator.

File Location (Option 1) This field is similar to the File Location
(Option 1) field in the Output Document
Handling (Using Files) island of the
Background Task tab (Setup » Background
Tasks workspace » Editing section »
Background Task tab).

The system copies this information to each
background task generated by the task
generator.

Fields and Actions

Background Tasks Guide 87

Handle Files Like (Option 2) This field is similar to Handle Files Like
(Option 1), but this allows you to specify a
different filter for output documents.

File Location Ref. (Option 2) This field is similar to File Location Ref.
(Option 1), but this allows you to specify a
named reference to a different file directory.

File Location (Option 2) This field is similar to File Location (Option
1), but this allows you to specify a different
base-file location.

Output Document Handling (Using Email) island

Field Description

Handle Files Like (Option
1)

This field is similar to the Handle Files Like (Option 1) field in the
Output Document Handling (Using Email) island of the Background
Task tab (Setup » Background Tasks workspace » Editing
section » Background Task tab).

The system copies this information to each background task
generated by the task generator.

E-mail To (Option 1) This field is similar to the Email To (Option 1) field in the Output
Document Handling (Using Email) island of the Background Task
tab (Setup » Background Tasks workspace » Editing section »
Background Task tab).

The system copies this information to each background task
generated by the task generator.

E-mail From (Option 1) This field is similar to the Email From (Option 1) field in the Output
Document Handling (Using Email) island of the Background Task
tab (Setup » Background Tasks workspace » Editing section »
Background Task tab).

The system copies this information to each background task
generated by the task generator.

Handle Files Like (Option
2)

This field is similar to Handle Files Like (Option 1), but this allows
you to specify a different filter for output documents.

E-mail To (Option 2) This field is similar to E-mail To (Option 1), but this allows you to
specify a different recipient e-mail.

E-mail From (Option 2) This field is similar to E-mail From (Option 1), but this allows you
to specify a different sender e-mail.

Fields and Actions

Background Tasks Guide 88

Input Document Handling (Using Files) island

Field Description

Input Files Like (Option 1) This field is similar to the Input Files Like (Option 1) field in the
Input Document Handling (Using Files) island of the Background
Task tab (Setup » Background Tasks workspace » Editing
section » Background Task tab).

The system copies this information to each background task
generated by the task generator.

Input File Location Ref.
(Option 1)

This field is similar to the Input File Location Ref. (Option 1) field
in the Input Document Handling (Using Files) island of the
Background Task tab (Setup » Background Tasks workspace »
Editing section » Background Task tab).

The system copies this information to each background task
generated by the task generator.

Input File Location (Option
1)

This field is similar to the Input File Location (Option 1) field in
the Input Document Handling (Using Files) island of the
Background Task tab (Setup » Background Tasks workspace »
Editing section » Background Task tab).

The system copies this information to each background task
generated by the task generator.

Store Output Files Like
(Option 1)

This field is similar to the Store Output Files Like (Option 1) field
in the Input Document Handling (Using Files) island of the
Background Task tab (Setup » Background Tasks workspace »
Editing section » Background Task tab).

The system copies this information to each background task
generated by the task generator.

Remarks island

Field Description

Remarks You can use this field to enter remarks about the task generator.

User island

Field Description

Created This field displays the date the background task generator was
created, as well as the name of the user who created it.

Changed This field displays the date the background task generator was last
updated, as well as the name of the user who made these updates.

Fields and Actions

Background Tasks Guide 89

Field Description

Version This field displays the number of times the background task
generator has been edited.

Action Description

New Background Task
Generator

Click this action to start creating a background task generator.

Delete Background Task
Generator

After selecting a background task generator from the filter list, click
this action to delete that task generator.

Note that you cannot delete a task generator if other task generators
refer to it.

Activate After selecting a background task generator from the filter list, click
this action to activate that task generator. Once you activate a task
generator, the system may pick it up for execution within the validity
period you specified.

Note that you cannot edit active task generators.

If you activate a rule, you also activate all the sub tasks that the rule
references.

Deactivate After selecting a background task generator from the filter list, click
this action to deactivate that task generator. This prevents the
system from invoking the task generator.

You can then edit the deactivated task generator.

Note that deactivating a sub task also deactivates any rule that
references that sub task.

Run Generator Click this action to start generating tasks manually.

This action only generates tasks if:

 The background task generator has just passed its “next due
date/time”.

 The background task executor is within its validity interval.

 The Run a Max. Number of Times check box is selected, and
the No. Runs Left field’s value is greater than zero.

Note that you usually should not manually invoke this action. The
background task execution engine automatically invokes it.

Setup » Background Tasks workspace » Setup section » List of Schedule Rules tab » Schedule
Rule sub-tab » Test Bed sliding panel

Fields and Actions

Background Tasks Guide 90

Generator island

Field Description

Name This field displays the name of the background task generator.

Description This field displays a description of the background task generator.

Access Level This field displays the access level specified for the background task
generator.

Type This field displays the background task generator type. It could have
one of the following values:

 Single Task
 Sub Task
 Sequential Tasks
 Interleaved Tasks

Trigger Time Pattern This field displays the trigger time pattern specified for the
background task generator.

Last Run This field displays the date and time Maconomy last ran this task
generator.

Next Due Date This field displays the date this task generator is next due. This field
takes the specified Trigger Time Pattern into account.

Next Due Time This field displays the time this task generator is next due. This field
takes the specified Trigger Time Pattern into account.

Valid This field displays the validity date interval specified for the
background task generator.

Action Description

Run Generator
Unconditionally

This is similar to the Run Generator action in the Schedule Rule
sub-tab, except clicking this action generates tasks unconditionally
(that is: independent of whether the task generator is due/is within
the validity period/has been run the maximum number of times).

Fields and Actions

Background Tasks Guide 91

Setup » Background Tasks workspace » Setup section » List of Schedule Rules tab » Schedule
Rule sub-tab » Parameters panel

Field Description

Line Type This field is similar to the Line Type field found in Setup »
Background Tasks workspace » Editing section » Background
Task tab » Parameter/Field sub-tab.

Field/Parameter Name This field is similar to the Field/Parameter Name field found in
Setup » Background Tasks workspace » Editing section »
Background Task tab » Parameter/Field sub-tab.

Type This field is similar to the Type field found in Setup » Background
Tasks workspace » Editing section » Background Task tab »
Parameter/Field sub-tab.

Expr. This check box is similar to the Expr. field found in Setup »
Background Tasks workspace » Editing section » Background
Task tab » Parameter/Field sub-tab.

Value This field is similar to the Value field found in Setup » Background
Tasks workspace » Editing section » Background Task tab »
Parameter/Field sub-tab.

Action Description

Add Parameter/Field Click this action to add a line for a parameter/field.

Insert Parameter/Field Click this action to add a line for a parameter/field between existing
lines.

Delete Parameter/Field After selecting a parameter/field line, click this action to delete that
line.

Move Parameter/Field
Up

After selecting a parameter/field line, click this action to move that
line up.

Move Parameter/Field
Down

After selecting a parameter/field line, click this action to move that
line down.

Fields and Actions

Background Tasks Guide 92

Actions
Note: The information in this section is in DRAFT form and is not yet updated to reflect 2.5.2.

Show Next Scheduled Rule
In the Test Bed assistant, used for testing scheduled rules, the Show Next Scheduled Rule action
shows the next fifty (50) execution times for the current rule. This action is beneficial for debugging, and is
used to verify that the time pattern entered for the rule results in the wanted executions. For ease of use,
you can also run / test the rule prior to activating the rule.

Note: Take into consideration the data in the No. of Runs Left field and the valid interval when
evaluating execution times.

Export Selected Lines
This action creates an Excel export of the background tasks specified in the selection criteria of the tab.
This is an alternative to the Show Lines action and works for more than 5000 lines.

Test Schedule Rule
Click on this action and a new wizard displays enabling you to test the schedule rule

Export Selected Tasks
This action exports to Excel all the tasks with the Selection Criteria that you’ve selected. Leave the
Selection Criteria fields blank to export everything in the database. Alternatively, filter by container or
origin or any Selection Criteria field to narrow your list. This action allows you to verify lines before you
delete them.

Delete Selected Tasks
Use this action to delete selected tasks. You no longer need to select “Show Lines.” This is helpful when
you have numerous tasks (sometimes more than 5,000). Previously, you wouldn’t be able to delete from
this window. With the new updates, you can delete from this window. If you do not specify any criteria,
then the action acts like a “delete all lines” action and will delete all lines.

Export Selected Tasks
Use the Export Selected Tasks action and to export and review material prior to deletion.

Pause Execution
The Pause Execution action facilitates a smooth break in background task execution so that any
background tasks currently running can successfully complete and that no further tasks are picked up.
The Pause action is used on nodes only, and it sets all the execution threads underneath this node to a
state where they suspend picking up new background tasks for execution. The threads complete
background tasks already in progress, but do not pick up additional background tasks.

Using this action enables current tasks to complete without failure then gives you time to perform
whatever action you must do, such as shutting down a coupling service. When you resume activity, such
as after a coupling service restart, the node is no longer “paused,” and it remembers where it left off and
resumes background tasks from that point.

Fields and Actions

Background Tasks Guide 93

Note: This action impacts the selected node only. In the instance that there are several coupling services,
the other coupling services can continue to pick up new background tasks.

Delete Inactive Test Tasks
If you have tested and found that everything is okay, and you don’t want to activate the tasks, you can
instead delete them.

Activate Inactive Test Tasks
Generally, activating inactive / generated test tasks is used as a second phase of testing. For the first
phase, generate the test tasks and investigate them. To perform further testing, use this action to activate
them again and evaluate if they are being executed correctly.

Show Next Scheduled Rule Execution
Click to show the next 50 scheduled runs so you can check the time pattern as needed.

Framework Admin and Maintenance

Background Tasks Guide 94

Framework Admin and Maintenance

Monitoring Background Tasks
Maconomy provides numerous ways to monitor background tasks, including:

 Email reporting

 Status information in the Background Tasks workspace

 Color coding

Email Reporting
An automatic reporting system provides transparency into the system, enabling system owners to have
better insight into and control over what is occurring in the system. Upon startup or after a task is
resolved, an auto-email reports to confirm status. If an error occurs, the email report immediately flags it
along with diagnostics and tips on resolution to facilitate user self-sufficiency.

For example, an email report is sent when the system is put in maintenance mode, or if background task
execution is switched off.

The email report is supported by a new sliding panel within the Background Task workspace in case
email is unavailable for whatever reason.

The report includes the following information:

 Server information, including name in heading and detail at the bottom of email

 Summary of error

 Tips on resolving the error

 Name of background task administrator

When errors are unresolved, a reminder email is sent every two hours until the issue is resolved. When
the issue is resolved, an email report is sent confirming a return to normal operations.

Note: By default the email timing is every two hours. To configure the timing, see Configure Email Timing.

Email reports are sent automatically:

 Upon startup.

 If an error prevents background tasks from being executed.

 When the system goes back into to confirm normal operations, after an error has occurred.

 When the system is put into maintenance mode.

 Each hour (or as configured), to flag any unresolved issues.

Framework Admin and Maintenance

Background Tasks Guide 95

Email Report—Normal Operation

Email Report—Task Error

Sliding Panel for Error Reporting
Background Tasks » Management » Execution Runtime » Execution Nodes » Coupling Service
sliding panel
If an error occurs with background tasks that cannot be reported via the email reporting system, such as
due to an invalid/non-responding e-mail server, an incorrect email recipient, or network issues, these
errors are reported in the Coupling Service sliding panel.

Framework Admin and Maintenance

Background Tasks Guide 96

The Coupling Service sliding panel supports the email reporting system, and provides information
regarding issues detected while attempting to send email reports. If an error occurs and a message is
available on the sliding panel, a red message icon displays in the Msg column on the Execution Nodes
sub-tab for each coupling service impacted (node of type PID). This indicates you should check the
sliding panel for information.

Error Types
There are various types of errors that may occur and impact background task performance. Below are the
general types. In all cases, refer to the email report for details.

 User Access — Some errors, such as an unknown user specified in
batch.administrator.loginname or insufficient access for that user, make it impossible for the
system to access the background tasks in Maconomy. These errors are sent by email.

 Coupling Service — Coupling service errors relate to one specific coupling service that is unable
to execute background tasks. These errors are sent by email.

 System — Errors may relate to the entire SYSTEM as unable to execute background tasks, or
indicate that the entire SYSTEM is “hanging.” These errors are sent by email.

 Monitoring — Some errors, such as sanity, configuration, and runtime error messages, relate to
monitoring whether it is possible to send error reporting emails at all. If email reporting is
unavailable, such as due to an invalid email address, the messages are displayed in the Coupling
Service sliding panel. A red message icon displays in the Msg column on the Execution Nodes
sub-tab for each coupling service impacted (node of type PID). These errors are reported in the
Coupling Service sliding panel. These errors are reported in the Coupling Service sliding panel.

Status Information in Background Task Workspace
Background Tasks > Management > Execution Runtime
The Execution Runtime tab provides quick access to detail regarding your background tasks. The view
enables you to quickly see status as well as errors or “hanging” tasks. Additionally, color coding indicates
the status at-a-glance.

The workspace includes these areas:

 Status—This section tells you whether or not the background task execution is on or not, as well
as:

 No. Running Tasks— This field displays the number of currently running background
tasks. Click the Refresh action to monitor how the number changes over time.

 Last Refreshed—Indicates the last time this view (including the list of execution nodes
shown in the table part) was last refreshed. This works in conjunction with the “Execution
Runtime” part of the workspace, which offers a snapshot of what the system looks like at
a given time. Often the system will look slightly differently even a few seconds after the
snapshot. The “Last Refreshed” details when this snapshot was taken.

 Hanging Tasks—This section flags if a background task is running indefinitely (in other words,
“hanging”). If hanging tasks are detected, an error message displays in purple in this section, and
the number of hanging tasks detected displays in red. Additionally, an error message displays in
red, and an email report is sent to flag the error. If all is running as expected, the message “No
hanging tasks” displays.

 Error Messages—This section includes details of error messages, if any. If not, the message “No
error message” displays.

Framework Admin and Maintenance

Background Tasks Guide 97

Actions on Execution Nodes Sub-Tab
Background Tasks > Management > Execution Runtime

 Pause Execution Action— Use the Pause action to bring the threads of a node into a state
where they complete existing tasks and will not pick up new tasks. This is helpful when you need
to shut down a coupling service, as once all threads have finished executing their current tasks,
you know that they cannot take new ones, so then it is a safe time to shut down a coupling
service. When the coupling service is started once again, the threads on the node resume picking
up new tasks.

 Stop Execution Action—When you use this action, the node (and underlying threads) are no
longer able to pick up new background tasks, but when the coupling service is stopped and
started once again, these nodes will remain in the Stopped state.

 By default, the layout of the workspace allows the user to invoke the “Pause” actions for coupling-
service nodes (type PID) and “Stop” for nodes of type Host and System. By default none of these
actions are available for the individual threads, but can be configured by updating the layout.

 Termination status—A “Termination in progress” status on the Execution Nodes sub-tab
enables you to easily see when a background task is in the process of being cancelled.

Color Coding
The color coding uses conventions of text color and text highlight to communicate several messages at
once and at-a-glance. Threads (and the parent nodes of threads) may be color-coded using highlight
coloring, as described below.

Note: The color codes can be configured in the layout, per usual process for layout changes.

Within the Background Task workspace, click the sliding panel to see the color legend while in
Maconomy.

Color Indicates

For background tasks that may run, text is colored and indicates:

Black text All is as expected and these background tasks may run.

Blue text Background task is currently being run on the thread shown.

Red text A background task has been cancelled (either by the end-user or by
the system), and the task termination is in progress.

Purple text Background task is hanging / running indefinitely.

For background tasks that will NOT run, text is highlighted and indicates:

Purple highlight Purple indicates that all execution threads beneath this node are
hanging. This is only used for nodes of type PID, Host, and System.

Yellow / orange highlight Yellow/orange means that the node is prevented from picking up
new background tasks because one of its parent nodes is stopped.

Red highlight Red means that the given node is “stopped” by the end-user, which
means that it is prevented from picking up new background tasks

Framework Admin and Maintenance

Background Tasks Guide 98

(currently-running tasks will continue as usual and their foreground
color-code will reflect the state).

Black highlight Black highlight with yellow text indicates Maintenance Mode /
background tasks are OFF:

Light gray highlight A bold light gray color for nodes of type PID indicates that the node
has been deliberately excluded from executing background tasks.

Framework Admin and Maintenance

Background Tasks Guide 99

Color Code Flow Chart

Verify and Delete Tasks
To verify and delete tasks:

1. Go to Background Tasks > Management > Selection & Clean-Up.
2. In the Selection Criteria tab, enter information in any fields you choose to use as task filters.

3. Click Export Selected Tasks.

4. Review the exported information.

5. When verified, in the Selection Criteria tab, again enter information for fields you choose to filter.

6. Click Delete Selected Tasks.

Framework Admin and Maintenance

Background Tasks Guide 100

Clear “Override Auto-Deletion of Tasks”
With the new Override Auto-Deletion of Tasks field, you can set up system defaults to override auto-
deletion, as well as specify dates on which tasks should be deleted. This is useful in testing and to
improve monitoring.

Sometimes if you want to debug or test, it is helpful to keep tasks even if they have finished successfully.
While you could deselect the Delete Automatically field on the task, since some tasks are created from
within the system, you do not have control over them and cannot deselect auto-deletion for those tasks.

Instead, use the Ignore Until field. Here you can specify date and time of deletion, meaning that once
task has finished successfully, it is not deleted automatically until the specified date, giving you time to
investigate the task.

To Override Auto-Deletion of Tasks:
1. Go to Background Tasks > Management > System Defaults.

2. In the Override Auto-Deletion of Tasks group, Ignore Until field, enter the date and the time on
which the tasks must be deleted.

After this date and time, the system resumes auto-deletion of tasks.

Admin FAQs and Troubleshooting

Background Tasks Guide 101

Admin FAQs and Troubleshooting
This section provides Frequently Asked Questions for Scheduled Background Tasks.

Is the Background Task System Running?
You need to check what background execution threads are running, and verify that they are “alive”.

To do that, go to Set Up » Background Tasks » Management » Execution Runtime » Execution
Nodes.
This view shows all execution nodes “recently known” as well as their activity level:

Each node of type “Tread” represents an execution thread that can run a task. The threads are grouped
into running processes represented by the PID, grouped again under the host name of the computer
hosting that process.

Every time a thread makes itself known (to query for background tasks) the “Latest Activity” time stamp is
updated. Hence, using this field, you can see when a given thread was latest making itself known. The
“Timeout” timestamp means that if the thread does not make itself known again before that time, the
system may consider the thread as “timed out”, and may remove it from this view. If – at that time – the
thread is believed to be running an actual background task, that background task will automatically be
“aborted” by the system.

It is possible to “Stop” a given execution node. That means that no new background task will be assigned
that node.

In the picture below, the node with PID 8884 is “stopped”, meaning that background tasks will not be
assigned to any execution node belonging to this PID. The threads may still be rendered as “active” (their
“Latest Activity” is updated), but no matter what background tasks will not be assigned to those nodes.

Note: If all threads are Suspended/Stopped, no background tasks are processed!

Admin FAQs and Troubleshooting

Background Tasks Guide 102

I Need to Shut Down the Coupling Service – Should I Do Anything?
You don’t have to do anything. But if the coupling service is executing a background task while you shut it
down, that task will time out and be aborted by the system.

In order to avoid this situation, a “nice” behavior is to stop background task execution for the specific
process ID, and once all underlying task threads are done executing tasks, stop the coupling service.

Note: you cannot get “damaged data” simply by shutting tasks down, but you may end up having tasks
that are marked as failed, because they are aborted by the system. Such tasks can be rescheduled, but
the decision to do so is a manual one.

You can stop execution of background tasks for specific processes in Set Up / Background Tasks,
Management » Execution Runtime » Execution Nodes.
After pressing the “Stop” button for the process ID corresponding to the coupling service to be stopped,
the view may change into something like (assuming that tasks were running):

By refreshing the view, you can see when the tasks are done:

Admin FAQs and Troubleshooting

Background Tasks Guide 103

Now that process can be stopped without leading to abortion of background tasks.

I Need to Copy the Production Database to Test – Can I Do So Safely?
When a database copy is done, the background tasks are also being copied (in their current state) since
they are part of the data. For many tasks this is not a problem at all.

However, if some background tasks communicate with external systems (mail servers, file system, web
services) it may be relevant to ensure that the production and test systems are configured to handle these
external resources differently. And/or to ensure that background tasks that should only run on one of
these systems are annotated with a proper “nature”.

Natures are defined in the settings.ini file. As are named file- and URL references as well
as mail servers. You should look into the documentation in the settings.ini file for these
properties.

If this has been set up properly, database copies can be done without issues.

Alternatively, you may choose to disable background task execution for the short name to which to
database is copied, and manually examine the pending background tasks/background task schedule
rules before enabling background task execution for such systems.

What is the Status of the Background Tasks?
Background tasks can essentially be in one of the following states:

 Pending - The task is ready to be picked up for execution (when it’s active, it’s due time is up and
there’s nothing to await)

 Running - The task is currently being executed

 Committed - The “logic” of the background task has succeeded and has been committed,
handling of output documents has not been finalized yet

 Incomplete - After the task was “Committed” the handling of output documents failed for some
reason. For example, it was not possible to send mails, or not possible to store files

 Succeeded - The task has succeeded: the “logic” has been done and committed, and all handling
of output documents (if any) has been successfully completed.

 Failed - The execution of the background task failed. The overall reason “kind” can be seen in the
background task filter, along with a more detailed description in the log associated with the task.

In case of a failed task, the Execution Result can have one of the following values:

Admin FAQs and Troubleshooting

Background Tasks Guide 104

 Aborted - The execution of the background task was aborted by a user, or automatically by the
system because the background task timed out.

 User Error - This happens when the background task attempts to do something that does not
make sense or is not allowed--just like an end user can experience an error message when
entering data that is not accepted by the system.

 Internal Application Error - This happens in case of an internal error in the application. Situations
like this should typically lead to support issues with customer care.

 Data Fail Error - This may happen if the background task targets a record that does not exist, or if
the background task declares the creation of an entry that already exists. For example, if you try
to update an employee that has been deleted, this kind of error may occur.

 Data Busy Error - This may happen if the data being targeted is in use or being modified by other
users while the background task is running. Usually this error will trigger a re-attempt a while
later. If this error keeps occurring, the task will fail with this error code at the end.

 Access Error - This may happen if the user executing the background task does not have access
to the container in question.

 Setup Error - This may happen, for example, if the task has been set-up to submit a time sheet
that is already submitted.

 Other Error - This may happen for other kinds of errors.

If you go to Set Up / Background Tasks, Status » List of Background Tasks there are many possibilities of
overviewing tasks of various categories.

Admin FAQs and Troubleshooting

Background Tasks Guide 105

In addition to the actual status, you can trace:

 When was the task created

 When was the task due

 When was the task started

 When was the task ended

 Which host machine / PID / Thread ID executed the task

Admin FAQs and Troubleshooting

Background Tasks Guide 106

Why Did a Background Task Fail?
A background task has failed. To understand why, examine the explanations provided in the Log of the
background task. The log is found in: Set Up / Background Tasks, Status » List of Background Tasks »
Background Task » Result Log.

In the case below, a time sheet was attempted created with the input: EmployeeNumber = ‘11’ and
PeriodStart = 2016-11-07, but the field PeriodStart is not open for data entry.

Admin FAQs and Troubleshooting

Background Tasks Guide 107

How Can I Limit the Size of the Background Task Database Table?
Background tasks make up an important trace of things that has been done, letting a system
administrator monitor the status of things.

It’s possible to set up a schedule rule that automatically deletes completed background tasks that are
older than X number of days. This is even a default rule. By default this rule deletes all completed
background tasks that are 8 or more days old.

It is possible to configure:

 Whether this should happen

 What the time range should be

 When the rule triggers

This can be done from: Set Up / Background Tasks, Setup » List of Schedule Rules » Schedule Rules »
Parameters.

By editing the rule CleanCompletedBackgroundTasks you can alter this. In this example, if you change
the Value field in the table “Parameters” from 8 to 15, tasks will have to be at least 15 days old to be
deleted.

Just remember that the longer the duration, the larger the size of the Background Tasks database table.

Admin FAQs and Troubleshooting

Background Tasks Guide 108

Can I See Tasks That Were Run as Another User?
In the background task status filter, you can see whether a background task was run on behalf of another
user. If background tasks have been deleted, there may still be a chance that you can dig up some
information.

By default any background task that is set-up to run on behalf of some specific user (i.e., not as the
background administrator user) is stored in a condensed form in the database table
HistoricBackgroundTask. You can choose:

 Whether completed non-failing background tasks are stored in condensed form or not

 If they are, whether only background tasks running on behalf of a specific user are stored like that
(in order to keep the size of the table down)

By default, there is no place where you can inspect this historic information in a workspace. And the table
is not indexed. This means finding data might take a long time.

Basically, you need to do it using SQLPlus or another database administration tool.

The settings declaring to what extend (if at all) background tasks are logged in the
HistoricBackgroundTask table, can be altered from Set Up / Background Tasks, Management »
System Defaults.

Admin FAQs and Troubleshooting

Background Tasks Guide 109

Whenever any of these fields are changed, it is logged (also in HistoricBackgroundTask) who did the
change, and what the implication of the change was.

What is the Purpose of the HistoricBackgroundTask table?
The purpose is to resolve a situation where an entity says, for example, “Approved by User name”, but
the user refuses any knowledge of that. In this case, we can search for a HistoricBackgroundTask that
has done the approval action on behalf of that user. If such a HistoricBackgroundTask exists, the situation
can be explained. Obviously this can only be done if history trace is enabled.

How Can I Limit the Size of the HistoricBackgroundTask Table?
You can only limit if/to what extend data is stored in HistoricBackgroundTask. It is not possible to delete
any records from this table from within Maconomy. Hence, the table will keep growing as time goes by.

For this reason, it may eventually be necessary to delete “old” portions of this table. Doing so will have to
be a manual task done by a DBA, for example using SQLPlus.

Execution Threads are Active; But No Tasks are Being Executed. Why?
You need to figure out whether the background tasks are ready for execution. This includes checking:

 What is the due date/time for the background tasks?

 Are the background tasks active or inactive?

 Are the pending tasks awaiting some other task that isn’t completed, or isn’t due?

 Are the tasks associated a nature different from the nature of the current system?

 Are there errors being reported by the task execution engine (see server log)

 Does the background administrator have adequate access rights?

Properties of the tasks can be seen in: Set Up / Background Tasks, Status » Background Task.

In the above screenshot, you can see that the “Waiting for root n” tasks cannot be picked up for execution
because they await the “Root task”. The “Root task” awaits the due date/time before it can be picked up.

Another cause could be related to more critical errors experienced by the background task execution
engine. This status of this can be tracked by enabling logging in the logback.xml file found in the
configuration folder in the coupling service installation folder.

Assuming that you have an appropriate “appender” defined (it could be the FILE appender, or it could be
one dedicated for background tasks execution), you can enable all logging concerning the background
task execution engine by adding this to the logback.xml file:

 <logger name="com.maconomy.coupling.service.batch" additivity="false">

Admin FAQs and Troubleshooting

Background Tasks Guide 110

 <level value="DEBUG"/>

 <appender-ref ref="FILE" />

 </logger>

Level TRACE will give an even higher amount of information from the background execution
engine. Errors could include, not being able to login, background task user not having adequate
access etc.

My Background Tasks Are Not Run at an Adequate Pace – Why?
If background tasks are not picked up “soon enough” it may indicate that the execution engine is too busy
performing background tasks.

You may need to consider:

 How many background task execution threads are enabled (across all server machines)

 Are any of the execution threads stopped or suspended?

 Are the pending tasks awaiting other tasks?

 Are the tasks being picked up for execution, but time out? In that case, is the maximum duration
of the task set to an adequate amount of time?

 Are any of the expected task assigned a nature different from the current systems?

 Are the tasks activated?

Most of these topic are mentioned elsewhere in this FAQ.

The Maximum duration can be set specifically on a task, as well as on task generator rules. The default
maximum duration can be configured in Set Up / Background Tasks, Management » System Defaults.

Maximum duration for tasks created by a schedule rule can be configured in: Set Up / Background Tasks,
Setup » List of Schedule Rules » Schedule Rule.

Admin FAQs and Troubleshooting

Background Tasks Guide 111

A value of 0 means “apply the default max. duration”.

My Background Task is Green, But It Didn’t Run – Why?
If the task is “green” (i.e., “Succeeded”) it means that the execution framework believes (and has no
reason not to) that the task was successfully run.

There are a couple of things you can check:

 Is the record key(s) referencing the expected record(s)? If not, the action was executed on
something other than what you expected.

 Is the record condition (if any) ruling out the expected record(s)? If so, the records you thought
was being processes has been skipped.

 How many records have been executed? If no records was actually executed, this is by default
considered a successful background task. It is possible to flag a background task so that if the
specified action is not applied for any record, it will be considered an error.

Notice:

In the log for the background task (in the Workspace) you can see exactly which record keys the action
has been applied to! Go to: Set Up / Background Tasks, Status » Background Task » Result Log.
In this case, the action ran on one record: (EmployeeNumber = 11)

In this case, the action ran on several records: (EmployeeNumber in {11, 12, 13, 14, 15, 31})

Admin FAQs and Troubleshooting

Background Tasks Guide 112

My Background Tasks Generator Hasn’t Run - Why?
You should investigate:

 When is the next due date/time of the background task generator? If this is sometime in the
future, maybe the time trigger pattern is not what you think, and the rule really shouldn’t have run

 When was the task generator last run?

 What is the validity date interval for this rule? If the rule is no longer valid (or not yet valid) this
explains why.

 Has the rule been set up to run a fixed number of times? If so, are there any runs left? If not, this
could explain why.

 Is the rule active? If not, this may explain why.

Notice:
You can investigate these things by going to: Set Up / Background Tasks, Setup » List of Schedule Rules
» Schedule Rule.
If you can activate the rule, it is currently inactive.

Other settings can be seen here:

Admin FAQs and Troubleshooting

Background Tasks Guide 113

If the rule is set to be run a maximum number of times, check if there are no runs left:

What Happens If Other Users are Changing the Data of a Background
Task?
Just as “normal” users can experience that someone else changes that the user is working with, this can
happen for background tasks. In case of a “Data has been changed by another user”, the execution
engine will automatically detect this situation and will re-schedule the background task to be attempted
again “soon”. The number of times this “retry” will occur can be configured, as can the interval between
retries. If the task keeps failing for this reason, it will eventually be marked as failed with a “Data Busy”
error indication.

You can track how many times a given task has been re-attempted.

Admin FAQs and Troubleshooting

Background Tasks Guide 114

To set-up the default number of re-tries and duration between re-tries, go to Set Up / Background Tasks,
Management » System Defaults.

Here you can specify the default number of re-tries and the time between re-tries.

It is possible to look-up what the settings for a given task is, including the number re-tries that has
occurred.

Where Did the Output of a Background Task End Up?
When a background task executes, sometimes output documents need to be taken care of. This could
be, for example, printed journals, invoices or log files (e.g., from import programs).

If a background task produces output, it needs to be handled. If it is not specified how to handle output
files (but the “core logic” otherwise succeeded) the task ends up having status “Incomplete”.

Admin FAQs and Troubleshooting

Background Tasks Guide 115

The background task log will show what output documents were produced and how/if they were handled.

Basically, output files can be handled in two ways:

 Sent by e-mail to a specific recipient

 Stored on the file system somewhere

You can associate a file handler to a “pattern”. If you do, only output files having a name that matches will
be handled by that handler. In this way, you can have PDF-files stored in one location, and TXT-files
stored in another location.

You can also choose to have some files both sent by e-mail and stored on a file system.

To see what output documents were produced and how they are handled, go to: Set Up / Background
Tasks, Status » List of Background Tasks » Background Task » Result Log.

In the example below, files where stored on a file system and sent by e-mail.

Admin Field Descriptions

Background Tasks Guide 116

Admin Field Descriptions
Note: The information in this section is in DRAFT form and is not yet updated to reflect 2.5.2.

Setup » Background Tasks workspace » Management section » Execution Runtime tab
This tab displays information that was current at the time you loaded or refreshed the workspace. The
execution of background tasks is highly dynamic, but the data in this tab only changes when you click
Refresh.

Status island

Field Description

Execution of Background Tasks This field displays the current overall status of
the background tasks system. It contains one
of the following values:

 Running – New scheduled tasks may be
picked up for execution. The field can have
this value even if no coupling services are
set up for executing background tasks.
However, it is strongly advised that there
always be at least one coupling service set
up; otherwise, Maconomy will not carry out
background tasks.

 Stopping – No new scheduled tasks may
be picked up for execution, but currently
running tasks exist. Click the Refresh
action to update the status.

 Stopped – No new scheduled tasks may
be picked up for execution, and no running
tasks exist. If you plan to shut down
coupling services, make sure that the
status is “Stopped”. Otherwise, you might
continue to see running tasks for that
coupling service (even if these tasks are no
longer running).

For more detailed status and control (especially
when shutting down a single coupling service
in a setting where several coupling services run
concurrently), refer to the information in the
Execution Nodes sub-tab.

No. Running Tasks This field displays the number of currently
running background tasks. Click the Refresh
action to monitor how the number changes
over time.

Setup » Background Tasks workspace » Management section » Execution Runtime tab »
Execution Nodes sub-tab

Admin Field Descriptions

Background Tasks Guide 117

This sub-tab displays information that was current at the time you loaded or refreshed the workspace.
The execution of background tasks is highly dynamic, but the data in this sub-tab only changes when you
click Refresh.

Field Description

Node An execution node carries out background
tasks. This field displays identification for each
node in the system.

 The top node is always called
“Maconomy” and is of the “System” type.
It represents the entire collection of task
execution nodes for the specific
Maconomy installation.

 Second-level nodes are of the “Host” type.
Each represents a computer/machine that
runs one or more coupling services which
carry out background tasks. The title of
the node identifies the name of the
computer.

 Third-level nodes are of the “PID” type,
and represent actual coupling service
instances. The title of the node represents
the process ID of a coupling service that
runs on the “Host” parent computer. This
allows you to differentiate between two
coupling services that run on the same
computer.

 Fourth-level nodes are of the “Thread”
type, and represent actual task execution
threads. The title of the node is a
reference number identifying each
execution thread on the parent “PID”
coupling service. Each “Thread”-type
node can carry out the actual background
tasks. The parent “PID” nodes merely
group the execution threads together, and
allow you to start/stop processing multiple
threads at once.

Latest Activity This field only displays information for
“Thread”-type nodes. It shows the thread’s
most recent query to the system for the
execution of a background task.

Even stopped threads exhibit activity by
querying. This activity causes Maconomy to
update thread timeout information.

Timeout This field only displays information for
“Thread”-type nodes. It shows the time the
execution thread timed out. If the thread does

Admin Field Descriptions

Background Tasks Guide 118

not report back before this time, the system
may opt to remove the thread from the
overview and abort any task that the thread is
seemingly running.

Running Action This field only displays information for
“Thread”-type nodes. It displays the name of
any action that the execution thread is
currently performing.

Running Container This field only displays information for
“Thread”-type nodes. If the execution thread is
currently running a background task, this field
displays the name of the container in which
the current action resides.

Duration This field only displays information for
“Thread”-type nodes. If the execution thread is
currently running a background task, this field
displays the running duration of the task
execution.

If a task is long-running, it could mean one of
the following:

 The task is simply taking longer than
expected.

 The coupling service running the task was
shut down while running that task. The
task seems to be running (even if it is not),
and the duration of the task execution
continues to increase until the thread
times out. At any time after that, the
system may choose to abort the task and
remove the execution thread from the
overview.

Status This field displays the status of the node, and
can have one of the following values:

 Running – The node is allowed to pick up
tasks for execution. If the specific node
has sub-nodes, these may be more
restrictive. For example, a “PID” node with
the Running status could have one or
more “Thread” nodes with the Stopped
status. The stopped “Thread” nodes do
not pick up tasks for execution.

 Stopped – The node and its sub-nodes (if
any) are not allowed to pick up tasks for
execution.

 Stopped (when done) – This status is
similar to “Stopped”, but for a node that is

Admin Field Descriptions

Background Tasks Guide 119

currently executing a task. The execution
will continue until done.

 Suspended – The node is not allowed to
pick up tasks for execution, but only
because one of its parent nodes is
“Stopped”. If the parent node is restarted,
this status changes to “Running”.

 Suspended (when done) – This status is
similar to “Suspended”, but for a node that
is currently executing a task. The
execution will continue until done.

Start/Stop This is an action link to the Enable Execution
or Disable Execution action (not included in
the default layout). The available action link
depends on the status of the specific node.

If you click the Stop link, Maconomy disables
further task execution for the node and its
sub-nodes. For example, if you click Stop for
a PID coupling service node, that coupling
service will no longer receive tasks for
execution even if it sends out queries for
them. Currently running tasks are allowed to
continue until finished.

If you click the Start link, Maconomy enables
further task execution for the node. Each sub-
node’s status remains unchanged.

Warning: Before you shut down a coupling
service, make sure it is not carrying out any
tasks. You can do this by stopping any PID
sub-nodes, waiting for all threads to finish
currently running tasks, and then shutting
down the coupling service.

If you fail to do this, you risk one or more
background tasks timing out and being
aborted by the system. Rescheduling these
aborted tasks will require manual intervention,
which defeats the purpose of scheduling
background tasks in the first place.

Running Task Id This field only displays information for
“Thread”-type nodes. If the execution thread is
currently running a background task, this field
displays the ID of that task.

Action Description

Admin Field Descriptions

Background Tasks Guide 120

Remove Timed-Out Threads Click this action to remove all timed-out
execution threads.

Remember that this sub-tab displays data that
was current at the time you loaded or
refreshed the workspace, and that timeout
information may have changed since then. To
make sure you are looking at the latest
information, click Refresh before using this
action.
Note: By default, the system invokes this
action every 10 minutes. However, you can
customize the interval on the coupling service.

Setup » Background Tasks workspace » Management section » Execution Runtime tab »
Execution Nodes sub-tab » Background Task panel
If you select an execution thread from the Execution Nodes sub-tab, this panel displays the properties of
the background task that the thread is currently running. These properties were originally entered
manually or generated (by a background task generator) in the Editing section of the Background Tasks
workspace.

Setup » Background Tasks workspace » Management section » Execution Runtime tab »
Execution Nodes sub-tab » Background Task panel » Parameter/Field sliding panel
If you select an execution thread from the Execution Nodes sub-tab, this sliding panel displays further
details about the background task the thread is currently running. Again, this information was originally
entered manually or generated (by a background task generator) in the Editing section of the Background
Tasks workspace.

Setup » Background Tasks workspace » Management section » Selection & Clean-up tab
Selection Criteria island

Field Description

Container Name If you specify a container in this field,
Maconomy displays completed background
tasks that are related to the specified container.

Otherwise, no restrictions are made based on
this field.

Action Name If you specify an action in this field, Maconomy
displays completed background tasks that are
related to the specified action.

Otherwise, no restrictions are made based on
this field.

Completed Before If you specify a date in this field, only
background tasks completed prior to that date
are listed in the Background Task sub-tab.

Admin Field Descriptions

Background Tasks Guide 121

Status Select a value from the drop-down list to filter
the lines shown in the sub-tab. Only completed
background tasks with the specified status are
displayed.

If you leave this field blank, no restrictions are
made based on the status.

From Access Level-To Access Level In these fields, you can specify a range of
access levels. Only completed background
tasks associated with an access level that falls
within the specified range are displayed in the
sub-tab.

Show Lines Select this check box to display the completed
background tasks that fall within the selection
criteria you specify.

Maconomy displays the lines in the
Background Task sub-tab.

[Delete Shown] If you select the Show Lines check box, you
can click this action link to delete all the
background tasks listed in the sub-tab.

Otherwise, this action remains grayed out.

Action Description

Delete Tasks Completed Before… Click this action to delete any tasks completed
(that is, successful, incomplete, or failed)
before the date specified (typically in a wizard).

You can also specify the date relative to the
current date, but this is not possible in the
default wizard layout. This is done using the
background task generator for automatically
deleting old background tasks.

Setup » Background Tasks workspace » Management section » Selection & Clean-up tab »
Background Task sub-tab
The Background Task sub-tab displays the completed background tasks that match the selection criteria
specified in the Selection & Clean-up tab.

Field Description

Id This field displays the unique ID of the
background task.

Task Description This field displays a description of the task.

Admin Field Descriptions

Background Tasks Guide 122

Container This field displays the container name
associated with the task.

Action Name This field displays the action name associated
with the task.

Date Started This field displays the date when the task
started.

Date Ended This field displays the date when the task
ended.

Setup » Background Tasks workspace » Management section » System Defaults tab
These fields determine the default settings for new background tasks.

Re-Attempts When Data is Busy

Field Description

Default Max. Exec. Re-Attempts In this field, specify the default number of times
the system is allowed to re-attempt a task if
execution fails because data is locked to
another user. You can override this setting if
you fill out the Max. Execution Re-Attempts
field on a specific task.

For example, a task attempts to approve a job
budget, but the corresponding budget is being
edited by another user. The task execution
system could automatically reschedule the task
to run again at a later time. This setting
determines the maximum number of times the
system does this before giving up and marking
the task as failed.

Default Secs. Between Re-Attempts In this field, specify the default number of
seconds between system re-attempts to
execute a task. The value must fall within the
range of 0 – 3600 seconds (or one hour).

Execution island

Field Description

Default Max. Task Duration In this field, specify the default maximum task
duration. The value is measured in minutes.

When the system picks up a task for
execution, the execution thread will be
considered timed-out after the period of time
you specify in this field. If the thread has not
reported back before the time is up,

Admin Field Descriptions

Background Tasks Guide 123

Maconomy may automatically abort the task.
For example, this could occur if the coupling
service is shut down during execution of
background tasks.

You can override this value on individual tasks,
as well as on tasks generated by schedule
rules. If nothing is specified on the individual
task, the task assumes the value specified in
this field.

History Trace island

Field Description

Create History Trace for Tasks Select this check box if you want Maconomy to
maintain a history trace of successfully
executed background tasks.

Each time this check box is selected/cleared,
the database logs the change and the user
who made the change.

Maconomy keeps the history trace even after
the tasks are deleted. In this way, you can
investigate and find out whether a certain
operation has been performed by a
background task, on what container key, and at
what date and time.

Since the size of this database table may
become too large over time, do not select this
check box if it is not relevant or important for
your installation and legislation that you keep
track of successful tasks.

Create History Trace Only for Tasks Running
as a Specific User

Select this check box if you want Maconomy to
maintain a history trace only for background
tasks set to run on behalf of specific users.
This keeps the size of the history trace down.

If you select this check box, you must also
select the Create History Trace for Tasks
check box.

Each time this check box is selected/cleared,
the database logs the change and the user
who made the change.

Setup » Background Tasks workspace » Status section » Background Task tab
If you select a background task from the filter list, this tab displays the properties of that task. These
properties were originally entered manually or generated (by a background task generator) in the Editing
section of the Background Tasks workspace.

Admin Field Descriptions

Background Tasks Guide 124

Setup » Background Tasks workspace » Status section » Background Task tab » Parameter/Field
sub-tab
If you select a background task from the filter list, this sub-tab displays further details about that task.
Again, this information was originally entered manually or generated (by a background task generator) in
the Editing section of the Background Tasks workspace.

Setup » Background Tasks workspace » Status section » Background Task tab » Result Log sub-
tab
This sub-tab shows detailed result logs for tasks. In the case of failed tasks, the error encountered is
explained in more detail. In the case of completed tasks, a detailed log output is provided for notifications,
warnings, and so on.

Field Description

Message This field displays any message that
Maconomy displayed while executing the
background task shown in the tab.

Type This field displays the type of message, and
can have one of the following values:

 Notification – This type covers any
notification that Maconomy issues during
execution. For example: “Job No.
jobnumber has been created.”

 Warning - This type covers any warning
that Maconomy issues during execution.
For example: “The Time Sheet has been
temporarily submitted. Continue?”

 Background tasks always accept warnings
issued by Maconomy.

 Error – This type covers any error
message that Maconomy displays during
execution. These could be user errors
(such as “No registrations can be made
before or after the employment period.”) or
internal program errors.

 Trace – This type covers stack trace
information relayed as part of error
messages. A stack trace is useful for
debugging and error identification.

 Input – This type covers messages
displayed which are related to input
documents that Maconomy picked up
during task execution.

 Output – This type covers messages
displayed which are related to output
documents produced during task
execution. For example, an output

Admin Field Descriptions

Background Tasks Guide 125

message could be about where an output
document was stored.

 Information – This type covers other
informative messages related to the task
execution.

 Result – This type covers messages that
state the final result of the task execution.

Rec. Key Descr. This field displays a textual representation of
the record on which an action was performed.

Admin Field Descriptions

Background Tasks Guide 126

About Deltek
Better software means better projects. Deltek is the leading global provider of enterprise software and
information solutions for project-based businesses. More than 23,000 organizations and millions of users
in over 80 countries around the world rely on Deltek for superior levels of project intelligence,
management and collaboration. Our industry-focused expertise powers project success by helping firms
achieve performance that maximizes productivity and revenue. www.deltek.com

http://www.deltek.com/

	Overview
	Background Task Framework Configuration
	MConfig and settings.ini
	Comments
	General Properties
	System Nature Specific Properties
	Short-name Specific Properties
	Mandatory and Recommended Properties
	Immutable vs. Mutable Properties

	Background Task Framework Runtime Setup
	Background Task Administrator Login Name Setup
	Background Task Administrator Locale Setup
	Background Task Execution Control Setup

	Background Task Framework Capacity
	Task Poll Frequency Setup
	Number of Execution Threads Setup
	Dynamic Number of Execution Threads Setup
	Max ExecutionThreads Setup
	Server Limitation Setup
	Priority Distribution Setup

	Background Task Framework Runtime Validation
	System Check Frequency Setup
	Sanity Email Control Setup
	Sanity Start-up Email Setup
	Sanity Error Email Resent Frequency Setup

	Background Task Framework Short-name Control
	Short-name Inclusion Setup
	Short-name Exclusion Setup

	Email Setup
	Mail Server Setup
	Default Sender Email Address Setup
	Default Background Tasks Framework Sender Email Address Setup
	Background Task Administrator Email Address Setup
	Overruling Receiver Email Address Setup

	Miscellaneous
	System Nature Setup
	Server Descriptive Name Setup

	Background Tasks Framework Setup
	Background Task System Nature Setup
	Setup System Nature
	Email Account Precaution
	Third Party Integration Precaution
	File Location Precaution

	Activate Background Task Rules

	Background Task Workspace Setup

	Background Task and Schedule Rules Setup
	Overview
	Background Tasks
	Schedule Rules
	Configure a New Schedule Rule

	Key Generator Setup
	Filters
	Information Fields
	Filter Rows

	Schedule Rule Setup
	Context Fields
	Adding User Input Lines
	Chained Tasks
	Low Priority Tasks
	Different Kinds of Schedule Rules
	Using Expressions in Input Fields
	Using Extended Test Bed
	Test Scheduled Rule Time Pattern
	Low Priority Tasks
	Hold Tasks Rule If Tasks Are Still Pending
	Requests for Pending Tasks
	Retry Scheduling
	Document Archives
	Chained Background Tasks

	Expressions in Background Tasks
	Container Field References
	Context Field References
	Standard Functions
	Combined Expressions
	Expressions Supported in Different Containers
	Key Generators
	Schedule Rules
	Background Tasks

	Supported Standard Functions
	Date and Time Functions
	String Functions
	Popup Functions
	Numeric Type Conversion and Formatting Functions
	Math Functions
	User Functions
	System Table and Environment Functions
	Other Functions

	Fields and Actions
	Fields
	Actions
	Show Next Scheduled Rule
	Export Selected Lines
	Test Schedule Rule
	Export Selected Tasks
	Delete Selected Tasks
	Export Selected Tasks
	Pause Execution
	Delete Inactive Test Tasks
	Activate Inactive Test Tasks
	Show Next Scheduled Rule Execution

	Framework Admin and Maintenance
	Monitoring Background Tasks
	Email Reporting
	Email Report—Normal Operation
	Email Report—Task Error

	Error Types
	Status Information in Background Task Workspace
	Actions on Execution Nodes Sub-Tab
	Color Coding
	Color Code Flow Chart

	Verify and Delete Tasks
	Clear “Override Auto-Deletion of Tasks”

	Admin FAQs and Troubleshooting
	Is the Background Task System Running?
	I Need to Shut Down the Coupling Service – Should I Do Anything?
	I Need to Copy the Production Database to Test – Can I Do So Safely?
	What is the Status of the Background Tasks?
	Why Did a Background Task Fail?
	How Can I Limit the Size of the Background Task Database Table?
	Can I See Tasks That Were Run as Another User?
	What is the Purpose of the HistoricBackgroundTask table?
	How Can I Limit the Size of the HistoricBackgroundTask Table?
	Execution Threads are Active; But No Tasks are Being Executed. Why?
	My Background Tasks Are Not Run at an Adequate Pace – Why?
	My Background Task is Green, But It Didn’t Run – Why?
	My Background Tasks Generator Hasn’t Run - Why?
	What Happens If Other Users are Changing the Data of a Background Task?
	Where Did the Output of a Background Task End Up?

	Admin Field Descriptions

